Download citation
Download citation
link to html
The title compound, catena-poly[[[di­aqua­(methanol-[kappa]O)cop­per(II)]-[mu]-N-(4-methyl­pyrimidin-2-yl-[kappa]N1)pyrazin-2-amine-[kappa]2N1:N4] [[aqua­(aqua/methanol-[kappa]O)(perchlorato-[kappa]O)cop­per(II)]-[mu]-N-(4-methyl­pyrimidin-2-yl-[kappa]N1)pyrazin-2-amine-[kappa]2N1:N4] tris­(perchlorate) methanol monosolvate 1.419-hy­drate], {[Cu(C9H9N5)(CH3OH)(H2O)2][Cu(C9H9N5)(ClO4)(CH3OH)0.581(H2O)1.419](ClO4)3·CH3OH·1.419H2O}n, is a one-dimensional straight-chain polymer of N-(4-methyl­py­rimidin-2-yl)pyrazin-2-amine (L) with Cu(ClO4)2. The complex con­sists of two crystallographically independent one-dimensional chains in which the CuII atoms exhibit two different octa­hedral coordination geometries. The L ligand coordinates to two CuII centres in a tridentate manner, with the pyrazine ring acting as a bridge linking the CuII coordination units and building an infinite one-dimensional chain. Extensive hydrogen bonding among perchlorate anions, water mol­ecules and L ligands results in three-dimensional networks.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614002472/ov3044sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614002472/ov3044Isup2.hkl
Contains datablock I

CCDC reference: 984858

Introduction top

Metal–organic frameworks have been studied extensively over the past several decades (Cairns et al., 2008; Dalrymple & Shimizu, 2007; Xie et al., 2004) because of their potential applications in a wide range of areas, including catalysis, separation science, gas storage, drug delivery, molecule-based optical and magnetic materials etc. (Kesanli & Lin, 2003; Brammer, 2004; Gimeno & Vilar, 2006; Kitagawa & Matsuda, 2007). The factors affecting the structure and packing of molecules in crystallization are intricate and are still not clearly understood. Different structures can result from changes to any one of a numbers of factors, i.e. solvent, acidity, ratio of the rea­cta­nts, carbon backbone of the ligand and so on (Ouellette et al., 2007; Zhao et al., 2008). Nitro­gen-containing heterocyclic ligands have proved to be extremely versatile, with the abilities to build extended networks with different coordination modes and to mediate significant magnetic inter­actions between paramagnetic centres separated by more than 6 Å (Carranza et al., 2004). A wide variety of nitro­gen-containing heterocyclic ligands have been used to construct coordination polymers, such as pyrrole, pyrazole, pyridine, pyrimidine, pyrazine, and so on (Wang et al., 2008; Ismayilov et al., 2006). Originally designed for the synthesis of extended metal atom chain complexes (EMACs), oligo-α-pyridyl­amine compounds have been shown to be excellent coordination ligands. Recently, a series of modified ligands, viz. oligo-α-pyrazyl/pyrimidyl/pyridyl­amine, have been developed by grafting pyrazine or pyrimidine into the ligands instead of pyridine rings (Ismayilov et al., 2007; Wang et al., 2007, 2012). Containing more atoms capable of coordination, these molecules showed abundant coordination modes, especially in the construction of one-, two- and three-dimensional coordination polymers. Here, a one-dimensional copper(II) complex of N-(4-methyl­pyrimidin-2-yl)pyrazin-2-amine (L) is reported, namely {[Cu(L)(MeOH)(H2O)2][Cu(ClO4)(L)(MeOH/H2O)2(H2O)](ClO4)3.MeOH.1.419H2O}n, (1), which provides a rare case consisting of two independent one-dimensional chains with different coordination geometries.

Experimental top

Synthesis and crystallization top

A mixture of N-(4-methyl­pyrimidin-2-yl)pyrazin-2-amine (0.10 g, 0.58 mmol) and Cu(ClO4)2.6H2O (0.24 g, 0.65 mmol) in methanol (50 ml) was stirred overnight. The solution was then filtered to remove insoluble impurities and concentrated under vacuum. Slow evaporation of the solution gave crystals suitable for X-ray diffraction.

Refinement top

The equatorial plane of the Cu2 complex found in the chain is defined by three N atoms (N6, N7 and N10) and by the coordinated disordered water/methanol molecules (O5, O5–C20) with 0.419 (6) water and 0.581 (6) methanol occupancies. A perchlorate anion coordinated to Cu2 as an axial ligand is disordered over two positions (Cl4/O18/O21 and Cl4'/O18'/O21') and was treated with 0.529 (4) and 0.471 (4) occupancies. Atoms O21 and O21' were restrained to have similar displacement parameters. The displacement parameters of the atoms in the disordered perchlorate anion were constrained to be equivalent. One uncoordinated methanol solvent molecule was found to be disordered over the two positions O23/C21 and O23'/C21' and were treated with 0.581 (6) and 0.419 (6) occupancies, respectively. Bond distances involving non-H atoms in the disordered methanol molecules were subjected to distance restraints. The C—O distances within the two components of the disordered methanol solvent molecule (O23—C21 and O23'—C21') are restrained to 1.45 (1) Å and the methanol molecule was modeled with isotropic displacement parameters. Water atom O24 had a short contact of 2.14 Å with methanol atom O23. The free variable for the occupancy factor of uncoordinated water molecule O24 was applied and the occupancy was 0.419 (6) and the atom was refined with an isotropic displacement parameter. H atoms bonded to the coordinated and uncoordinated water molecules were located in difference Fourier maps and the O—H and H···H distances were restrained to be 0.85 (2) and 1.35 (2) Å, respectively. The Uiso(H) values were set at 1.5Ueq(O). H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model, with C—H = 0.95–0.98 Å and N—H = 0.88 Å, and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(methyl C). The refinement of the H atoms of the methanol solvent molecule required the inclusion of inter­molecular restraints to avoid convergence to unreasonable inter­molecular H···H distances. The inter­molecular H···H shortest contact distances were restrained to 2.25 (2) Å.

Results and discussion top

The reaction of N-(4-methyl­pyrimidin-2-yl)pyrazin-2-amine (L) with Cu(ClO4)2 results in a coordination polymer consisting of two crystallographically independent one-dimensional chains along the c axis, denoted chains (I) and (II); the atom-numbering scheme is shown in Fig. 1. In chain (I), the Cu1 atom is o­cta­hedrally coordinated by two pyrazine N atoms [N1 and N2i; symmetry code: (i) x, -y+1/2, z+1/2] that are trans to each other, two cis water molecules, a pyrimidine N atom and a methanol O atom. The axial positions are occupied by one water molecule (O2) and one methanol molecule (O3). Elongation occurs along the axial positions due to the Jahn–Teller effect, which is typical for a CuII complex (electronic configuration d9). This phenomenon was observed in both chains. The coordination geometry and bond lengths are consistent with data reported previously for similar complexes (Wang et al., 2008; Ismayilov et al., 20060 (Table 2). The L ligand acts as a tridentate ligand, coordinating to atom Cu1 via two N atoms and bridging to a symmetry-related Cu1ii atom via the second N atom (N2) of the pyrazine ring [symmetry code: (ii) x, -y+3/2, z-1/2]. Thus, through the pyrazine ring, the coordination units form an infinite one-dimensional straight chain polymer. Atoms N3 and N4 both remain uncoordinated. The straight chain structure is similar to that obtained from middle-ring pyrazine-containing oligo-α-pyridyl­amino ligands, where it was reported that the methyl group and pyrimidine ring contribute little to the formation of the polymer of analogous ligands (Wang et al., 2008).

The CuII atom (Cu2) in chain (II) also adopts a six-coordinate o­cta­hedral geometry, in which the coordination mode of the L ligand is the same as that in chain (I), i.e.. the L ligand coordinates to atom Cu2 as a tridentate ligand, chelating to one Cu centre via a pyrazine and a pyrimidine N atom, with the second pyrazine N atom (N7) coordinating to a symmetry-related Cu2iv atom, thus creating an infinite one-dimensional straight chain [symmetry code: (iv) x, -y+3/2, z+1/2]. Atom Cu2 is o­cta­hedrally coordinated by two pyrazine N atoms (N6 and N7ii) that are trans to each other, a water molecule (O4), a coordinated disordered water/methanol molecule [O5: 0.419 (6) water and 0.581 (6) methanol], a pyrimidine N atom and a perchlorate anion. The perchlorate anion coordinates weakly to atom Cu2 with a relatively long Cu2—O19 distance (Table 2). This weak coordination bond is presumably due to the poor coordination ability of perchlorate counter-ions and the Jahn–Teller effect of the Cu centre, and has been observed in other related complexes with even longer Cu—O distances of 2.573 (5) and 2.588 (2) Å (Wang et al., 2008; Ismayilov et al., 2006).

Extensive hydrogen bonding is observed among the perchlorate anions, water molecules and L ligands (Table 3, and Figs. 2 and 3). The one-dimensional straight chains are linked along the a axis through inter­chain water–perchlorate O2···O7 hydrogen-bonding inter­actions. This is propagated by a water–perchlorate O1···O20iii hydrogen bond [symmetry code: (iii) -x, -y+1, -z+1] resulting in a two-dimensional sheet parallel to the ac plane. The resulting two-dimensional sheet is then hydrogen bonded to other sheets through inter­actions with the inter­stitial perchlorate anions and water molecules. Atoms N3 and N8 and coordinated water molecule O2 form hydrogen bonds to the inter­stital perchlorate counter-anions. Coordinated water molecule O1 forms a hydrogen bond to water molecule O22, which in turn forms a hydrogen bond to the inter­stitial perchlorate anions. This series of hydrogen bonds among the components of the structure results in the three-dimensional hydrogen-bonded network.

In summary, with five N atoms, the L ligand shows a versatile and rich coordination chemistry and supra­molecular structure constructed by hydrogen bonds, which allows for a variety of potentially tunable coordination polymers.

Related literature top

For related literature, see: Brammer (2004); Cairns et al. (2008); Carranza et al. (2004); Dalrymple & Shimizu (2007); Gimeno & Vilar (2006); Ismayilov et al. (2006, 2007); Kesanli & Lin (2003); Kitagawa & Matsuda (2007); Ouellette et al. (2007); Wang et al. (2007, 2008, 2012); Xie et al. (2004); Zhao et al. (2008).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (1). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The two-dimensional hydrogen-bonding network between perchlorate anions and water molecules. H atoms not involved in these interactions, the disordered atoms, and the uncoordinated water and methanol molecules have been omitted for clarity. [Symmetry codes: (i) x, -y+1/2, z + 1/2; (iii) -x, -y+1, -z+1.]
[Figure 3] Fig. 3. The interchain hydrogen-bonding interactions along the b axis. H atoms not involved in these interactions, the disordered atoms, and the uncoordinated water and methanol molecules have been omitted for clarity. [Symmetry codes: (i) x, -y+1/2, z+1/2; (iv) x,y-1, z.]
catena-Poly[[[diaqua(methanol-κO)copper(II)]-µ-N-(4-methylpyrimidin-2-yl-κN1)pyrazin-2-amine-κ2N1:N4] [[aqua(aqua/methanol-κO)(perchlorato-κO)copper(II)]-µ-N-(4-methylpyrimidin-2-yl-κN1)pyrazin-2-amine-κ2N1:N4] tris(perchlorate) methanol monosolvate 1.42-hydrate] top
Crystal data top
[Cu(C9H9N5)(CH4O)(H2O)2] [Cu(ClO4)(C9H9N5)(CH4O)0.581(H2O)1.419]·(ClO4)3·CH4O·1.419H2OF(000) = 2176
Mr = 1068.32Dx = 1.759 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7928 reflections
a = 15.0769 (4) Åθ = 1.0–27.5°
b = 20.0774 (7) ŵ = 1.42 mm1
c = 13.7166 (3) ÅT = 150 K
β = 103.7105 (15)°Needle, green
V = 4033.8 (2) Å30.40 × 0.08 × 0.08 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
7928 independent reflections
Radiation source: fine-focus sealed tube4878 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 26.0°, θmin = 1.4°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1618
Tmin = 0.783, Tmax = 0.898k = 2424
20877 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.194H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0962P)2 + 8.0361P]
where P = (Fo2 + 2Fc2)/3
7921 reflections(Δ/σ)max = 0.001
601 parametersΔρmax = 1.49 e Å3
237 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Cu(C9H9N5)(CH4O)(H2O)2] [Cu(ClO4)(C9H9N5)(CH4O)0.581(H2O)1.419]·(ClO4)3·CH4O·1.419H2OV = 4033.8 (2) Å3
Mr = 1068.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.0769 (4) ŵ = 1.42 mm1
b = 20.0774 (7) ÅT = 150 K
c = 13.7166 (3) Å0.40 × 0.08 × 0.08 mm
β = 103.7105 (15)°
Data collection top
Nonius KappaCCD
diffractometer
7928 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
4878 reflections with I > 2σ(I)
Tmin = 0.783, Tmax = 0.898Rint = 0.048
20877 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.064237 restraints
wR(F2) = 0.194H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 1.49 e Å3
7921 reflectionsΔρmin = 0.60 e Å3
601 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.24119 (4)0.24519 (3)0.51225 (4)0.02431 (19)
O10.1476 (3)0.17418 (19)0.4858 (3)0.0346 (9)
H1A0.099 (3)0.171 (3)0.504 (5)0.052*
H1B0.164 (4)0.1347 (15)0.476 (5)0.052*
O20.3559 (3)0.1663 (2)0.5367 (3)0.0438 (11)
H2A0.401 (3)0.175 (3)0.512 (5)0.066*
H2B0.367 (4)0.1284 (18)0.563 (5)0.066*
O30.1274 (3)0.3285 (2)0.4792 (3)0.0381 (10)
H30.148 (5)0.3649 (19)0.504 (5)0.057*
N10.2440 (3)0.2494 (2)0.3661 (3)0.0249 (10)
N20.2362 (3)0.2546 (2)0.1611 (3)0.0244 (10)
N30.2831 (3)0.3629 (2)0.3754 (3)0.0308 (11)
H3B0.26650.40050.34330.037*
N40.3698 (3)0.4282 (2)0.4965 (3)0.0364 (12)
N50.3342 (3)0.3178 (2)0.5367 (3)0.0256 (10)
C10.2263 (4)0.1943 (3)0.3057 (4)0.0289 (12)
H10.21560.15300.33470.035*
C20.2233 (4)0.1964 (3)0.2062 (4)0.0284 (12)
H20.21220.15660.16760.034*
C30.2521 (4)0.3086 (3)0.2166 (4)0.0240 (11)
H3A0.25920.35010.18610.029*
C40.2586 (4)0.3061 (3)0.3211 (4)0.0246 (12)
C50.3308 (4)0.3688 (3)0.4748 (4)0.0307 (13)
C60.4242 (4)0.4360 (3)0.5879 (4)0.0436 (16)
C70.4430 (4)0.3814 (3)0.6539 (4)0.0407 (15)
H70.48670.38460.71620.049*
C80.3962 (4)0.3235 (3)0.6255 (4)0.0321 (13)
H8A0.40750.28630.66940.039*
C90.4607 (6)0.5034 (4)0.6165 (5)0.058 (2)
H9A0.41630.53680.58340.088*
H9B0.51800.50930.59550.088*
H9C0.47200.50860.68940.088*
C100.0332 (5)0.3237 (4)0.4573 (7)0.069 (2)
H10A0.01350.28590.41220.104*
H10B0.00630.36480.42460.104*
H10C0.01320.31700.51950.104*
Cu20.21091 (5)0.74407 (3)0.35222 (5)0.0314 (2)
O40.3197 (3)0.6650 (3)0.3799 (3)0.0570 (13)
H4A0.326 (5)0.6226 (15)0.401 (6)0.086*
H4B0.372 (3)0.680 (3)0.410 (6)0.086*
O50.1129 (3)0.6763 (2)0.3244 (3)0.0468 (11)
H5A0.13650.63270.33160.070*0.581 (6)
H5B0.12650.63510.32710.070*0.419 (6)
H5C0.05730.68830.30950.070*0.419 (6)
N60.2088 (3)0.7471 (2)0.4994 (3)0.0333 (11)
N70.2035 (3)0.7511 (2)0.7007 (3)0.0307 (11)
N80.2358 (3)0.8621 (2)0.5065 (3)0.0372 (12)
H80.21100.89840.52430.045*
N90.3231 (4)0.9309 (3)0.4372 (3)0.0414 (13)
N100.2998 (3)0.8186 (2)0.3796 (3)0.0336 (11)
C110.1976 (4)0.6916 (3)0.5510 (4)0.0363 (14)
H110.19080.65010.51690.044*
C120.1955 (4)0.6927 (3)0.6494 (4)0.0338 (13)
H120.18850.65230.68270.041*
C130.2141 (4)0.8063 (3)0.6515 (4)0.0329 (13)
H130.21880.84790.68530.039*
C140.2185 (4)0.8042 (3)0.5504 (4)0.0339 (14)
C150.2876 (4)0.8699 (3)0.4377 (4)0.0377 (14)
C160.3843 (4)0.9398 (3)0.3808 (4)0.0432 (16)
C170.4113 (4)0.8867 (3)0.3298 (4)0.0423 (15)
H170.45960.89170.29670.051*
C180.3671 (4)0.8272 (3)0.3279 (4)0.0408 (15)
H180.38290.79120.29050.049*
C190.4186 (5)1.0089 (3)0.3769 (5)0.0538 (18)
H19A0.41181.03340.43650.081*
H19B0.38331.03110.31650.081*
H19C0.48311.00760.37510.081*
C200.0241 (10)0.6773 (9)0.2594 (13)0.096 (6)0.581 (6)
H20A0.00980.71570.27560.144*0.581 (6)
H20B0.00820.63620.26820.144*0.581 (6)
H20C0.02920.68060.18970.144*0.581 (6)
Cl10.51320 (11)0.25412 (9)0.39226 (11)0.0487 (4)
O60.4680 (12)0.2977 (12)0.311 (2)0.067 (3)0.529 (4)
O70.4467 (12)0.1983 (13)0.383 (2)0.087 (5)0.529 (4)
O80.519 (3)0.2965 (18)0.479 (3)0.096 (7)0.529 (4)
O90.594 (5)0.232 (4)0.364 (7)0.062 (8)0.529 (4)
O6'0.4429 (14)0.2814 (14)0.323 (2)0.067 (3)0.471 (4)
O7'0.4815 (14)0.1874 (15)0.412 (3)0.087 (5)0.471 (4)
O8'0.530 (4)0.275 (2)0.492 (3)0.096 (7)0.471 (4)
O9'0.597 (5)0.245 (4)0.372 (7)0.062 (8)0.471 (4)
Cl20.16421 (14)1.00590 (9)0.14498 (14)0.0593 (5)
O100.2430 (13)0.9673 (10)0.1895 (14)0.123 (5)0.529 (4)
O110.0965 (11)1.0527 (10)0.1714 (18)0.131 (5)0.529 (4)
O120.1906 (9)1.0492 (6)0.0696 (10)0.075 (3)0.529 (4)
O130.095 (4)0.964 (2)0.094 (3)0.091 (7)0.529 (4)
O10'0.1981 (14)0.9653 (11)0.2331 (16)0.123 (5)0.471 (4)
O11'0.2328 (13)1.0390 (10)0.1210 (19)0.131 (5)0.471 (4)
O12'0.1376 (11)1.0513 (8)0.2088 (12)0.075 (3)0.471 (4)
O13'0.111 (4)0.963 (3)0.073 (4)0.091 (7)0.471 (4)
Cl30.31322 (13)0.50533 (8)0.18346 (12)0.0520 (5)
O140.3617 (5)0.4525 (3)0.1520 (6)0.103 (2)
O150.3650 (3)0.5642 (2)0.1892 (4)0.0614 (14)
O160.2979 (5)0.4876 (4)0.2777 (5)0.113 (2)
O170.2262 (3)0.5154 (3)0.1168 (4)0.0720 (16)
Cl40.0025 (3)0.8313 (2)0.3368 (4)0.0454 (9)0.529 (4)
O180.0398 (8)0.7668 (5)0.2987 (9)0.081 (2)0.529 (4)
O210.065 (3)0.8814 (15)0.289 (4)0.075 (6)0.529 (4)
Cl4'0.0220 (4)0.8598 (3)0.3574 (4)0.0454 (9)0.471 (4)
O18'0.0519 (9)0.9249 (6)0.3854 (10)0.081 (2)0.471 (4)
O21'0.063 (3)0.8579 (17)0.293 (5)0.075 (6)0.471 (4)
O190.0872 (3)0.8326 (2)0.3155 (3)0.0492 (12)
O200.0115 (3)0.8273 (3)0.4454 (3)0.0667 (15)
O220.1824 (4)1.0554 (2)0.4236 (4)0.0693 (15)
H22A0.16001.02700.46330.104*
H22B0.22931.02910.41900.104*
O230.1186 (7)0.5546 (5)0.3929 (8)0.088 (3)*0.581 (6)
H230.08580.58030.35110.132*0.581 (6)
C210.0965 (11)0.4832 (6)0.3612 (14)0.104 (5)*0.581 (6)
H21A0.04530.48230.30200.156*0.581 (6)
H21B0.07990.45880.41610.156*0.581 (6)
H21C0.15000.46230.34510.156*0.581 (6)
O23'0.1203 (9)0.5724 (7)0.2475 (11)0.088 (3)*0.419 (6)
H23'0.11390.56910.18490.132*0.419 (6)
C21'0.0982 (18)0.5154 (10)0.3055 (18)0.104 (5)*0.419 (6)
H21D0.08490.53160.36800.156*0.419 (6)
H21E0.15030.48480.32130.156*0.419 (6)
H21F0.04470.49200.26580.156*0.419 (6)
O240.2614 (14)0.5562 (10)0.4416 (15)0.129 (7)*0.419 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0288 (4)0.0303 (4)0.0164 (3)0.0012 (3)0.0105 (3)0.0005 (3)
O10.037 (2)0.041 (2)0.032 (2)0.0096 (19)0.0195 (18)0.0068 (19)
O20.045 (3)0.050 (3)0.044 (3)0.014 (2)0.025 (2)0.017 (2)
O30.033 (3)0.045 (2)0.038 (2)0.008 (2)0.0115 (19)0.000 (2)
N10.027 (2)0.031 (2)0.020 (2)0.0012 (19)0.0121 (18)0.0029 (19)
N20.022 (2)0.033 (2)0.020 (2)0.0003 (19)0.0080 (18)0.0037 (19)
N30.043 (3)0.027 (2)0.024 (2)0.000 (2)0.011 (2)0.0003 (19)
N40.049 (3)0.041 (3)0.023 (3)0.012 (2)0.017 (2)0.006 (2)
N50.030 (3)0.033 (2)0.017 (2)0.001 (2)0.0124 (19)0.0011 (19)
C10.038 (3)0.028 (3)0.025 (3)0.001 (2)0.015 (2)0.001 (2)
C20.037 (3)0.028 (3)0.023 (3)0.000 (2)0.012 (2)0.002 (2)
C30.031 (3)0.024 (3)0.020 (3)0.000 (2)0.011 (2)0.002 (2)
C40.026 (3)0.030 (3)0.019 (3)0.001 (2)0.009 (2)0.001 (2)
C50.038 (3)0.035 (3)0.024 (3)0.001 (3)0.017 (2)0.002 (2)
C60.048 (4)0.057 (4)0.033 (3)0.021 (3)0.023 (3)0.012 (3)
C70.037 (4)0.056 (4)0.030 (3)0.009 (3)0.010 (3)0.008 (3)
C80.033 (3)0.045 (3)0.022 (3)0.004 (3)0.014 (2)0.004 (2)
C90.086 (6)0.058 (4)0.034 (4)0.031 (4)0.018 (4)0.013 (3)
C100.056 (5)0.057 (5)0.096 (6)0.009 (4)0.022 (4)0.019 (4)
Cu20.0319 (4)0.0487 (4)0.0156 (3)0.0025 (3)0.0101 (3)0.0005 (3)
O40.047 (3)0.084 (4)0.039 (3)0.020 (3)0.009 (2)0.001 (3)
O50.044 (3)0.061 (3)0.036 (2)0.008 (2)0.010 (2)0.006 (2)
N60.031 (3)0.055 (3)0.017 (2)0.008 (2)0.0119 (19)0.003 (2)
N70.027 (3)0.051 (3)0.016 (2)0.000 (2)0.0091 (19)0.004 (2)
N80.047 (3)0.045 (3)0.025 (2)0.005 (2)0.019 (2)0.003 (2)
N90.053 (3)0.053 (3)0.022 (3)0.012 (3)0.018 (2)0.001 (2)
N100.032 (3)0.051 (3)0.019 (2)0.005 (2)0.010 (2)0.004 (2)
C110.034 (3)0.053 (4)0.023 (3)0.008 (3)0.007 (2)0.004 (3)
C120.038 (4)0.042 (3)0.023 (3)0.006 (3)0.010 (3)0.000 (3)
C130.033 (3)0.051 (4)0.017 (3)0.003 (3)0.011 (2)0.001 (3)
C140.032 (3)0.053 (4)0.019 (3)0.003 (3)0.011 (2)0.001 (3)
C150.034 (3)0.057 (4)0.023 (3)0.007 (3)0.008 (3)0.005 (3)
C160.044 (4)0.058 (4)0.027 (3)0.009 (3)0.009 (3)0.006 (3)
C170.036 (4)0.059 (4)0.037 (3)0.005 (3)0.018 (3)0.011 (3)
C180.032 (3)0.067 (4)0.026 (3)0.002 (3)0.013 (3)0.003 (3)
C190.064 (5)0.059 (4)0.046 (4)0.010 (4)0.029 (4)0.001 (3)
C200.065 (11)0.099 (12)0.107 (13)0.045 (9)0.017 (9)0.000 (10)
Cl10.0301 (8)0.0845 (12)0.0340 (8)0.0032 (8)0.0128 (7)0.0045 (8)
O60.034 (8)0.112 (10)0.056 (6)0.007 (7)0.013 (7)0.006 (5)
O70.068 (12)0.104 (8)0.105 (16)0.003 (8)0.054 (12)0.007 (6)
O80.052 (11)0.176 (19)0.056 (7)0.034 (14)0.003 (6)0.048 (11)
O90.037 (5)0.10 (2)0.057 (11)0.014 (10)0.029 (7)0.004 (13)
O6'0.034 (8)0.112 (10)0.056 (6)0.007 (7)0.013 (7)0.006 (5)
O7'0.068 (12)0.104 (8)0.105 (16)0.003 (8)0.054 (12)0.007 (6)
O8'0.052 (11)0.176 (19)0.056 (7)0.034 (14)0.003 (6)0.048 (11)
O9'0.037 (5)0.10 (2)0.057 (11)0.014 (10)0.029 (7)0.004 (13)
Cl20.0694 (13)0.0465 (10)0.0619 (11)0.0094 (9)0.0150 (9)0.0062 (9)
O100.129 (12)0.085 (5)0.121 (12)0.018 (8)0.041 (8)0.017 (7)
O110.094 (9)0.097 (8)0.232 (16)0.018 (6)0.100 (10)0.028 (8)
O120.086 (8)0.052 (4)0.094 (7)0.004 (5)0.036 (5)0.001 (4)
O130.108 (15)0.080 (4)0.075 (14)0.035 (7)0.004 (9)0.002 (7)
O10'0.129 (12)0.085 (5)0.121 (12)0.018 (8)0.041 (8)0.017 (7)
O11'0.094 (9)0.097 (8)0.232 (16)0.018 (6)0.100 (10)0.028 (8)
O12'0.086 (8)0.052 (4)0.094 (7)0.004 (5)0.036 (5)0.001 (4)
O13'0.108 (15)0.080 (4)0.075 (14)0.035 (7)0.004 (9)0.002 (7)
Cl30.0618 (12)0.0478 (9)0.0450 (10)0.0084 (8)0.0104 (8)0.0099 (8)
O140.097 (5)0.059 (4)0.152 (6)0.004 (3)0.030 (4)0.026 (4)
O150.068 (3)0.041 (3)0.063 (3)0.013 (2)0.008 (3)0.005 (2)
O160.139 (6)0.136 (6)0.074 (4)0.004 (5)0.042 (4)0.058 (4)
O170.058 (4)0.081 (4)0.073 (4)0.022 (3)0.006 (3)0.018 (3)
Cl40.037 (2)0.053 (3)0.049 (2)0.0054 (17)0.0181 (16)0.0052 (19)
O180.084 (6)0.060 (5)0.104 (7)0.007 (4)0.035 (5)0.016 (4)
O210.041 (3)0.097 (19)0.086 (6)0.021 (12)0.014 (3)0.049 (16)
Cl4'0.037 (2)0.053 (3)0.049 (2)0.0054 (17)0.0181 (16)0.0052 (19)
O18'0.084 (6)0.060 (5)0.104 (7)0.007 (4)0.035 (5)0.016 (4)
O21'0.041 (3)0.097 (19)0.086 (6)0.021 (12)0.014 (3)0.049 (16)
O190.034 (3)0.081 (3)0.034 (2)0.004 (2)0.0124 (19)0.000 (2)
O200.058 (3)0.100 (4)0.050 (3)0.004 (3)0.031 (2)0.014 (3)
O220.103 (4)0.041 (3)0.065 (3)0.003 (3)0.023 (3)0.006 (2)
Geometric parameters (Å, º) top
Cu1—O11.978 (4)N9—C161.350 (8)
Cu1—N51.995 (4)N10—C151.342 (8)
Cu1—N12.017 (4)N10—C181.379 (7)
Cu1—N2i2.060 (4)C11—C121.358 (8)
Cu1—O22.311 (4)C11—H110.9500
Cu1—O32.362 (4)C12—H120.9500
O1—H1A0.840 (19)C13—C141.405 (7)
O1—H1B0.850 (19)C13—H130.9500
O2—H2A0.85 (2)C16—C171.389 (9)
O2—H2B0.842 (19)C16—C191.485 (9)
O3—C101.384 (8)C17—C181.365 (9)
O3—H30.84 (2)C17—H170.9500
N1—C41.338 (6)C18—H180.9500
N1—C11.369 (7)C19—H19A0.9800
N2—C31.314 (6)C19—H19B0.9800
N2—C21.359 (6)C19—H19C0.9800
N2—Cu1ii2.060 (4)C20—H5C0.7794
N3—C41.364 (7)C20—H20A0.9800
N3—C51.388 (7)C20—H20B0.9800
N3—H3B0.8800C20—H20C0.9800
N4—C51.331 (7)Cl1—O6'1.36 (2)
N4—C61.335 (8)Cl1—O9'1.37 (6)
N5—C51.323 (7)Cl1—O8'1.39 (4)
N5—C81.354 (7)Cl1—O91.43 (5)
C1—C21.356 (7)Cl1—O61.45 (2)
C1—H10.9500Cl1—O81.45 (3)
C2—H20.9500Cl1—O7'1.47 (3)
C3—C41.414 (7)Cl1—O71.49 (2)
C3—H3A0.9500Cl2—O11'1.334 (18)
C6—C71.408 (9)Cl2—O12'1.388 (17)
C6—C91.477 (9)Cl2—O131.40 (3)
C7—C81.367 (8)Cl2—O13'1.41 (4)
C7—H70.9500Cl2—O101.428 (16)
C8—H8A0.9500Cl2—O10'1.447 (18)
C9—H9A0.9800Cl2—O121.476 (13)
C9—H9B0.9800Cl2—O111.494 (18)
C9—H9C0.9800Cl3—O151.408 (5)
C10—H10A0.9800Cl3—O161.411 (6)
C10—H10B0.9800Cl3—O141.412 (6)
C10—H10C0.9800Cl3—O171.425 (5)
Cu2—O51.978 (4)Cl4—O211.43 (2)
Cu2—N101.985 (5)Cl4—O191.450 (6)
Cu2—N62.027 (4)Cl4—O201.456 (6)
Cu2—N7iii2.057 (4)Cl4—O181.459 (11)
Cu2—O42.249 (5)Cl4'—O191.365 (7)
Cu2—O192.539 (5)Cl4'—O21'1.37 (5)
O4—H4A0.90 (2)Cl4'—O18'1.405 (12)
O4—H4B0.86 (2)Cl4'—O201.414 (7)
O5—C201.422 (14)O22—H22A0.9072
O5—H5A0.9407O22—H22B0.8979
O5—H5B0.8499O23—C211.511 (9)
O5—H5C0.8500O23—H230.8400
N6—C141.333 (7)C21—H21A0.9800
N6—C111.352 (7)C21—H21B0.9800
N7—C131.327 (7)C21—H21C0.9800
N7—C121.357 (7)O23'—C21'1.476 (10)
N7—Cu2iv2.057 (4)O23'—H23'0.8436
N8—C141.361 (7)C21'—H21D0.9800
N8—C151.369 (7)C21'—H21E0.9800
N8—H80.8800C21'—H21F0.9800
N9—C151.336 (8)
O1—Cu1—N5178.91 (18)N6—C14—C13121.3 (5)
O1—Cu1—N191.70 (17)N8—C14—C13118.1 (5)
N5—Cu1—N187.55 (17)N9—C15—N10126.1 (5)
O1—Cu1—N2i89.49 (16)N9—C15—N8113.8 (5)
N5—Cu1—N2i91.23 (16)N10—C15—N8120.1 (5)
N1—Cu1—N2i177.36 (17)N9—C16—C17120.6 (6)
O1—Cu1—O290.52 (17)N9—C16—C19115.9 (6)
N5—Cu1—O290.26 (18)C17—C16—C19123.5 (6)
N1—Cu1—O288.96 (16)C18—C17—C16118.8 (6)
N2i—Cu1—O293.39 (16)C18—C17—H17120.6
O1—Cu1—O391.25 (17)C16—C17—H17120.6
N5—Cu1—O387.93 (16)C17—C18—N10121.0 (6)
N1—Cu1—O387.97 (16)C17—C18—H18119.5
N2i—Cu1—O389.65 (15)N10—C18—H18119.5
O2—Cu1—O3176.50 (14)C16—C19—H19A109.5
Cu1—O1—H1A130 (4)C16—C19—H19B109.5
Cu1—O1—H1B119 (4)H19A—C19—H19B109.5
H1A—O1—H1B106 (3)C16—C19—H19C109.5
Cu1—O2—H2A117 (4)H19A—C19—H19C109.5
Cu1—O2—H2B138 (4)H19B—C19—H19C109.5
H2A—O2—H2B105 (3)O5—C20—H20A109.5
C10—O3—Cu1130.8 (4)H5C—C20—H20A80.6
C10—O3—H3115 (5)O5—C20—H20B109.5
Cu1—O3—H3111 (5)H5C—C20—H20B111.3
C4—N1—C1116.0 (4)H20A—C20—H20B109.5
C4—N1—Cu1122.6 (3)O5—C20—H20C109.5
C1—N1—Cu1121.4 (3)H5C—C20—H20C131.3
C3—N2—C2118.1 (4)H20A—C20—H20C109.5
C3—N2—Cu1ii121.9 (3)H20B—C20—H20C109.5
C2—N2—Cu1ii119.7 (3)O6'—Cl1—O9'121 (4)
C4—N3—C5128.2 (5)O6'—Cl1—O8'120 (2)
C4—N3—H3B115.9O9'—Cl1—O8'106 (6)
C5—N3—H3B115.9O6'—Cl1—O9120 (4)
C5—N4—C6117.1 (5)O9'—Cl1—O912 (6)
C5—N5—C8115.1 (5)O8'—Cl1—O9113 (4)
C5—N5—Cu1122.6 (4)O6'—Cl1—O622.4 (10)
C8—N5—Cu1121.4 (4)O9'—Cl1—O6102 (4)
C2—C1—N1122.6 (5)O8'—Cl1—O6121 (2)
C2—C1—H1118.7O9—Cl1—O6105 (4)
N1—C1—H1118.7O6'—Cl1—O8103 (2)
C1—C2—N2120.7 (5)O9'—Cl1—O8111 (4)
C1—C2—H2119.6O8'—Cl1—O819 (3)
N2—C2—H2119.6O9—Cl1—O8121 (4)
N2—C3—C4121.2 (5)O6—Cl1—O8101.8 (17)
N2—C3—H3A119.4O6'—Cl1—O7'105.2 (13)
C4—C3—H3A119.4O9'—Cl1—O7'106 (4)
N1—C4—N3120.8 (4)O8'—Cl1—O7'95 (3)
N1—C4—C3121.2 (5)O9—Cl1—O7'96 (3)
N3—C4—C3117.9 (5)O6—Cl1—O7'125.2 (13)
N5—C5—N4127.0 (5)O8—Cl1—O7'110 (2)
N5—C5—N3119.7 (5)O6'—Cl1—O781.2 (12)
N4—C5—N3113.3 (5)O9'—Cl1—O7121 (4)
N4—C6—C7119.8 (5)O8'—Cl1—O7106 (3)
N4—C6—C9117.7 (6)O9—Cl1—O7110 (3)
C7—C6—C9122.5 (6)O6—Cl1—O7101.8 (11)
C8—C7—C6117.9 (6)O8—Cl1—O7115 (3)
C8—C7—H7121.1O7'—Cl1—O724.1 (12)
C6—C7—H7121.1O11'—Cl2—O12'100.6 (11)
N5—C8—C7121.9 (5)O11'—Cl2—O13135.4 (19)
N5—C8—H8A119.1O12'—Cl2—O13115 (2)
C7—C8—H8A119.1O11'—Cl2—O13'118.5 (19)
C6—C9—H9A109.5O12'—Cl2—O13'130 (3)
C6—C9—H9B109.5O13—Cl2—O13'18 (3)
H9A—C9—H9B109.5O11'—Cl2—O1076.1 (12)
C6—C9—H9C109.5O12'—Cl2—O10114.9 (11)
H9A—C9—H9C109.5O13—Cl2—O10110 (3)
H9B—C9—H9C109.5O13'—Cl2—O10104 (3)
O3—C10—H10A109.5O11'—Cl2—O10'110.2 (13)
O3—C10—H10B109.5O12'—Cl2—O10'86.6 (12)
H10A—C10—H10B109.5O13—Cl2—O10'99 (2)
O3—C10—H10C109.5O13'—Cl2—O10'105 (3)
H10A—C10—H10C109.5O10—Cl2—O10'40.9 (10)
H10B—C10—H10C109.5O11'—Cl2—O1235.0 (10)
O5—Cu2—N10174.5 (2)O12'—Cl2—O12102.8 (8)
O5—Cu2—N691.49 (18)O13—Cl2—O12107.5 (19)
N10—Cu2—N687.57 (18)O13'—Cl2—O1294 (2)
O5—Cu2—N7iii88.76 (17)O10—Cl2—O12106.5 (9)
N10—Cu2—N7iii91.61 (18)O10'—Cl2—O12144.8 (11)
N6—Cu2—N7iii174.1 (2)O11'—Cl2—O11111.1 (10)
O5—Cu2—O491.6 (2)O12'—Cl2—O1128.1 (10)
N10—Cu2—O493.9 (2)O13—Cl2—O1191 (2)
N6—Cu2—O492.05 (19)O13'—Cl2—O11105 (3)
N7iii—Cu2—O493.84 (18)O10—Cl2—O11141.7 (13)
O5—Cu2—O1987.92 (18)O10'—Cl2—O11106.1 (13)
N10—Cu2—O1986.63 (18)O12—Cl2—O1196.4 (10)
N6—Cu2—O1989.55 (17)O15—Cl3—O16111.7 (4)
N7iii—Cu2—O1984.56 (16)O15—Cl3—O14109.1 (4)
O4—Cu2—O19178.34 (15)O16—Cl3—O14107.4 (5)
Cu2—O4—H4A137 (5)O15—Cl3—O17109.3 (3)
Cu2—O4—H4B112 (5)O16—Cl3—O17107.3 (4)
H4A—O4—H4B100 (3)O14—Cl3—O17112.0 (4)
C20—O5—Cu2131.3 (7)O21—Cl4—O19116 (2)
C20—O5—H5A110.8O21—Cl4—O20115 (2)
Cu2—O5—H5A111.9O19—Cl4—O20106.9 (4)
C20—O5—H5B102.9O21—Cl4—O18107.7 (19)
Cu2—O5—H5B119.9O19—Cl4—O18104.0 (6)
Cu2—O5—H5C120.1O20—Cl4—O18105.5 (6)
H5A—O5—H5C128.0O19—Cl4'—O21'112 (3)
H5B—O5—H5C120.0O19—Cl4'—O18'105.7 (6)
C14—N6—C11116.5 (4)O21'—Cl4'—O18'113.1 (16)
C14—N6—Cu2121.6 (4)O19—Cl4'—O20114.3 (5)
C11—N6—Cu2122.0 (4)O21'—Cl4'—O20105 (2)
C13—N7—C12117.6 (4)O18'—Cl4'—O20106.8 (7)
C13—N7—Cu2iv119.4 (4)Cl4'—O19—Cl428.7 (2)
C12—N7—Cu2iv122.8 (4)Cl4'—O19—Cu2139.9 (3)
C14—N8—C15127.1 (5)Cl4—O19—Cu2128.6 (3)
C14—N8—H8116.4Cl4'—O20—Cl428.29 (19)
C15—N8—H8116.4H22A—O22—H22B94.7
C15—N9—C16117.0 (5)O23—C21—H21A109.5
C15—N10—C18115.5 (5)O23—C21—H21B109.5
C15—N10—Cu2120.6 (4)H21A—C21—H21B109.5
C18—N10—Cu2122.9 (4)O23—C21—H21C109.5
N6—C11—C12122.8 (5)H21A—C21—H21C109.5
N6—C11—H11118.6H21B—C21—H21C109.5
C12—C11—H11118.6C21'—O23'—H23'120.2
N7—C12—C11120.7 (5)O23'—C21'—H21D109.5
N7—C12—H12119.7O23'—C21'—H21E109.5
C11—C12—H12119.7H21D—C21'—H21E109.5
N7—C13—C14121.1 (5)O23'—C21'—H21F109.5
N7—C13—H13119.4H21D—C21'—H21F109.5
C14—C13—H13119.4H21E—C21'—H21F109.5
N6—C14—N8120.7 (5)
O1—Cu1—O3—C103.9 (6)O4—Cu2—N10—C15134.8 (4)
N5—Cu1—O3—C10176.9 (6)O19—Cu2—N10—C1546.8 (4)
N1—Cu1—O3—C1095.5 (6)N6—Cu2—N10—C18148.9 (5)
N2i—Cu1—O3—C1085.6 (6)N7iii—Cu2—N10—C1837.0 (5)
O1—Cu1—N1—C4146.4 (4)O4—Cu2—N10—C1857.0 (5)
N5—Cu1—N1—C432.8 (4)O19—Cu2—N10—C18121.5 (4)
O2—Cu1—N1—C4123.1 (4)C14—N6—C11—C120.3 (9)
O3—Cu1—N1—C455.2 (4)Cu2—N6—C11—C12179.7 (4)
O1—Cu1—N1—C130.3 (4)C13—N7—C12—C110.6 (8)
N5—Cu1—N1—C1150.5 (4)Cu2iv—N7—C12—C11175.2 (4)
O2—Cu1—N1—C160.2 (4)N6—C11—C12—N71.0 (9)
O3—Cu1—N1—C1121.5 (4)C12—N7—C13—C141.1 (8)
N1—Cu1—N5—C540.5 (4)Cu2iv—N7—C13—C14173.7 (4)
N2i—Cu1—N5—C5137.2 (4)C11—N6—C14—N8175.9 (5)
O2—Cu1—N5—C5129.4 (4)Cu2—N6—C14—N84.1 (8)
O3—Cu1—N5—C547.6 (4)C11—N6—C14—C132.0 (8)
N1—Cu1—N5—C8150.4 (4)Cu2—N6—C14—C13178.0 (4)
N2i—Cu1—N5—C832.0 (4)C15—N8—C14—N635.1 (9)
O2—Cu1—N5—C861.4 (4)C15—N8—C14—C13142.9 (6)
O3—Cu1—N5—C8121.6 (4)N7—C13—C14—N62.5 (9)
C4—N1—C1—C20.2 (8)N7—C13—C14—N8175.5 (5)
Cu1—N1—C1—C2176.7 (4)C16—N9—C15—N107.3 (9)
N1—C1—C2—N21.4 (8)C16—N9—C15—N8171.7 (5)
C3—N2—C2—C10.4 (8)C18—N10—C15—N911.6 (9)
C2—N2—C3—C42.1 (8)Cu2—N10—C15—N9157.5 (5)
Cu1ii—N2—C3—C4172.7 (4)C18—N10—C15—N8167.4 (5)
C1—N1—C4—N3175.4 (5)Cu2—N10—C15—N823.5 (7)
Cu1—N1—C4—N37.7 (7)C14—N8—C15—N9154.6 (6)
C1—N1—C4—C32.6 (7)C14—N8—C15—N1024.5 (9)
Cu1—N1—C4—C3174.3 (4)C15—N9—C16—C172.8 (9)
C5—N3—C4—N128.6 (8)C15—N9—C16—C19176.6 (6)
C5—N3—C4—C3149.5 (5)N9—C16—C17—C187.7 (9)
N2—C3—C4—N13.7 (8)C19—C16—C17—C18171.7 (6)
N2—C3—C4—N3174.4 (5)C16—C17—C18—N103.1 (9)
C8—N5—C5—N411.9 (8)C15—N10—C18—C175.8 (8)
Cu1—N5—C5—N4157.9 (5)Cu2—N10—C18—C17163.0 (4)
C8—N5—C5—N3167.6 (5)O21'—Cl4'—O19—Cl444.8 (16)
Cu1—N5—C5—N322.6 (7)O18'—Cl4'—O19—Cl4168.4 (11)
C6—N4—C5—N55.7 (9)O20—Cl4'—O19—Cl474.4 (8)
C6—N4—C5—N3173.8 (5)O21'—Cl4'—O19—Cu2126.0 (16)
C4—N3—C5—N520.6 (8)O18'—Cl4'—O19—Cu2110.5 (8)
C4—N3—C5—N4159.0 (5)O20—Cl4'—O19—Cu26.7 (8)
C5—N4—C6—C74.4 (8)O21—Cl4—O19—Cl4'67 (3)
C5—N4—C6—C9174.2 (6)O20—Cl4—O19—Cl4'63.0 (7)
N4—C6—C7—C87.2 (9)O18—Cl4—O19—Cl4'174.4 (11)
C9—C6—C7—C8171.3 (6)O21—Cl4—O19—Cu2167 (2)
C5—N5—C8—C78.2 (7)O20—Cl4—O19—Cu262.6 (5)
Cu1—N5—C8—C7161.7 (4)O18—Cl4—O19—Cu248.8 (7)
C6—C7—C8—N50.6 (8)O5—Cu2—O19—Cl4'72.3 (6)
N6—Cu2—O5—C20119.7 (11)N10—Cu2—O19—Cl4'106.8 (6)
N7iii—Cu2—O5—C2054.4 (11)N6—Cu2—O19—Cl4'19.2 (6)
O4—Cu2—O5—C20148.2 (11)N7iii—Cu2—O19—Cl4'161.3 (6)
O19—Cu2—O5—C2030.2 (11)O5—Cu2—O19—Cl434.9 (4)
O5—Cu2—N6—C14141.1 (5)N10—Cu2—O19—Cl4144.2 (4)
N10—Cu2—N6—C1433.5 (5)N6—Cu2—O19—Cl456.6 (4)
O4—Cu2—N6—C14127.2 (5)N7iii—Cu2—O19—Cl4123.9 (4)
O19—Cu2—N6—C1453.2 (5)O19—Cl4'—O20—Cl476.4 (8)
O5—Cu2—N6—C1138.8 (5)O21'—Cl4'—O20—Cl447 (2)
N10—Cu2—N6—C11146.6 (5)O18'—Cl4'—O20—Cl4167.1 (11)
O4—Cu2—N6—C1152.8 (5)O21—Cl4—O20—Cl4'70 (2)
O19—Cu2—N6—C11126.8 (4)O19—Cl4—O20—Cl4'60.6 (7)
N6—Cu2—N10—C1542.9 (4)O18—Cl4—O20—Cl4'171.0 (11)
N7iii—Cu2—N10—C15131.3 (4)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x, y+3/2, z1/2; (iv) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20v0.84 (2)1.94 (2)2.779 (6)173 (5)
O1—H1B···O22vi0.85 (2)1.79 (3)2.626 (6)166 (7)
O2—H2A···O70.85 (2)2.09 (5)2.84 (3)147 (6)
O2—H2B···O14i0.84 (2)2.04 (3)2.852 (7)161 (6)
N3—H3B···O160.882.072.874 (8)151
O3—H3···O12iv0.84 (2)1.98 (2)2.812 (13)176 (7)
O4—H4B···O8vii0.86 (2)2.01 (5)2.83 (4)160 (8)
O4—H4A···O240.90 (2)1.81 (5)2.57 (2)141 (7)
O5—H5B···O230.851.872.612 (11)145
N8—H8···O17iv0.882.132.910 (7)148
O22—H22A···O17iv0.912.272.941 (7)130
O22—H22B···N90.902.403.256 (7)158
O23—H23···O50.842.022.612 (11)127
Symmetry codes: (i) x, y+1/2, z+1/2; (iv) x, y+3/2, z+1/2; (v) x, y+1, z+1; (vi) x, y1, z; (vii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C9H9N5)(CH4O)(H2O)2] [Cu(ClO4)(C9H9N5)(CH4O)0.581(H2O)1.419]·(ClO4)3·CH4O·1.419H2O
Mr1068.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)15.0769 (4), 20.0774 (7), 13.7166 (3)
β (°) 103.7105 (15)
V3)4033.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.42
Crystal size (mm)0.40 × 0.08 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.783, 0.898
No. of measured, independent and
observed [I > 2σ(I)] reflections
20877, 7928, 4878
Rint0.048
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.194, 1.03
No. of reflections7921
No. of parameters601
No. of restraints237
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.49, 0.60

Computer programs: COLLECT (Hooft, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Cu1—O11.978 (4)Cu2—O51.978 (4)
Cu1—N51.995 (4)Cu2—N101.985 (5)
Cu1—N12.017 (4)Cu2—N62.027 (4)
Cu1—N2i2.060 (4)Cu2—N7ii2.057 (4)
Cu1—O22.311 (4)Cu2—O42.249 (5)
Cu1—O32.362 (4)Cu2—O192.539 (5)
O1—Cu1—N5178.91 (18)O5—Cu2—N10174.5 (2)
O1—Cu1—N191.70 (17)O5—Cu2—N691.49 (18)
N5—Cu1—N187.55 (17)N10—Cu2—N687.57 (18)
O1—Cu1—N2i89.49 (16)O5—Cu2—N7ii88.76 (17)
N5—Cu1—N2i91.23 (16)N10—Cu2—N7ii91.61 (18)
N1—Cu1—N2i177.36 (17)N6—Cu2—N7ii174.1 (2)
O1—Cu1—O290.52 (17)O5—Cu2—O491.6 (2)
N5—Cu1—O290.26 (18)N10—Cu2—O493.9 (2)
N1—Cu1—O288.96 (16)N6—Cu2—O492.05 (19)
N2i—Cu1—O293.39 (16)N7ii—Cu2—O493.84 (18)
O1—Cu1—O391.25 (17)O5—Cu2—O1987.92 (18)
N5—Cu1—O387.93 (16)N10—Cu2—O1986.63 (18)
N1—Cu1—O387.97 (16)N6—Cu2—O1989.55 (17)
N2i—Cu1—O389.65 (15)N7ii—Cu2—O1984.56 (16)
O2—Cu1—O3176.50 (14)O4—Cu2—O19178.34 (15)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20iii0.840 (19)1.94 (2)2.779 (6)173 (5)
O1—H1B···O22iv0.850 (19)1.79 (3)2.626 (6)166 (7)
O2—H2A···O70.85 (2)2.09 (5)2.84 (3)147 (6)
O2—H2B···O14i0.842 (19)2.04 (3)2.852 (7)161 (6)
N3—H3B···O160.882.072.874 (8)150.9
O3—H3···O12v0.84 (2)1.98 (2)2.812 (13)176 (7)
O4—H4B···O8vi0.86 (2)2.01 (5)2.83 (4)160 (8)
O4—H4A···O240.90 (2)1.81 (5)2.57 (2)141 (7)
O5—H5B···O230.851.872.612 (11)145.1
N8—H8···O17v0.882.132.910 (7)147.9
O22—H22A···O17v0.912.272.941 (7)130.4
O22—H22B···N90.902.403.256 (7)158.4
O23—H23···O50.842.022.612 (11)126.8
Symmetry codes: (i) x, y+1/2, z+1/2; (iii) x, y+1, z+1; (iv) x, y1, z; (v) x, y+3/2, z+1/2; (vi) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds