Download citation
Download citation
link to html
The structures of the hydrated sodium salts of 4-chloro-3-nitro­benzoic acid {poly[aqua­([mu]4-4-chloro-3-nitro­ben­zoato)sodium(I)], [Na(C7H3ClNO4)(H2O)]n, (I)} and 2-amino-4-nitro­benzoic acid {poly[[mu]-aqua-aqua­([mu]3-2-amino-4-nitro­benzo­ato)sodium(I)], [Na(C7H5N2O4)(H2O)2]n, (II)}, and the hydrated potassium salt of 2-amino-4-nitro­benzoic acid {poly[[mu]-aqua-aqua­([mu]5-2-amino-4-nitro­benzoato)potassium(I)], [K(C7H5N2O4)(H2O)]n, (III)} have been determined and their complex polymeric structures described. All three structures are stabilized by intra- and inter­molecular hydrogen bonding and strong [pi]-[pi] ring inter­actions. In the structure of (I), the distorted trigonal bipyrimidal NaO5 coordination polyhedron comprises a monodentate water mol­ecule and four bridging carboxyl­ate O-atom donors, generating a two-dimensional polymeric structure lying parallel to (001). Intra-layer hydrogen-bonding associations and strong inter-ring [pi]-[pi] inter­actions are present. Structure (II) has a distorted octa­hedral NaO6 stereochemistry, with four bridging O-atom donors, two from a single carboxyl­ate group and two from a single nitro group and three from the two water mol­ecules, one of which is bridging. Na centres are linked through centrosymmetric four-membered duplex water bridges and through 18-membered duplex head-to-tail ligand bridges. Similar centrosymmetric bridges are found in the structure of (III), and in both (II) and (III) strong inter-ring [pi]-[pi] inter­actions are found. A two-dimensional layered structure lying parallel to (010) is generated in (II), whereas in (III) the structure is three-dimensional. With (III), the irregular KO7 coordination polyhedron comprises a doubly bridging water mol­ecule, a single bidentate bridging carboxyl­ate O-atom donor and three bridging O-atom donors from the two nitro groups. A three-dimensional structure is generated. These coordination polymer structures are among the few examples of metal complexes of any type with either 4-chloro-3-nitro­benzoic acid or 4-nitro­anthranilic acid.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113028977/ov3041sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113028977/ov3041Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113028977/ov3041IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113028977/ov3041IIIsup4.hkl
Contains datablock III

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113028977/ov3041Isup5.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113028977/ov3041IIsup6.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113028977/ov3041IIIsup7.cml
Supplementary material

CCDC references: 967694; 967695; 967696

Introduction top

The structures of the alkali metal salts with aromatic carb­oxy­lic acids are of inter­est because of their ability to form polymeric systems. With the lighter Group 1 metals Na and K in particular, despite the simple chemical formulae of the salts, they display extensive polymeric complex structures in the solid state, e.g. sodium 4-hy­droxy­benzoate (Dinnebier, Von Dreele et al., 2002) and potassium 2-hy­droxy­benzoate (Dinnebier, Jelonek et al., 2002). These structures are usually based on regular although commonly distorted six- or seven-coordination centres about the metals with the carboxyl and often water O-atom donors giving metal–metal bridging. Hydrogen-bonding involving the coordinated water molecules when present result in two- and three-dimensional structures in which ππ aromatic ring inter­actions may also be found, e.g. with sodium and potassium anthranilate (Wiesbrock & Schmidbaur, 2002). The nitro-substituted benzoic acid analogues have proved to be particularly useful as ligands for the formation of stable complexes with the alkali metals, often having nitro-O as well as water involvement in the coordination which along with the carboxyl O-atom donors, commonly form single or multiple bridges between metal centres. A number of structures of sodium and potassium complexes with these nitro­benzoates are known, e.g. for sodium: with 4-nitro­benzoic acid (a trihydrate) (Turowska-Tyrk et al., 1988); 2,4-di­chloro-5-nitro­benzoic acid (a dihydrate) (Morales et al., 1999); 3,5-di­nitro­benzoic acid (anhydrous) (Jones et al., 2005; Yang & Ng, 2007); 2-methyl-3,5-di­nitro­benzoic acid (anhydrous) (Danish et al., 2010) and for potassium: with 3,5-di­nitro­benzoic acid (anhydrous) (Du & Hu, 2006); 2-methyl-3,5-di­nitro­benzoic acid (anhydrous) (Danish et al., 2010). Anhydrous (1:1) 3,5-di­nitro­benzoate–3,5-di­nitro­benzoic acid complex adducts with both Na (Tiekink et al., 1990) and K (Askarinejad et al., 2007) as well as a 1:1 potassium complex adduct with 4-nitro­benzoic acid (Srivastava & Speakman, 1961), are also known.

Experimental top

Synthesis and crystallization top

The title salts were prepared by the addition of solid NaHCO3 (1 mmol, 94 mg) to a hot solution of either 4-chloro-3-nitro­benzoic acid (1 mmol, 200 mg) [for (I)] or 2-amino-4-nitro­benzoic acid (4-nitro­anthranilic acid) (1 mmol, 180 mg) [for (II)] in an ethanol–water mixture (15 ml, 1:2 v/v). With (III), a similar procedure was used but with 4-nitro­anthranilic acid and K2CO3 (1 mmol, 140 mg). Partial room-temperature evaporation of the solutions gave large colourless needle prisms of (I), orange prisms of (II) and small red single-crystal plates of (III) from which, for (I) and (II), suitable specimens were cleaved for the X-ray analyses.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The amine and water H atoms were located in difference Fourier maps but were allowed to ride in the refinement, with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). Other H atoms were included in the refinement in calculated positions, with C—H = 0.95 Å, and were also allowed to ride, with Uiso(H) = 1.2Ueq(C).

Results and discussion top

The general coordination chemistry of the two nitro­benzoic acids involved in this work, 4-chloro-3-nitro­benzoic acid (CLNBA) and 4-nitro­anthranilic acid (4-NAA), is not extensive. There were no reported structures of alkali metal complexes of either acid until that of the polymeric Cs complex with 4-NAA, [Cs2(C7H5N2O4)2(H2O)2]n (Smith & Wermuth, 2011), while no metal complex structures with CLNBA are known, although the structure of the analogous sodium 3,5-di­chloro-3-nitro­benzoate trihydrate is known (Morales et al., 1999). This paucity of structural data on alkali metal complexes with these two ligands prompted the present study giving the structures reported here, the hydrated sodium salts with 4-chloro-3-nitro­benzoic acid, (I), and 2-amino-4-nitro­benzoic acid, (II), and the hydrated potassium salt of 2-amino-4-nitro­benzoic acid, (III). The basic asymmetric units for (I)–(III) are shown in Figs. 1, 4 and 5.

In the structure of (I) (Fig. 1), the NaO5 coordination polyhedron has a very distorted trigonal bipyramidal stereochemistry, comprising O-atom donors from a monodentate water molecule and four O-atom donors from bridging carboxyl­ate groups [Na–O = 2.3115 (18)–2.4532 (16) Å; Table 2]. The nitro group is not involved in coordination. Sodium more commonly assumes a slightly distorted o­cta­hedral stereochemistry such as with complex (II). In (I), one of the carboxyl­ate O atoms (O12) links Na centres, giving a centrosymmetric cyclic bridge, with an Na···Naii separation of 3.5343 (17) Å [symmetry code: (ii) -x+1, -y+1, -z+1; Table 2]. The other carboxyl­ate O-atom donor (O11) provides a second bridging linkage to another Na centre through an O:O' association, enclosing a series of eight-membered ring systems lying parallel to (001), with additional Na···Na separations of 4.0333 and 3.7083 (17) Å [for Na···Navii and Na···Naix, respectively; symmetry codes: (vii) x+1/2, -y+1/2, -z+1; (ix) -x, -y, -z+1] (Fig. 2). The two-dimensional layered structure generated is stabilized by intra­molecular water O—H···O and C—H···O hydrogen-bonding inter­actions to carboxyl­ate and nitro O-atom acceptors, as well as a weak C2—H···O1W hydrogen bond (Table 3). In addition, ππ inter­actions between the benzene rings are present [minimum ring-centroid separation for Cg···Cgiii = 3.5062 (12) Å; symmetry code: (iii) -x+3/2, y-1/2, z+1] (Fig. 3).

In the CLNBA ligand, the carboxyl­ate group is essentially coplanar with the benzene ring [torsion angle C2—C1—C11—O11 = 179.69 (19)°], while the nitro group is rotated well out of the plane [C2—C3—N3—O32 = -137.8 (2)°]. In the parent acid CLNBA (Ferguson & Sim, 1959; Ishida & Fukunaga, 2003), the corresponding torsion angles are -174.02 (17) and -132.61 (18)°, respectively.

With the sodium 4-nitro­anthanilate dihydrate complex, (II), the common distorted o­cta­hedral NaO6 stereochemistry for sodium is found (Fig. 4) [Na—O = 2.3919 (14)–2.5947 (18) Å; Table 4]. The donors comprise a monodentate water molecule (O2W), a bridging water (O1W), a bridging carboxyl­ate O atom (O12) and a bridging nitro O atom (O42). Both the second carboxyl­ate O atom (O11) and the N atom of the 2-amino group are uncoordinated. The features of the centrosymmetric cyclic duplex carboxyl­ate bridge are similar to those found in (III) [Na···Naii and Na···Naiii = 3.6687 (14) and 3.5889 (14) Å, respectively] and link the Na centres down a (Fig. 5) [symmetry codes: (ii) -x, -y, -z; (ii) -x+1, -y, -z; Table 4]. However, linking the Na centres across c are a pair of inversion-related ligand molecules through carboxyl­ate atom O12 at one end and nitro atom O42 at the other, giving a cyclic 18-membered duplex bridge. Present within these linking structures are ππ inter­actions between the benzene rings [ring centroid separation Cg···Cgvii = 3.5436 (13) Å; symmetry code: (vii) -x+1, -y, -z+1]. The resulting coordination polymeric structure is a two-dimensional sheet lying parallel to (010). Extensive intra- and inter­molecular hydrogen-bonding inter­actions (Table 5) stabilize the structure.

The coordination mode in (II) is quite different from those found in the polymeric sodium anthranilate structure (seven-coordinate, carboxyl­ate O:O'-bridged but involving the amine and carboxyl groups in a bidentate chelate mode) (Wiesbrock & Schmidbaur, 2002) or in the polymeric sodium 3,5-di­chloro­anthranilate hexahydrate structure (two independent and different o­cta­hedral NaO6 centres, with bis-aqua and carboxyl­ate O:O'-bridges, but also with bidentate chelate carboxyl­ate O,O' inter­actions (Rzaczyńska et al., 2000). The difference between (I) and (II) (NaO5 cf. NaO6 coordination) would appear to be because of the stereochemical crowding of the meta-related nitro group by the para-chloro group, preventing its participation in coordination to the metal or giving polymer extension such as that present with the para-related nitro substituent in (II).

In the structure of the potassium 4-nitro­anthranilate monohydrate salt, (III), the KO7 coordination polyhedron has irregular stereochemistry: two O-atom donors from a bridging water molecule, two O-atom donors from a bidentate bridging carboxyl­ate O atom (O12) and three O-atom donors from bridging nitro groups [one singly bridging (O41) and the other doubly bridging (O42)] (Fig. 6). The K—O bond length range is 2.7062 (14)–3.0459 (16) Å (Table 6). The water molecule, together with carboxyl­ate atom O12 and the two carboxyl­ate O:O'-bridging O atoms, give a triple bridge between K centres, forming chains which extend down b (Fig. 7). The K···K separation is 4.0432 (4) Å. The links across a are provided by duplex centrosymmetric head-to-tail 4-NBA ligands through atoms O12 and O41, giving 18-membered cyclic bridges similar to those found in (II). Present also are the inter-ring ππ inter­actions [minimum Cg···Cgix = 3.6528 (10) Å; symmetry code: (ix) -x+1, -y+1, -z+1]. These linkages give a three-dimensional framework coordination polymer structure in which there are a number of inter­molecular O—H···O and N—H···O hydrogen-bonding inter­actions (Table 7). The seven-coordination in (III) is also found in the structure of potassium anthranilate monohydrate (Wiesbrock & Schmidbaur, 2002; Rzaczyńska et al., 2004), but the coordination mode in that polymeric structure is quite different, involving along with the common bridging water, a bidentate O,O'-chelate and a bridging carboxyl­ate inter­action.

The comparative conformational features of the 4-nitro­anthranilate ligands in (II) and (III) are similar, with the carboxyl­ate and nitro groups close to being coplanar with the benzene ring [C2—C1—C11—O11 = -171.9 (2)° in (I) and -179.68 (16)° in (II); C3—C4—N4—O42 = 179.3 (2)° in (I) and 178.18 (16)° in (II)]. The intra­molecular N—H···O12 hydrogen bond is present in both structures [N···O = 2.7022 (19) Å in (II) and 2.656 (2) Å in (III)], these structural features being similar to those found in the parent acid 4-NAA and its adducts (Wardell & Tiekink, 2011) and in the Cs complex with 4-NAA (Smith & Wermuth, 2011).

The structures reported here, while being uncommon examples of metal complexes of either 4-chloro-3-nitro­benzoic acid or 4-nitro­anthranilic acid, also indicate the utility of the nitro-substituted benzoic acids for the formation of stable crystalline coordination polymeric complexes with the alkali metals.

Related literature top

For related literature, see: Askarinejad et al. (2007); Danish et al. (2010); Dinnebier, Jelonek, Seiler & Stephens (2002); Dinnebier, Von Dreele, Stephens, Jelonek & Seiler (2002); Ferguson & Sim (1959); Ishida & Fukunaga (2003); Jones et al. (2005); Morales et al. (1999); Rzaczyńska et al. (2000, 2004); Smith & Wermuth (2011); Srivastava & Speakman (1961); Tiekink et al. (1990); Wardell & Tiekink (2011); Yang & Ng (2007).

Computing details top

For all compounds, data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for (I), (II); SIR92 (Altomare et al., 1993) for (III). For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom-numbering scheme for the basic repeat unit of (I), with non-H atoms drawn as 40% probability displacement ellipsoids. [Symmetry codes: (i) x-1/2, -y+1/2, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+3/2, y-1/2, z.]
[Figure 2] Fig. 2. The partial cyclic-bridged polymer extension in the structure of (I). Non-associative H atoms have been omitted. [Symmetry codes: (vii) x+1/2, -y+1/2, -z+1; (viii) -x+1/2, y+1/2, -z; for other codes, see Fig. 1.]
[Figure 3] Fig. 3. The two-dimensional polymeric structure of (I) in the unit cell viewed down a. Non-associative H atoms have been omitted and hydrogen bonds are shown as dashed lines.
[Figure 4] Fig. 4. The molecular configuration and atom-numbering scheme for the repeat unit of (II), with non-H atoms drawn as 40% probability displacement ellipsoids. [Symmetry codes: (i) x, y, z-1; (ii) -x, -y, -z; (iii) -x+1, -y, -z.]
[Figure 5] Fig. 5. The polymeric structure of (II) in the unit cell viewed down b. Non-associative H atoms have been omitted. [Symmetry codes: (i) x, y, z-1; (ii) -x, -y, -z; (iii) -x+1, -y, -z.]
[Figure 6] Fig. 6. The molecular configuration and atom-numbering scheme for the repeat unit of (III), with non-H atoms drawn as 40% probability displacement ellipsoids. [Symmetry codes: (i) -x, y-1/2, -z+1/2; (ii) -x, y+1/2, -z+1/2; (iii) -x+1, y-1/2, -z+1/2; (iv) -x+1, -y, -z+1; (v) x-1, -y+1/2, z-1.2.]
[Figure 7] Fig. 7. The polymeric structure of (III) in the unit cell viewed down c. Non-associative H atoms have been omitted. [Symmetry codes: (i) -x, y-1/2, -z+1/2; (ii) -x, y+1/2, -z+1/2; (iii) -x+1, y-1/2, -z+1/2; (iv) -x+1, -y, -z+1; (v) x-1, -y+1/2, z-1.2.]
(I) Poly[aqua(µ4-4-chloro-3-nitrobenzoato)sodium(I)] top
Crystal data top
[Na(C7H3ClNO4)(H2O)]F(000) = 976
Mr = 241.56Dx = 1.786 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3227 reflections
a = 7.9406 (4) Åθ = 3.5–28.4°
b = 6.8025 (4) ŵ = 0.47 mm1
c = 33.2700 (17) ÅT = 200 K
V = 1797.11 (17) Å3Plate, colourless
Z = 80.35 × 0.23 × 0.16 mm
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
1762 independent reflections
Radiation source: Enhance (Mo) X-ray source1643 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.6°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 58
Tmin = 0.963, Tmax = 0.990l = 4141
11239 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.037P)2 + 1.4996P]
where P = (Fo2 + 2Fc2)/3
1762 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Na(C7H3ClNO4)(H2O)]V = 1797.11 (17) Å3
Mr = 241.56Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.9406 (4) ŵ = 0.47 mm1
b = 6.8025 (4) ÅT = 200 K
c = 33.2700 (17) Å0.35 × 0.23 × 0.16 mm
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
1762 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
1643 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.990Rint = 0.029
11239 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.13Δρmax = 0.29 e Å3
1762 reflectionsΔρmin = 0.25 e Å3
136 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl40.61917 (8)0.65133 (10)0.27191 (2)0.0424 (2)
Na10.43553 (10)0.25681 (12)0.48941 (2)0.0281 (3)
O1W0.2368 (2)0.3161 (3)0.44011 (5)0.0400 (5)
O110.92659 (17)0.4788 (2)0.45590 (4)0.0255 (4)
O120.65361 (17)0.4655 (2)0.46968 (4)0.0267 (4)
O310.2537 (2)0.6340 (3)0.36052 (5)0.0408 (5)
O320.3141 (2)0.4742 (3)0.30652 (5)0.0483 (6)
N30.3541 (2)0.5563 (3)0.33740 (5)0.0292 (6)
C10.7337 (2)0.5188 (3)0.40189 (5)0.0175 (5)
C20.5677 (2)0.5251 (3)0.38922 (6)0.0187 (5)
C30.5321 (2)0.5583 (3)0.34907 (6)0.0203 (5)
C40.6591 (3)0.5901 (3)0.32095 (6)0.0235 (6)
C50.8247 (3)0.5830 (3)0.33389 (6)0.0259 (6)
C60.8609 (2)0.5461 (3)0.37387 (6)0.0226 (6)
C110.7742 (2)0.4845 (3)0.44583 (6)0.0183 (5)
H20.478800.506800.408000.0220*
H50.913700.603500.315300.0310*
H60.975100.539300.382300.0270*
H11W0.144400.362100.442600.0600*
H12W0.235200.250900.419600.0600*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl40.0510 (4)0.0600 (4)0.0163 (3)0.0006 (3)0.0002 (2)0.0076 (2)
Na10.0310 (5)0.0262 (4)0.0270 (5)0.0026 (4)0.0087 (3)0.0021 (3)
O1W0.0293 (8)0.0461 (10)0.0446 (10)0.0045 (7)0.0029 (7)0.0136 (8)
O110.0211 (7)0.0315 (8)0.0239 (8)0.0011 (6)0.0062 (6)0.0030 (6)
O120.0260 (7)0.0353 (8)0.0189 (7)0.0041 (6)0.0026 (6)0.0008 (6)
O310.0223 (7)0.0608 (11)0.0394 (9)0.0062 (8)0.0008 (7)0.0040 (8)
O320.0469 (10)0.0687 (13)0.0294 (9)0.0151 (9)0.0177 (8)0.0014 (9)
N30.0277 (9)0.0354 (10)0.0244 (10)0.0037 (8)0.0058 (8)0.0073 (8)
C10.0189 (9)0.0145 (9)0.0190 (9)0.0001 (7)0.0001 (7)0.0004 (7)
C20.0197 (9)0.0172 (9)0.0191 (10)0.0004 (8)0.0017 (7)0.0000 (7)
C30.0202 (9)0.0206 (9)0.0202 (10)0.0010 (8)0.0032 (8)0.0002 (8)
C40.0331 (11)0.0227 (10)0.0148 (9)0.0009 (9)0.0011 (8)0.0000 (7)
C50.0280 (10)0.0265 (11)0.0233 (10)0.0014 (9)0.0083 (9)0.0003 (8)
C60.0194 (10)0.0218 (10)0.0267 (11)0.0010 (8)0.0012 (8)0.0003 (8)
C110.0204 (9)0.0141 (9)0.0204 (10)0.0002 (7)0.0018 (8)0.0026 (7)
Geometric parameters (Å, º) top
Na1—O1W2.3115 (18)N3—C31.466 (2)
Na1—O122.3334 (16)C1—C111.515 (3)
Na1—O11i2.4258 (15)C1—C21.385 (2)
Na1—O12ii2.4335 (16)C1—C61.387 (2)
Na1—O11iii2.4532 (16)C2—C31.384 (3)
Cl4—C41.714 (2)C3—C41.393 (3)
O11—C111.256 (2)C4—C51.385 (3)
O12—C111.250 (2)C5—C61.384 (3)
O31—N31.227 (2)C2—H20.9500
O32—N31.212 (2)C5—H50.9500
O1W—H11W0.8000C6—H60.9500
O1W—H12W0.8100
O1W—Na1—O12101.59 (6)C2—C1—C6118.98 (16)
O1W—Na1—O11i128.87 (7)C2—C1—C11120.04 (15)
O1W—Na1—O12ii93.60 (6)C1—C2—C3119.56 (16)
O1W—Na1—O11iii96.70 (6)N3—C3—C2116.81 (15)
O11i—Na1—O12129.40 (6)N3—C3—C4121.45 (18)
O12—Na1—O12ii84.32 (5)C2—C3—C4121.73 (16)
O11iii—Na1—O1290.57 (5)Cl4—C4—C3122.92 (17)
O11i—Na1—O12ii94.87 (5)Cl4—C4—C5118.71 (17)
O11i—Na1—O11iii81.06 (5)C3—C4—C5118.26 (18)
O11iii—Na1—O12ii169.24 (6)C4—C5—C6120.17 (19)
Na1iv—O11—C11104.40 (12)C1—C6—C5121.27 (17)
Na1—O12—C11144.08 (13)O11—C11—O12124.42 (18)
Na1—O12—Na1ii95.69 (5)O11—C11—C1117.82 (16)
Na1ii—O12—C11119.83 (13)O12—C11—C1117.76 (15)
Na1—O1W—H11W128.00C1—C2—H2120.00
Na1—O1W—H12W121.00C3—C2—H2120.00
H11W—O1W—H12W107.00C4—C5—H5120.00
O31—N3—O32124.02 (17)C6—C5—H5120.00
O31—N3—C3117.15 (17)C1—C6—H6119.00
O32—N3—C3118.79 (17)C5—C6—H6119.00
C6—C1—C11120.97 (15)
O1W—Na1—O12—C1179.2 (2)O31—N3—C3—C240.1 (3)
O1W—Na1—O12—Na1ii92.53 (7)O32—N3—C3—C2137.8 (2)
O11i—Na1—O12—C1196.7 (2)O31—N3—C3—C4140.6 (2)
O11i—Na1—O12—Na1ii91.64 (7)O32—N3—C3—C441.6 (3)
O12ii—Na1—O12—C11171.7 (2)C11—C1—C2—C3179.42 (19)
O12ii—Na1—O12—Na1ii0.02 (9)C2—C1—C6—C51.2 (3)
O11iii—Na1—O12—C1117.8 (2)C6—C1—C2—C30.0 (3)
O11iii—Na1—O12—Na1ii170.51 (5)C6—C1—C11—O12178.38 (19)
O1W—Na1—O11i—C11i34.83 (15)C2—C1—C11—O11179.60 (19)
O12—Na1—O11i—C11i150.41 (12)C2—C1—C11—O121.0 (3)
O1W—Na1—O12ii—Na1ii101.30 (6)C11—C1—C6—C5178.16 (19)
O1W—Na1—O12ii—C11ii84.32 (14)C6—C1—C11—O111.0 (3)
O12—Na1—O12ii—Na1ii0.00 (7)C1—C2—C3—N3177.91 (19)
O12—Na1—O12ii—C11ii174.38 (14)C1—C2—C3—C41.4 (3)
O1W—Na1—O11iii—C11iii118.41 (15)N3—C3—C4—Cl46.1 (3)
O12—Na1—O11iii—C11iii16.67 (15)N3—C3—C4—C5177.73 (19)
Na1iv—O11—C11—O1234.0 (2)C2—C3—C4—Cl4174.54 (16)
Na1iv—O11—C11—C1146.67 (15)C2—C3—C4—C51.6 (3)
Na1—O12—C11—O11109.7 (2)Cl4—C4—C5—C6175.97 (16)
Na1—O12—C11—C170.9 (3)C3—C4—C5—C60.3 (3)
Na1ii—O12—C11—O1179.8 (2)C4—C5—C6—C11.1 (3)
Na1ii—O12—C11—C199.50 (18)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1, y+1, z+1; (iii) x+3/2, y1/2, z; (iv) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O11v0.801.952.751 (2)173
O1W—H12W···O31vi0.812.122.924 (2)169
C2—H2···O1W0.952.553.434 (2)154
C6—H6···O31vii0.952.423.207 (2)141
Symmetry codes: (v) x1, y, z; (vi) x+1/2, y1/2, z; (vii) x+1, y, z.
(II) Poly[µ-aqua-aqua(µ3-2-amino-4-nitrobenzoato)sodium(I)] top
Crystal data top
[Na(C7H5N2O4)(H2O)2]Z = 2
Mr = 240.15F(000) = 248
Triclinic, P1Dx = 1.660 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6110 (6) ÅCell parameters from 1629 reflections
b = 6.9443 (7) Åθ = 3.3–28.4°
c = 11.7453 (11) ŵ = 0.18 mm1
α = 75.054 (8)°T = 200 K
β = 85.243 (7)°Prism, orange-yellow
γ = 67.249 (9)°0.40 × 0.20 × 0.18 mm
V = 480.35 (8) Å3
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
1889 independent reflections
Radiation source: fine-focus sealed tube1552 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.3°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 88
Tmin = 0.95, Tmax = 0.98l = 1414
5509 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.0795P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1889 reflectionsΔρmax = 0.22 e Å3
146 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.088 (9)
Crystal data top
[Na(C7H5N2O4)(H2O)2]γ = 67.249 (9)°
Mr = 240.15V = 480.35 (8) Å3
Triclinic, P1Z = 2
a = 6.6110 (6) ÅMo Kα radiation
b = 6.9443 (7) ŵ = 0.18 mm1
c = 11.7453 (11) ÅT = 200 K
α = 75.054 (8)°0.40 × 0.20 × 0.18 mm
β = 85.243 (7)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
1889 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
1552 reflections with I > 2σ(I)
Tmin = 0.95, Tmax = 0.98Rint = 0.048
5509 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.07Δρmax = 0.22 e Å3
1889 reflectionsΔρmin = 0.26 e Å3
146 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.22849 (11)0.08204 (11)0.05787 (6)0.0250 (2)
O1W0.1586 (2)0.2406 (2)0.01889 (11)0.0270 (4)
O2W0.2115 (2)0.4538 (2)0.10897 (11)0.0281 (4)
O110.3889 (2)0.3339 (2)0.22854 (11)0.0259 (4)
O120.3942 (2)0.0138 (2)0.13256 (10)0.0236 (4)
O410.1397 (3)0.2885 (3)0.66462 (13)0.0437 (6)
O420.2066 (3)0.0423 (3)0.75486 (12)0.0427 (6)
N20.2218 (3)0.3142 (2)0.23966 (13)0.0263 (5)
N40.1882 (2)0.0988 (3)0.66469 (14)0.0292 (5)
C10.3060 (3)0.0682 (3)0.33713 (15)0.0178 (5)
C20.2484 (3)0.1489 (3)0.34038 (15)0.0200 (5)
C30.2092 (3)0.1986 (3)0.45054 (16)0.0229 (6)
C40.2282 (3)0.0385 (3)0.55096 (15)0.0230 (6)
C50.2816 (3)0.1750 (3)0.55064 (16)0.0239 (5)
C60.3179 (3)0.2229 (3)0.44170 (15)0.0209 (5)
C110.3652 (3)0.1422 (3)0.22390 (15)0.0196 (5)
H30.169600.343000.455700.0270*
H50.292700.282600.621400.0290*
H60.352400.367300.438100.0250*
H11W0.245700.296200.088200.0410*
H12W0.201200.344300.018000.0410*
H210.302100.269100.179100.0320*
H21W0.077400.525900.152400.0420*
H220.261000.421000.259500.0320*
H22W0.342200.420400.149800.0420*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0278 (4)0.0255 (4)0.0225 (4)0.0113 (3)0.0019 (3)0.0060 (3)
O1W0.0334 (8)0.0233 (7)0.0256 (7)0.0103 (6)0.0012 (6)0.0084 (6)
O2W0.0279 (7)0.0268 (7)0.0305 (7)0.0095 (6)0.0024 (6)0.0106 (6)
O110.0355 (8)0.0217 (7)0.0247 (7)0.0135 (6)0.0029 (6)0.0093 (6)
O120.0296 (7)0.0243 (7)0.0178 (6)0.0118 (6)0.0030 (5)0.0050 (6)
O410.0490 (10)0.0455 (10)0.0387 (9)0.0096 (8)0.0023 (7)0.0274 (8)
O420.0511 (10)0.0605 (11)0.0189 (8)0.0240 (8)0.0028 (7)0.0101 (8)
N20.0371 (9)0.0191 (8)0.0232 (8)0.0115 (7)0.0043 (7)0.0060 (7)
N40.0209 (8)0.0458 (11)0.0238 (9)0.0115 (7)0.0020 (6)0.0156 (8)
C10.0148 (8)0.0208 (9)0.0186 (9)0.0071 (7)0.0003 (6)0.0057 (7)
C20.0177 (9)0.0215 (9)0.0218 (9)0.0085 (7)0.0002 (7)0.0053 (8)
C30.0205 (9)0.0243 (10)0.0273 (10)0.0089 (7)0.0020 (7)0.0121 (8)
C40.0179 (9)0.0344 (11)0.0205 (9)0.0102 (8)0.0026 (7)0.0135 (9)
C50.0238 (9)0.0292 (10)0.0179 (9)0.0113 (8)0.0002 (7)0.0024 (8)
C60.0207 (9)0.0212 (9)0.0217 (9)0.0096 (7)0.0005 (7)0.0044 (8)
C110.0195 (9)0.0200 (9)0.0195 (9)0.0071 (7)0.0011 (7)0.0053 (8)
Geometric parameters (Å, º) top
Na1—O1W2.3950 (15)N2—C21.388 (2)
Na1—O2W2.4546 (15)N4—C41.474 (2)
Na1—O122.3917 (14)N2—H210.9000
Na1—O42i2.5949 (18)N2—H220.9600
Na1—O1Wii2.4201 (16)C1—C111.515 (3)
Na1—O12iii2.4806 (16)C1—C21.415 (3)
O11—C111.266 (2)C1—C61.392 (3)
O12—C111.260 (2)C2—C31.402 (3)
O41—N41.229 (3)C3—C41.372 (3)
O42—N41.221 (2)C4—C51.386 (3)
O1W—H12W0.8800C5—C61.383 (3)
O1W—H11W0.9400C3—H30.9500
O2W—H21W0.9500C5—H50.9500
O2W—H22W0.9300C6—H60.9500
O1W—Na1—O2W164.89 (6)O41—N4—C4118.58 (16)
O1W—Na1—O1282.78 (5)O42—N4—C4118.51 (18)
O1W—Na1—O42i76.59 (6)O41—N4—O42122.91 (18)
O1W—Na1—O1Wii80.75 (5)C2—N2—H21113.00
O1W—Na1—O12iii113.21 (5)C2—N2—H22108.00
O2W—Na1—O1295.32 (5)H21—N2—H22110.00
O2W—Na1—O42i111.20 (6)C6—C1—C11118.04 (17)
O1Wii—Na1—O2W85.08 (5)C2—C1—C6119.50 (16)
O2W—Na1—O12iii81.43 (5)C2—C1—C11122.42 (16)
O12—Na1—O42i146.57 (6)N2—C2—C1122.98 (16)
O1Wii—Na1—O12102.61 (5)N2—C2—C3118.99 (17)
O12—Na1—O12iii85.13 (5)C1—C2—C3117.99 (16)
O1Wii—Na1—O42i99.72 (6)C2—C3—C4119.93 (18)
O12iii—Na1—O42i79.34 (6)C3—C4—C5123.48 (17)
O1Wii—Na1—O12iii165.03 (5)N4—C4—C3117.79 (17)
Na1—O1W—Na1ii99.25 (6)N4—C4—C5118.74 (16)
Na1—O12—C11127.11 (13)C4—C5—C6116.39 (17)
Na1—O12—Na1iii94.87 (5)C1—C6—C5122.69 (18)
Na1iii—O12—C11119.00 (13)O11—C11—C1117.11 (16)
Na1ii—O1W—H12W118.00O12—C11—C1118.83 (17)
Na1—O1W—H12W122.00O11—C11—O12124.02 (17)
H11W—O1W—H12W106.00C2—C3—H3120.00
Na1—O1W—H11W99.00C4—C3—H3120.00
Na1ii—O1W—H11W112.00C4—C5—H5122.00
Na1—O2W—H21W100.00C6—C5—H5122.00
Na1—O2W—H22W94.00C1—C6—H6119.00
H21W—O2W—H22W119.00C5—C6—H6119.00
O12—Na1—O1W—Na1ii104.10 (5)Na1—O12—C11—O1153.5 (3)
O42i—Na1—O1W—Na1ii102.39 (6)Na1—O12—C11—C1128.72 (16)
O1Wii—Na1—O1W—Na1ii0.00 (6)Na1iii—O12—C11—O1169.2 (2)
O12iii—Na1—O1W—Na1ii174.38 (5)Na1iii—O12—C11—C1108.53 (18)
O1W—Na1—O12—C1118.24 (16)O41—N4—C4—C30.1 (3)
O1W—Na1—O12—Na1iii114.17 (5)O41—N4—C4—C5179.6 (2)
O2W—Na1—O12—C11146.68 (15)O42—N4—C4—C3179.3 (2)
O2W—Na1—O12—Na1iii80.90 (5)O42—N4—C4—C51.0 (3)
O42i—Na1—O12—C1170.2 (2)C6—C1—C2—N2176.5 (2)
O42i—Na1—O12—Na1iii62.23 (13)C6—C1—C2—C31.2 (3)
O1Wii—Na1—O12—C1160.55 (16)C11—C1—C2—N26.1 (3)
O1Wii—Na1—O12—Na1iii167.03 (5)C11—C1—C2—C3176.2 (2)
O12iii—Na1—O12—C11132.42 (16)C2—C1—C6—C51.9 (3)
O12iii—Na1—O12—Na1iii0.00 (5)C11—C1—C6—C5175.6 (2)
O1W—Na1—O42i—N4i165.67 (16)C2—C1—C11—O11171.9 (2)
O2W—Na1—O42i—N4i0.75 (17)C2—C1—C11—O1210.2 (3)
O12—Na1—O42i—N4i140.90 (14)C6—C1—C11—O1110.7 (3)
O1W—Na1—O1Wii—Na1ii0.00 (6)C6—C1—C11—O12167.25 (19)
O2W—Na1—O1Wii—Na1ii174.75 (5)N2—C2—C3—C4178.1 (2)
O12—Na1—O1Wii—Na1ii80.39 (6)C1—C2—C3—C40.3 (3)
O1W—Na1—O12iii—Na1iii79.99 (6)C2—C3—C4—N4179.18 (18)
O1W—Na1—O12iii—C11iii142.32 (13)C2—C3—C4—C51.2 (3)
O2W—Na1—O12iii—Na1iii96.14 (5)N4—C4—C5—C6179.87 (18)
O2W—Na1—O12iii—C11iii41.55 (13)C3—C4—C5—C60.5 (3)
O12—Na1—O12iii—Na1iii0.00 (6)C4—C5—C6—C11.1 (3)
O12—Na1—O12iii—C11iii137.69 (14)
Symmetry codes: (i) x, y, z1; (ii) x, y, z; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O110.941.882.7995 (19)165
O1W—H12W···O2Wiv0.881.952.8043 (19)165
O2W—H21W···N2v0.952.063.007 (2)177
O2W—H22W···O11iii0.931.892.816 (2)176
N2—H21···O120.902.032.7022 (19)131
N2—H22···O11vi0.962.123.018 (2)156
Symmetry codes: (iii) x+1, y, z; (iv) x, y1, z; (v) x, y+1, z; (vi) x, y+1, z.
(III) Poly[µ-aqua-aqua(µ5-2-amino-4-nitrobenzoato)potassium(I)] top
Crystal data top
[K(C7H5N2O4)(H2O)]F(000) = 488
Mr = 238.25Dx = 1.745 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2641 reflections
a = 11.0753 (6) Åθ = 3.4–28.1°
b = 7.3693 (4) ŵ = 0.59 mm1
c = 11.8371 (7) ÅT = 200 K
β = 110.144 (6)°Plate, red
V = 907.01 (9) Å30.18 × 0.15 × 0.05 mm
Z = 4
Data collection top
Oxford Diffracrion Gemini-S CCD-detector
diffractometer
1784 independent reflections
Radiation source: Enhance (Mo) X-ray source1548 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 26.0°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 1313
Tmin = 0.947, Tmax = 0.990k = 99
5706 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0342P)2 + 0.4145P]
where P = (Fo2 + 2Fc2)/3
1784 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
[K(C7H5N2O4)(H2O)]V = 907.01 (9) Å3
Mr = 238.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.0753 (6) ŵ = 0.59 mm1
b = 7.3693 (4) ÅT = 200 K
c = 11.8371 (7) Å0.18 × 0.15 × 0.05 mm
β = 110.144 (6)°
Data collection top
Oxford Diffracrion Gemini-S CCD-detector
diffractometer
1784 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
1548 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.990Rint = 0.032
5706 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
1784 reflectionsΔρmin = 0.19 e Å3
136 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.04598 (4)0.02480 (6)0.20840 (4)0.0254 (1)
O1W0.01985 (13)0.34549 (19)0.09198 (11)0.0284 (4)
O110.21947 (12)0.48661 (19)0.11597 (11)0.0260 (4)
O120.14981 (12)0.31343 (19)0.23408 (12)0.0282 (4)
O410.78821 (14)0.2735 (2)0.62154 (12)0.0378 (5)
O420.84330 (13)0.4274 (2)0.49229 (14)0.0382 (5)
N20.31821 (16)0.1797 (2)0.43506 (15)0.0301 (6)
N40.76222 (15)0.3509 (2)0.52435 (14)0.0262 (5)
C10.37410 (16)0.3759 (2)0.29538 (15)0.0159 (5)
C20.40710 (17)0.2735 (2)0.40320 (15)0.0182 (5)
C30.53702 (17)0.2670 (2)0.47784 (15)0.0199 (5)
C40.62746 (17)0.3567 (2)0.44387 (16)0.0195 (5)
C50.59843 (18)0.4570 (3)0.33925 (17)0.0225 (6)
C60.47081 (17)0.4645 (3)0.26716 (16)0.0205 (5)
C110.23735 (17)0.3931 (3)0.20897 (15)0.0184 (5)
H30.561900.201000.551200.0240*
H50.663200.517700.318100.0270*
H60.447900.533200.194900.0250*
H11W0.080400.379100.020300.0430*
H12W0.056100.398200.098700.0430*
H210.331000.134000.507300.0360*
H220.239800.199400.393300.0360*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0215 (2)0.0242 (2)0.0282 (2)0.0018 (2)0.0057 (2)0.0008 (2)
O1W0.0235 (7)0.0319 (8)0.0260 (7)0.0066 (6)0.0037 (6)0.0075 (6)
O110.0168 (6)0.0396 (9)0.0197 (7)0.0017 (6)0.0037 (5)0.0060 (6)
O120.0139 (6)0.0329 (8)0.0355 (8)0.0045 (6)0.0055 (6)0.0067 (6)
O410.0299 (8)0.0483 (10)0.0252 (7)0.0091 (7)0.0031 (6)0.0052 (7)
O420.0170 (7)0.0505 (10)0.0425 (9)0.0058 (7)0.0044 (6)0.0024 (7)
N20.0227 (9)0.0400 (11)0.0290 (9)0.0013 (8)0.0108 (7)0.0137 (8)
N40.0190 (8)0.0269 (9)0.0271 (9)0.0047 (7)0.0008 (7)0.0060 (7)
C10.0143 (8)0.0151 (9)0.0179 (8)0.0008 (7)0.0052 (7)0.0022 (7)
C20.0191 (9)0.0176 (9)0.0186 (8)0.0013 (7)0.0074 (7)0.0015 (7)
C30.0226 (9)0.0204 (10)0.0163 (8)0.0042 (8)0.0061 (7)0.0001 (7)
C40.0147 (9)0.0194 (10)0.0212 (9)0.0024 (7)0.0020 (7)0.0044 (7)
C50.0155 (9)0.0244 (10)0.0270 (10)0.0026 (8)0.0065 (8)0.0002 (8)
C60.0192 (9)0.0218 (10)0.0194 (9)0.0004 (8)0.0054 (7)0.0027 (7)
C110.0160 (9)0.0198 (9)0.0190 (9)0.0018 (8)0.0056 (7)0.0034 (7)
Geometric parameters (Å, º) top
K1—O1W2.7062 (14)N4—C41.469 (3)
K1—O122.7178 (15)N2—H210.8800
K1—O12i2.7575 (15)N2—H220.8500
K1—O1Wii2.8079 (14)C1—C21.418 (2)
K1—O42iii3.0459 (16)C1—C61.390 (3)
K1—O41iv2.8701 (15)C1—C111.513 (3)
K1—O42v2.8536 (16)C2—C31.406 (3)
O11—C111.255 (2)C3—C41.371 (3)
O12—C111.254 (2)C4—C51.382 (3)
O41—N41.226 (2)C5—C61.378 (3)
O42—N41.226 (2)C3—H30.9500
O1W—H12W0.9000C5—H50.9500
O1W—H11W0.9200C6—H60.9500
N2—C21.358 (3)
O1W—K1—O12152.53 (5)H11W—O1W—H12W109.00
O1W—K1—O12i69.59 (4)K1—O1W—H11W134.00
O1W—K1—O1Wii138.74 (5)K1i—O1W—H11W113.00
O1W—K1—O42iii67.18 (4)O41—N4—C4118.67 (16)
O1W—K1—O41iv78.15 (4)O42—N4—C4118.35 (15)
O1W—K1—O42v76.84 (4)O41—N4—O42122.96 (17)
O12—K1—O12i135.01 (5)C2—N2—H21125.00
O1Wii—K1—O1268.69 (4)C2—N2—H22116.00
O12—K1—O42iii85.69 (4)H21—N2—H22115.00
O12—K1—O41iv111.30 (4)C2—C1—C6119.03 (17)
O12—K1—O42v92.38 (4)C2—C1—C11122.74 (16)
O1Wii—K1—O12i71.21 (4)C6—C1—C11118.23 (15)
O12i—K1—O42iii134.80 (4)N2—C2—C1122.27 (17)
O12i—K1—O41iv85.32 (4)N2—C2—C3119.40 (15)
O12i—K1—O42v83.53 (4)C1—C2—C3118.32 (16)
O1Wii—K1—O42iii153.72 (4)C2—C3—C4119.48 (15)
O1Wii—K1—O41iv86.37 (4)N4—C4—C5117.89 (17)
O1Wii—K1—O42v111.03 (4)C3—C4—C5123.56 (18)
O41iv—K1—O42iii98.10 (4)N4—C4—C3118.53 (15)
O42iii—K1—O42v74.55 (4)C4—C5—C6116.68 (19)
O41iv—K1—O42v154.85 (5)C1—C6—C5122.92 (18)
K1—O1W—K1i94.03 (4)O11—C11—C1117.24 (17)
K1—O12—C11137.31 (13)O12—C11—C1118.45 (16)
K1—O12—K1ii94.92 (5)O11—C11—O12124.31 (17)
K1ii—O12—C11126.46 (13)C2—C3—H3120.00
K1iv—O41—N4147.33 (13)C4—C3—H3120.00
K1vi—O42—N4146.01 (12)C4—C5—H5122.00
K1vii—O42—N4105.79 (11)C6—C5—H5122.00
K1vi—O42—K1vii105.45 (5)C1—C6—H6119.00
K1i—O1W—H12W95.00C5—C6—H6119.00
K1—O1W—H12W105.00
O12—K1—O1W—K1i161.91 (8)K1—O12—C11—C183.8 (2)
O12i—K1—O1W—K1i41.11 (4)K1ii—O12—C11—O1167.4 (2)
O1Wii—K1—O1W—K1i22.03 (8)K1ii—O12—C11—C1112.93 (17)
O42iii—K1—O1W—K1i152.43 (6)K1iv—O41—N4—O4247.3 (3)
O41iv—K1—O1W—K1i48.27 (4)K1iv—O41—N4—C4134.40 (19)
O42v—K1—O1W—K1i129.02 (5)K1vi—O42—N4—O41130.88 (19)
O1W—K1—O12—C1130.6 (2)K1vi—O42—N4—C450.8 (3)
O1W—K1—O12—K1ii135.96 (9)K1vii—O42—N4—O4125.28 (19)
O12i—K1—O12—C11179.42 (16)K1vii—O42—N4—C4153.03 (12)
O12i—K1—O12—K1ii12.81 (8)O42—N4—C4—C3178.18 (16)
O1Wii—K1—O12—C11152.15 (18)O41—N4—C4—C5174.80 (17)
O1Wii—K1—O12—K1ii41.25 (4)O42—N4—C4—C53.6 (2)
O42iii—K1—O12—C1121.88 (17)O41—N4—C4—C33.4 (2)
O42iii—K1—O12—K1ii144.72 (5)C11—C1—C2—C3179.61 (16)
O41iv—K1—O12—C1175.15 (18)C11—C1—C6—C5179.68 (19)
O41iv—K1—O12—K1ii118.25 (5)C2—C1—C11—O11179.68 (16)
O42v—K1—O12—C1196.19 (17)C2—C1—C6—C50.3 (3)
O42v—K1—O12—K1ii70.42 (5)C6—C1—C11—O110.3 (3)
O1W—K1—O12i—K1i42.85 (4)C6—C1—C11—O12180.00 (18)
O1W—K1—O12i—C11i148.42 (15)C11—C1—C2—N21.7 (3)
O12—K1—O12i—K1i151.94 (5)C2—C1—C11—O120.1 (3)
O12—K1—O12i—C11i16.80 (16)C6—C1—C2—N2178.31 (17)
O1W—K1—O1Wii—K1ii135.90 (6)C6—C1—C2—C30.4 (2)
O12—K1—O1Wii—K1ii42.15 (4)C1—C2—C3—C40.9 (2)
O1W—K1—O42iii—N4iii74.2 (2)N2—C2—C3—C4177.86 (15)
O12—K1—O42iii—N4iii110.1 (2)C2—C3—C4—N4178.85 (14)
O1W—K1—O41iv—N4iv109.9 (2)C2—C3—C4—C50.7 (3)
O12—K1—O41iv—N4iv97.1 (2)N4—C4—C5—C6178.15 (17)
O1W—K1—O42v—N4v123.97 (12)C3—C4—C5—C60.0 (3)
O12—K1—O42v—N4v81.58 (11)C4—C5—C6—C10.5 (3)
K1—O12—C11—O1196.0 (2)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y, z+1; (v) x1, y+1/2, z1/2; (vi) x+1, y+1/2, z+1/2; (vii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O11viii0.921.972.8775 (18)169
O1W—H12W···O11ix0.901.942.849 (2)179
N2—H21···O11x0.882.252.983 (2)140
N2—H22···O120.851.992.656 (2)134
N2—H22···O1Wii0.852.523.214 (2)139
Symmetry codes: (ii) x, y+1/2, z+1/2; (viii) x, y, z; (ix) x, y1, z; (x) x, y+1/2, z+1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formula[Na(C7H3ClNO4)(H2O)][Na(C7H5N2O4)(H2O)2][K(C7H5N2O4)(H2O)]
Mr241.56240.15238.25
Crystal system, space groupOrthorhombic, PbcaTriclinic, P1Monoclinic, P21/c
Temperature (K)200200200
a, b, c (Å)7.9406 (4), 6.8025 (4), 33.2700 (17)6.6110 (6), 6.9443 (7), 11.7453 (11)11.0753 (6), 7.3693 (4), 11.8371 (7)
α, β, γ (°)90, 90, 9075.054 (8), 85.243 (7), 67.249 (9)90, 110.144 (6), 90
V3)1797.11 (17)480.35 (8)907.01 (9)
Z824
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.470.180.59
Crystal size (mm)0.35 × 0.23 × 0.160.40 × 0.20 × 0.180.18 × 0.15 × 0.05
Data collection
DiffractometerOxford Diffraction Gemini-S CCD-detector
diffractometer
Oxford Diffraction Gemini-S CCD-detector
diffractometer
Oxford Diffracrion Gemini-S CCD-detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Multi-scan
(CrysAlis PRO; Agilent, 2012)
Multi-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.963, 0.9900.95, 0.980.947, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
11239, 1762, 1643 5509, 1889, 1552 5706, 1784, 1548
Rint0.0290.0480.032
(sin θ/λ)max1)0.6170.6170.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.091, 1.13 0.040, 0.113, 1.07 0.032, 0.078, 1.04
No. of reflections176218891784
No. of parameters136146136
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.250.22, 0.260.24, 0.19

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012), PLATON (Spek, 2009).

Selected bond lengths (Å) for (I) top
Na1—O1W2.3115 (18)Na1—O12ii2.4335 (16)
Na1—O122.3334 (16)Na1—O11iii2.4532 (16)
Na1—O11i2.4258 (15)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1, y+1, z+1; (iii) x+3/2, y1/2, z.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O11iv0.801.952.751 (2)173
O1W—H12W···O31v0.812.122.924 (2)169
C2—H2···O1W0.952.553.434 (2)154
C6—H6···O31vi0.952.423.207 (2)141
Symmetry codes: (iv) x1, y, z; (v) x+1/2, y1/2, z; (vi) x+1, y, z.
Selected bond lengths (Å) for (II) top
Na1—O1W2.3950 (15)Na1—O42i2.5949 (18)
Na1—O2W2.4546 (15)Na1—O1Wii2.4201 (16)
Na1—O122.3917 (14)Na1—O12iii2.4806 (16)
Symmetry codes: (i) x, y, z1; (ii) x, y, z; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O110.941.882.7995 (19)165
O1W—H12W···O2Wiv0.881.952.8043 (19)165
O2W—H21W···N2v0.952.063.007 (2)177
O2W—H22W···O11iii0.931.892.816 (2)176
N2—H21···O120.902.032.7022 (19)131
N2—H22···O11vi0.962.123.018 (2)156
Symmetry codes: (iii) x+1, y, z; (iv) x, y1, z; (v) x, y+1, z; (vi) x, y+1, z.
Selected bond lengths (Å) for (III) top
K1—O1W2.7062 (14)K1—O42iii3.0459 (16)
K1—O122.7178 (15)K1—O41iv2.8701 (15)
K1—O12i2.7575 (15)K1—O42v2.8536 (16)
K1—O1Wii2.8079 (14)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y, z+1; (v) x1, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O11vi0.921.972.8775 (18)169
O1W—H12W···O11vii0.901.942.849 (2)179
N2—H21···O11viii0.882.252.983 (2)140
N2—H22···O120.851.992.656 (2)134
N2—H22···O1Wii0.852.523.214 (2)139
Symmetry codes: (ii) x, y+1/2, z+1/2; (vi) x, y, z; (vii) x, y1, z; (viii) x, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds