Download citation
Download citation
link to html
The title compound, tricaesium sodium iron(III) [mu]3-oxido-hexa-[mu]2-sulfato-tris­[aqua­iron(III)] penta­hydrate, Cs2.91Na1.34Fe3+0.25[Fe3O(SO4)6(H2O)3]·5H2O, belongs to the family of Maus's salts, K5[Fe3O(SO4)6(H2O)3]·6H2O, which is based on the tri­aqua-[mu]3-oxido-hexa-[mu]-sulfato-triferrate(III) anion, [Fe3O(SO4)6(H2O)3]5-, with Fe in a characteristically distorted octa­hedral coordination environment, sharing a common corner via an oxide O atom. Cs in four different cation sites, Na in three different cation sites and five water mol­ecules link the anions in three dimensions and set up a crystal structure in which those parts parallel to (001) and within 0.05 < z < 0.95 have a distinct trigonal pseudosymmetry, whereas the cation arrangement and bonding near z ~ 0 generate a clear-cut non­centrosymmetric polar edifice with the monoclinic space group C2. The structure shows some cation disorder in the region near z ~ {1\over 2}, where one Na atom in octa­hedral coordination is partly substituted by Fe3+, and a Cs atom is substituted by small amounts of Na on a separate nearby site. One Na atom, located on a twofold axis at z = 0 and tetra­hedrally coordinated by four sulfate O atoms of two [Fe3O(SO4)6(H2O)3]5- units, plays a key role in generating the noncentrosymmetric structure. Three of the seven different cation sites are on twofold axes (one Na+ site and two Cs+ sites), and all other atoms of the structure are in general positions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113023275/ov3034sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113023275/ov3034Isup2.hkl
Contains datablock I

Introduction top

At elevated temperatures, iron(III) sulfate in aqueous solution forms a trinuclear anion complex, [FeIII3O(SO4)6(H2O)3]5-, which crystallizes in the presence of Na+, K+, Rb+, Cs+, NH4+ and Tl+ cations, and combinations thereof, to give a variety of hydrated salts. Three representatives of this family are the hexagonal Maus's salt, K5[Fe3O(SO4)6(H2O)3].6H2O (Giacovazzo et al., 1975), the monoclinic β-form of Maus's salt, K5[Fe3O(SO4)6(H2O)3].7H2O (Mereiter & Völlenkle, 1978), and the mineral metavoltine (Giacovazzo et al., 1976), which in the mineralogical literature is usually formulated as K2Na6Fe2+Fe3+6O2(SO4)12.18H2O. Regarding their crystal structures, these salts can be subdivided into a first group, with layer-like trigonal or pseudo-trigonal arrangements of the [Fe3O(SO4)6(H2O)3]5- units reflecting the trigonal layout of the latter, and a second group with other spatial arrangements of the [Fe3O(SO4)6(H2O)3]5- units. The first group comprises hexagonal, trigonal or pseudo-trigonal structure types, including those of Maus's salt, metavoltine, a wide variety of K–Na salts (Scordari et al., 1994, and references therein) and Rb2.74(NH4)2.26[Fe3O(SO4)6(H2O)3].4H2O (Mereiter, 1990). With two exceptions, the salts of this group contain Na and crystallize in unit cells of a = b 9.6–9.7 Å, c 18, 2× 18 or 3× 18 Å, α = β = 90° and γ = 120°, and mostly in space-group types P3, P31c and R3 (Scordari et al., 1994). The second group comprises three different monoclinic structure types (space groups P21/c and P21/n) of composition A5[Fe3O(SO4)6(H2O)3].2–7H2O, with A = K+, Rb+, Cs+, NH4+ or Tl+ in varying combinations and proportions but always without Na. They are represented by the β-form of Maus's salt, by Rb5[Fe3O(SO4)6(H2O)3].2H2O and by (K,Tl)5[Fe3O(SO4)6(H2O)3].2H2O (Mereiter & Völlenkle, 1978, 1980; Mereiter, 1980). Evidently, the alkali cations and even some of the minor cations (H3O+, Fe2+, Mg2+, Fe3+), in combination with crystallization conditions such as temperature, component concentrations and acidity, control the specific structure types adopted by these salts. Co-crystallization of two different crystal forms, epitaxic growth, merohedral twinning, cation disorder and gradual changes in composition have been observed with them. The present study reports the title Cs–Na compound of this family which has structural features of the first group but is an inter­esting outsider, since it has a monoclinic crystal structure that is, moreover, non-centrosymmetric and polar.

Experimental top

Synthesis and crystallization top

Slow evaporation of aqueous solutions of Na2SO4.10H2O (2.0 g), Cs2SO4 (1.8 g) and Fe2(SO4)3.5H2O (4 g, Fluka) at T ~355 K yielded, as the primary product, pale-brown six-sided crystals of a trigonal Na–Cs–[Fe3O(SO4)6(H2O)3]5- salt hydrate [rhombohedra with basal faces, space group P3, a 9.75 Å, c 18.3 Å, V 1505 Å3; structure type corresponding to that reported by Scordari & Stasi (1990)]. Later stages of crystallization yielded the title compound in the form of yellow plate-like rhombi with edge angles close to 60 and 120°. The crystal faces were identified as narrow {110} and dominant {001}. The crystals were optically biaxially negative, with 2V 30°, Z = b and Y = a. They showed a distinct pale-yellow to yellow–brown pleochroism when viewed parallel to the basal plane, indicating the presence of [Fe3O(SO4)6(H2O)3]5- units oriented with their Fe3O triangles approximately parallel to (001).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. A data cut-off of 2θmax = 50° was used because the available crystals scattered poorly at higher Bragg angles. After structure solution, initial calculations indicated that the cation site Na1 (on a general position) had a mixed occupancy by Na+ and Fe3+ in a ca 3:1 ratio, and that the cation site Cs1 (on a special position) had a partial occupancy by Cs+ supplemented by a corresponding amount of Na+ on the nearby site Na3 (on a general position). Na1/Fe4 were constrained to have equivalent thermal displacement parameters and coordinates; all their geometric data in Table 2 are given for Na1. Cs1/Na3 had independent positions and displacement parameters (isotropic for Na3 because of low occupancy). In the final refinement, the charge of the cations and the [Fe3O(SO4)6(H2O)3]5- anion was balanced by restraining the charge sum of inter­stitial Na1/Fe4 and Cs1/Na3 atoms to be equal to 2+. Na1/Fe4 and Cs1/Na3 were refined with variable site occupancies restrained to give sums of 1 for Na1+Fe4 and 0.5 for Cs1+Na3 (Cs1 on a special position) per formula unit (Sheldrick, 2008; σ = 0.0001). The four variable occupancies converged to 0.75000 (17) for Na1, 0.25000 (9) for Fe4, 0.411 (1) for Cs1 and 0.089 (1) for Na3. The remaining Na and Cs atoms had full occupancy. The H atoms of the water molecules were located by a combination of difference Fourier synthesis and stereochemical considerations, taking into account related crystal structures. All water molecules were then idealized to have O—H = 0.80 Å and H—O—H = 105.0°, and were then refined as rigid groups with Uiso(H) = 1.2Ueq(O). The appropriate enanti­omorph of the structure was assigned with the help of the Flack parameter [-0.011 (13); Flack, 1983], which simultaneously indicated the absence of significant merohedral twinning.

Results and discussion top

X-ray crystal structure determination revealed the title compound to be Cs2.91Na1.34Fe3+0.25[Fe3O(SO4)6(H2O)3].5H2O, with 0.75 Na+ and 0.25 Fe3+ sharing one cation site Na1, and with 0.41 Cs+ and 0.09 Na+ occupying two neighbouring cation sites Cs1 and Na3. The remaining cation sites Na2, Cs2, Cs3 and Cs4 are fully occupied by their eponymous species. Atoms Na2, Cs1 and Cs3 are located on twofold axes. All other atoms of the structure are on general positions.

The title structure contains the trinuclear iron(III) sulfate complex [Fe3O(SO4)6(H2O)3], shown in Fig. 1. This unit consists of three distinctly distorted FeO6 o­cta­hedra, linked by the central oxo atom O25 and by six bridging SO4 groups. Bond lengths (Table 2) and bond angles within the unit show the same trends as in previously studied compounds (Mereiter, 1990; Scordari et al., 1994). Mean bond lengths in the title compound are: Fe—Ooxo = 1.930 (19) Å, Fe—Osulfate (O4n-3, O4n-2, n = 1–6) = 2.009 (17) Å, Fe—Owater = 2.074 (26) Å, S—OFe = 1.491 (7) Å and S—Oterminal (O4n-1, O4n, n = 1–6) = 1.448 (7) Å. All O—Fe—O bond angles between the central Ooxo atom O25 and the sulfate O atoms are systematically larger than 90° and cover the range 92.9 (2)–97.3 (2)°. Atoms O25, O26W, O27W and O28W are essentially coplanar with the Fe3 triangle; they deviate by 0.022 (4), -0.004 (5), -0.019 (5) and -0.021 (5) Å, respectively, from this plane. Although not required crystallographically, the complex approaches quite well a trigonal D3 32 symmetry (Fig. 1), which is characteristic for K–Na salts of [Fe3O(SO4)6(H2O)3]5- where the central oxo atom is usually located on a threefold crystallographic axis (Scordari et al., 1994). In the three monoclinic alkali salts of [Fe3O(SO4)6(H2O)3]5- with either K+ or Rb+ or K++Tl+ as cations, significant deviations of the units from trigonal symmetry were observed, e.g. by varying degrees of tilt of the FeO6 o­cta­hedra about the O25—Fe—Owater bond axes and varying inclination of the SO4 tetra­hedra about their edges bridging the FeO6 o­cta­hedra. As result of this flexibility, the outer edge of a sulfate tetra­hedron, e.g. O3—O4 or O6—O7 in Fig. 1, can vary in orientation between nearly perpendicular and nearly parallel to the plane of the Fe3 triangle, in order to adapt the complex to packing and alkali cation coordination requirements (for a corresponding example, see: Mereiter, 1980).

The title compound contains seven crystallographically different alkali cation sites, namely three Na and four Cs sites, of which three (Na2, Cs1 and Cs3) are on special positions on twofold axes (Figs. 2–4). Na1 is on a general position and has a comparatively regular o­cta­hedral coordination by three apical sulfate O atoms (O4n, n = 2, 4, 6) provided by a single [Fe3O(SO4)6(H2O)3]5- unit, and by three terminal water molecules (Fig. 4). The electron density found at site Na1 shows that it is occupied by 3/4 Na+ and 1/4 Fe3+ according to the adopted structure refinement model, or nearly so if softer restrictions are used. This finding is backed by the mean bond length <Na1—O> = 2.295 (47) Å, which is shorter than for a typical Na+ cation in an o­cta­hedral coordination with a standard bond length of Na—O = 2.42 Å [Standard reference?], by the necessary charge balance between all cations and the [Fe3O(SO4)6(H2O)3]5- anion, and by larger displacement parameters for the water molecules bonded to Na1.

The second sodium cation, Na2, is located on a twofold axis and has a quite regular tetra­hedral coordination by four apical sulfate O atoms of two [Fe3O(SO4)6(H2O)3]5- units (Figs. 3 and 4). The mean <Na2—O> bond length is 2.284 (61) Å and the O—Na2—O angles vary from 94.5 (3) to 117.8 (3)°. The next-nearest O atoms are 3.19 (1) Å from Na2. Tetra­hedral NaO4 coordination mode is uncommon for salt hydrates of Na, but has been observed in compounds such as Na4GeO4 (Halwax & Völlenkle, 1985) or in about 0.25% of all organometallic crystal structures containing Na (e.g. CSD refcodes CISFUG, EXOVOC, GIXBAO; Cambridge Structural Database, Version 5.33; Allen, 2002), with Na—O bond lengths comparable with those of the title compound.

A third kind of Na+ cation occupies the general position Na3 with an occupancy of only 8.9 (1)%. It has five O-atom neighbours at distances of 2.31–2.67 (2) Å and replaces 2 × 8.9% = 17.8% of Cs+ in the closely adjacent special position Cs1 [the site multiplicity of Na3 is twice that of Cs1; Na3···Cs1 = 2.20 (2) Å]. Cation Cs1 is located on a twofold axis and has a slightly distorted trigonal prismatic coordination by lateral sulfate O atoms (two each of O4n-1, n = 2, 4, 6) from six surrounding [Fe3O(SO4)6(H2O)3]5- units. The six Cs1—O bond lengths vary between 3.177 (5) and 3.298 (5) Å. The ionic radius of Na+ is too small for site Cs1. Thus, the small amount of Na which replaces Cs has to occupy an off-centre position closer to the surrounding O atoms, as is observed with Na3. The remaining three caesium sites, Cs2, Cs3 and Cs4, are fully occupied by Cs+. They exhibit irregular coordination geometries, with eight, six and seven O ligands, respectively, at Cs—O distances below 3.31 Å, and two or four more O neighbours between Cs—O = 3.4 and 3.7 Å. Their coordination behaviour agrees with general trends.

The title structure contains eight different water molecules that can be assigned to four categories: (i) the Fe-bonded water molecules O26W, O27W and O28W; (ii) the three water molecules O29W, O30W and O31W bonded to Na1 (i.e. 3/4 Na+ + 1/4 Fe3+); (iii) water molecule O32W bridging two Cs cations; and (iv) water molecule O33W anchored in the structure exclusively by four hydrogen bonds. With one exception [Which is?], the Fe3+-bonded water molecules of category (i) form the shortest hydrogen bonds of the compound (Table 3). They are arranged in a triangular fashion around water molecule O33W (Fig. 2). Atoms O27W and O28W each donate one hydrogen bond to a sulfate O atom (O19viii and O3x, respectively; Table 3) and to O33W, while the third molecule, O26W, donates both of its hydrogen bonds to sulfate O atoms (O11v and O15v) but accepts in return just one hydrogen bond from O33W (Fig. 2). A situation of this kind was previously found, for instance, in an Rb–NH4 salt (Mereiter, 1990). The three Na1-bonded water molecules, O29W, O30W and O31W, are three-coordinate and donate pairs of hydrogen bonds to surrounding sulfate O atoms. The Cs-bonded water molecule O32W forms only weak hydrogen bonds, of which one appears to be bifurcated (acceptors O9v and O19vii; Table 2).

The title structure is built up from pseudotrigonal layers parallel to (001), which are composed of [Fe3O(SO4)6(H2O)3]5- units, Cs2+ cations and water molecules O33W. One of these layers is shown in Fig. 2. The trigonal pseudosymmetry of this layer is evident and is based on the C-centred unit cell and its metrics of 1/2(a+b) = 1/2(a-b) = 9.813 Å, b = 9.482 Å and c* = 18.798 Å, and an angle between (a+b) and (a-b) of 57.78°. The layers are located at z 1/4 and z 3/4 in the monoclinic unit cell. Inserted between them are regions with the remaining alkali cations and water molecules, as shown in Fig. 3. The following scheme summarizes the stacking sequence along [001] and gives the proportions of the species involved, with regional net charges denoted by nc:

z 3/4 ··· Fe3O(SO4)6(H2O)3 + 1 Cs2 + 1 H2O32W ··· nc = -4

z 1/2 ··· 2 Na1 [= Na1.5 + Fe3+0.5] + 1 Cs1/Na3 [= Cs0.822 + Na0.178] + 6 H2O29W–O31W ··· nc = +4

z 1/4 ··· Fe3O(SO4)6(H2O)3 + 1 Cs2 + 1 H2O33W ··· nc = -4

z 0 ··· 1 Na2 + 1 Cs3 + 2 Cs4 + 2 H2O32W ··· nc = +4

The trigonal pseudosymmetry of the structure is not only restricted to the layers at z 1/4 and 3/4, but also includes the region about z 1/2 where the cations Na1 and Cs1 (disregarding the fractionally occupied site Na3) define an almost exactly hexagonal pattern. This is shown schematically in Fig. 5, where the upper half represents the layers at z 1/4, 1/2 and 3/4, shown by their metal atoms only. At z 0, the situation changes drastically (Fig. 5, lower part) and the metal atoms, here Na2, Cs3 and Cs4, define an approximately square grid without trigonal pseudosymmetry. The overall result of this combination is a monoclinic non-centrosymmetric polar crystal structure with space group C2. The polar nature of the crystal structure can be easily recognized by considering the b-axis view of Fig. 3, which has all Fe1O6 o­cta­hedra half hidden behind the Fe2O6 and Fe3O6 o­cta­hedra, while in the reverse view direction the terminal vertices of the Fe1O6 o­cta­hedra, defined by O26W, would be in front. The basis for this feature is primarily set by the Na2O4 tetra­hedron linking two [Fe3O(SO4)6(H2O)3]5- anions related by a twofold axis (Fig. 4). This specific link-up is absent from all K–Na salts reported by Scordari and coworkers (Scordari et al., 1994, and references therein), which have centrosymmetric trigonal crystal structures as mentioned above and frequently exhibit pronounced K–Na–H2O disorder.

Related literature top

For related literature, see: Allen (2002); Flack (1983); Giacovazzo et al. (1975, 1976); Halwax & Völlenkle (1985); Mereiter (1980, 1990); Mereiter & Völlenkle (1978, 1980); Scordari & Stasi (1990); Scordari et al. (1994); Sheldrick (2008).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008) and DIAMOND (Brandenburg, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the [Fe3O(SO4)6(H2O)3]5- unit in the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The symmetry operator for all atoms is (x, y, z).
[Figure 2] Fig. 2. The pseudotrigonal layer of [Fe3O(SO4)6(H2O)3]5- units in the title compound, with atoms Cs2 and O33W at z 1/4. Only selected atoms with symmetry operator (x, y, z) are labelled. C-centring, combined with unit-cell translations, relates all atoms of this layer.
[Figure 3] Fig. 3. A perspective view, down [010], of the structure of Cs2.91Na1.34Fe3+0.25[Fe3O(SO4)6(H2O)3].5H2O. Atom Na3 (8.9% occupancy), lying closely to the left and right of atom Cs1 (82.2% occupancy), and all Cs—O bonds, have been omitted for clarity, as have symmetry operators.
[Figure 4] Fig. 4. The finite group formed by two [Fe3O(SO4)6(H2O)3]5- units, joined by the Na2O4 tetrahedron and terminated by two Na1O3(H2O)3 octahedra, in a view approximately perpendicular to [010]. [Symmetry code: (i) -x, y, -z.]
[Figure 5] Fig. 5. The spatial arrangement of the metal atoms of the title compound, viewed along c*, with the unit cell outlined. The upper half covers the range 0.24 < z < 0.76, with [Fe3O(SO4)6(H2O)3] units represented by their Fe triangles (filled for z 3/4, open for z 1/4). The Na3 positions (8.9% occupancy) have been omitted. Note the three almost coinciding atoms Cs2, Cs1 and Cs2 [Should one of these Cs2 have a symmetry operator?]. The lower half shows the range -0.01 < z < 0.01.
tricaesium sodium iron(III) µ3-oxido-hexa-µ2-sulfato-tris[aquairon(III)] pentahydrate top
Crystal data top
Cs2.91Na1.34Fe0.25[Fe3O(SO4)6(H2O)3]·5H2OF(000) = 2541.3
Mr = 1335.58Dx = 2.897 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 4832 reflections
a = 17.183 (5) Åθ = 2.4–25.0°
b = 9.482 (3) ŵ = 5.47 mm1
c = 20.058 (7) ÅT = 297 K
β = 110.42 (1)°Rhombus, brown
V = 3062.7 (17) Å30.12 × 0.05 × 0.04 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
5377 independent reflections
Radiation source: fine-focus sealed tube4867 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω and φ scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 2020
Tmin = 0.62, Tmax = 0.80k = 1111
21065 measured reflectionsl = 2323
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0206P)2 + 5.7541P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.054(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.55 e Å3
5377 reflectionsΔρmin = 0.57 e Å3
439 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
4 restraintsExtinction coefficient: 0.00040 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), with 2509 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.011 (13)
Crystal data top
Cs2.91Na1.34Fe0.25[Fe3O(SO4)6(H2O)3]·5H2OV = 3062.7 (17) Å3
Mr = 1335.58Z = 4
Monoclinic, C2Mo Kα radiation
a = 17.183 (5) ŵ = 5.47 mm1
b = 9.482 (3) ÅT = 297 K
c = 20.058 (7) Å0.12 × 0.05 × 0.04 mm
β = 110.42 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5377 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
4867 reflections with I > 2σ(I)
Tmin = 0.62, Tmax = 0.80Rint = 0.045
21065 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.054Δρmax = 0.55 e Å3
S = 1.06Δρmin = 0.57 e Å3
5377 reflectionsAbsolute structure: Flack (1983), with 2509 Friedel pairs
439 parametersAbsolute structure parameter: 0.011 (13)
4 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Na10.15883 (10)0.4192 (2)0.48591 (8)0.0205 (4)0.7500 (2)
Fe40.15883 (10)0.4192 (2)0.48591 (8)0.0205 (4)0.2500 (1)
Na20.00000.3584 (4)0.00000.0379 (10)
Cs10.00000.92929 (13)0.50000.0542 (4)0.822 (3)
Na30.1198 (14)0.994 (3)0.4921 (12)0.012 (5)*0.0890 (13)
Cs20.39134 (3)0.42903 (4)0.25632 (2)0.02863 (11)
Cs30.00000.77925 (7)0.00000.03342 (16)
Cs40.23052 (3)0.32633 (5)0.00857 (2)0.03796 (13)
Fe10.07993 (5)0.62446 (8)0.24739 (5)0.01541 (19)
Fe20.15045 (5)0.29924 (9)0.24283 (4)0.0172 (2)
Fe30.04397 (5)0.35070 (9)0.24181 (4)0.01602 (19)
S10.16367 (9)0.53950 (16)0.13339 (8)0.0188 (3)
S20.25148 (9)0.52034 (17)0.36365 (8)0.0196 (3)
S30.00563 (10)0.14038 (16)0.12833 (8)0.0201 (3)
S40.08598 (10)0.14808 (17)0.35684 (8)0.0202 (4)
S50.11130 (10)0.61121 (16)0.13590 (8)0.0179 (3)
S60.01096 (10)0.58913 (17)0.36185 (8)0.0197 (4)
O10.1136 (3)0.6361 (5)0.1608 (2)0.0273 (11)
O20.1976 (2)0.4251 (5)0.1874 (2)0.0214 (9)
O30.2335 (3)0.6162 (5)0.1257 (2)0.0311 (12)
O40.1108 (3)0.4799 (5)0.0672 (2)0.0347 (12)
O50.2001 (3)0.6206 (4)0.3081 (2)0.0228 (10)
O60.2345 (3)0.3764 (4)0.3335 (2)0.0254 (11)
O70.3387 (3)0.5524 (5)0.3797 (3)0.0329 (12)
O80.2284 (3)0.5297 (5)0.4264 (2)0.0346 (12)
O90.0782 (3)0.2078 (5)0.1508 (3)0.0321 (12)
O100.0469 (3)0.1847 (5)0.1795 (2)0.0265 (11)
O110.0027 (3)0.0118 (5)0.1311 (3)0.0343 (12)
O120.0535 (3)0.1911 (6)0.0579 (2)0.0364 (12)
O130.1239 (3)0.1479 (4)0.3005 (2)0.0242 (10)
O140.0060 (3)0.2265 (4)0.3290 (2)0.0230 (10)
O150.0682 (3)0.0019 (5)0.3692 (3)0.0393 (13)
O160.1412 (3)0.2134 (5)0.4208 (2)0.0355 (12)
O170.1097 (3)0.4581 (4)0.1542 (2)0.0281 (11)
O180.0358 (2)0.6785 (5)0.1864 (2)0.0220 (10)
O190.1828 (3)0.6796 (5)0.1447 (2)0.0302 (11)
O200.1139 (3)0.6239 (5)0.0636 (2)0.0343 (12)
O210.0658 (3)0.4984 (4)0.3033 (2)0.0214 (10)
O220.0511 (3)0.6571 (5)0.3362 (2)0.0234 (10)
O230.0611 (3)0.6975 (5)0.3784 (2)0.0327 (12)
O240.0311 (3)0.5013 (5)0.4227 (2)0.0345 (12)
O250.0624 (2)0.4255 (5)0.24522 (18)0.0156 (8)
O26W0.0955 (3)0.8442 (5)0.2509 (2)0.0258 (10)
H26A0.07560.89050.21570.031*
H26B0.08780.88460.28300.031*
O27W0.2416 (3)0.1623 (5)0.2405 (3)0.0362 (12)
H27A0.25540.16700.20640.043*
H27B0.23750.08070.24890.043*
O28W0.1567 (3)0.2655 (5)0.2382 (2)0.0280 (11)
H28A0.19330.23450.20470.034*
H28B0.17710.31610.25960.034*
O29W0.0950 (4)0.3139 (7)0.5581 (3)0.0632 (18)
H29A0.10710.24240.58060.076*
H29B0.06040.35330.56950.076*
O30W0.1806 (3)0.6210 (7)0.5583 (3)0.0642 (19)
H30A0.22560.65660.57070.077*
H30B0.15580.65400.58170.077*
O31W0.2855 (3)0.3330 (6)0.5580 (3)0.0646 (17)
H31A0.28900.25010.56590.077*
H31B0.32900.36840.58060.077*
O32W0.1490 (4)1.0063 (7)0.0539 (4)0.080 (2)
H32A0.12081.05090.02030.096*
H32B0.16681.05920.08680.096*
O33W0.2685 (3)0.0824 (5)0.3094 (3)0.0378 (12)
H33A0.22240.11250.29980.045*
H33B0.29740.12030.34510.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0225 (9)0.0225 (9)0.0157 (8)0.0008 (8)0.0056 (7)0.0007 (8)
Fe40.0225 (9)0.0225 (9)0.0157 (8)0.0008 (8)0.0056 (7)0.0007 (8)
Na20.027 (2)0.030 (2)0.045 (2)0.0000.0014 (18)0.000
Cs10.0568 (6)0.0631 (7)0.0339 (5)0.0000.0046 (4)0.000
Cs20.0282 (2)0.0237 (2)0.0338 (2)0.0006 (2)0.01053 (18)0.0027 (2)
Cs30.0349 (4)0.0307 (4)0.0388 (4)0.0000.0180 (3)0.000
Cs40.0310 (3)0.0439 (3)0.0362 (2)0.0086 (2)0.0081 (2)0.0107 (2)
Fe10.0156 (4)0.0114 (5)0.0185 (4)0.0005 (4)0.0051 (4)0.0010 (3)
Fe20.0173 (4)0.0147 (5)0.0213 (4)0.0021 (4)0.0089 (4)0.0004 (4)
Fe30.0156 (4)0.0132 (5)0.0194 (4)0.0007 (4)0.0064 (4)0.0013 (4)
S10.0199 (8)0.0228 (9)0.0152 (8)0.0029 (7)0.0080 (6)0.0017 (7)
S20.0173 (8)0.0220 (9)0.0174 (8)0.0004 (7)0.0033 (6)0.0005 (7)
S30.0268 (9)0.0148 (8)0.0173 (8)0.0002 (7)0.0060 (7)0.0030 (6)
S40.0207 (8)0.0164 (8)0.0235 (8)0.0012 (7)0.0078 (7)0.0052 (7)
S50.0174 (8)0.0196 (9)0.0161 (8)0.0009 (7)0.0049 (6)0.0007 (6)
S60.0254 (9)0.0165 (8)0.0187 (8)0.0023 (7)0.0098 (7)0.0011 (7)
O10.034 (3)0.026 (3)0.028 (3)0.008 (2)0.018 (2)0.006 (2)
O20.018 (2)0.022 (2)0.026 (2)0.002 (2)0.0098 (18)0.001 (2)
O30.029 (3)0.036 (3)0.030 (3)0.011 (2)0.012 (2)0.003 (2)
O40.040 (3)0.037 (3)0.023 (2)0.014 (2)0.004 (2)0.004 (2)
O50.021 (2)0.019 (2)0.025 (2)0.0008 (19)0.0047 (19)0.0054 (19)
O60.023 (2)0.015 (2)0.030 (2)0.0033 (18)0.003 (2)0.0001 (18)
O70.013 (2)0.029 (3)0.051 (3)0.001 (2)0.004 (2)0.004 (2)
O80.046 (3)0.041 (3)0.020 (2)0.003 (3)0.015 (2)0.002 (2)
O90.031 (3)0.040 (3)0.030 (3)0.011 (2)0.016 (2)0.015 (2)
O100.031 (3)0.023 (3)0.032 (3)0.006 (2)0.019 (2)0.006 (2)
O110.053 (3)0.014 (2)0.038 (3)0.000 (2)0.020 (3)0.004 (2)
O120.041 (3)0.043 (3)0.020 (2)0.009 (2)0.004 (2)0.007 (2)
O130.026 (2)0.017 (2)0.031 (3)0.0033 (19)0.012 (2)0.002 (2)
O140.024 (2)0.023 (2)0.026 (2)0.005 (2)0.014 (2)0.004 (2)
O150.037 (3)0.018 (3)0.067 (4)0.002 (2)0.023 (3)0.017 (3)
O160.029 (3)0.048 (3)0.023 (3)0.002 (2)0.000 (2)0.005 (2)
O170.034 (3)0.018 (3)0.026 (2)0.006 (2)0.002 (2)0.0002 (19)
O180.017 (2)0.015 (2)0.027 (2)0.0019 (19)0.0015 (19)0.0013 (19)
O190.022 (2)0.036 (3)0.034 (3)0.007 (2)0.011 (2)0.004 (2)
O200.043 (3)0.044 (3)0.018 (2)0.006 (3)0.013 (2)0.002 (2)
O210.021 (2)0.020 (2)0.026 (2)0.0005 (19)0.0107 (19)0.0036 (19)
O220.029 (3)0.021 (2)0.023 (2)0.005 (2)0.012 (2)0.004 (2)
O230.049 (3)0.021 (3)0.037 (3)0.003 (2)0.026 (2)0.008 (2)
O240.041 (3)0.034 (3)0.024 (3)0.001 (2)0.007 (2)0.007 (2)
O250.017 (2)0.0111 (19)0.020 (2)0.0006 (19)0.0078 (17)0.0004 (19)
O26W0.031 (3)0.015 (2)0.027 (2)0.002 (2)0.005 (2)0.000 (2)
O27W0.044 (3)0.029 (3)0.047 (3)0.012 (3)0.031 (3)0.015 (2)
O28W0.026 (2)0.029 (3)0.032 (3)0.005 (2)0.014 (2)0.009 (2)
O29W0.090 (4)0.058 (4)0.059 (4)0.044 (4)0.048 (3)0.027 (3)
O30W0.039 (3)0.077 (5)0.081 (5)0.018 (3)0.026 (3)0.039 (4)
O31W0.057 (4)0.034 (3)0.079 (4)0.011 (3)0.005 (3)0.016 (3)
O32W0.067 (4)0.075 (5)0.097 (6)0.002 (4)0.027 (4)0.025 (4)
O33W0.032 (3)0.028 (3)0.058 (3)0.002 (2)0.021 (2)0.011 (3)
Geometric parameters (Å, º) top
Na1—O82.224 (5)S1—O41.437 (5)
Na1—O242.256 (5)S1—O31.457 (5)
Na1—O31W2.302 (6)S1—O11.487 (5)
Na1—O162.309 (5)S1—O21.500 (5)
Na1—O29W2.325 (6)S2—O81.448 (5)
Na1—O30W2.352 (6)S2—O71.450 (4)
Na2—O42.231 (5)S2—O61.480 (4)
Na2—O4i2.231 (5)S2—O51.496 (4)
Na2—O122.336 (6)S3—O121.447 (5)
Na2—O12i2.336 (6)S3—O111.449 (5)
Cs1—O233.177 (5)S3—O91.495 (5)
Cs1—O23ii3.177 (5)S3—O101.496 (5)
Cs1—O7iii3.194 (5)S4—O161.443 (5)
Cs1—O7iv3.194 (4)S4—O151.459 (5)
Cs1—O15v3.298 (5)S4—O131.489 (5)
Cs1—O15vi3.298 (5)S4—O141.490 (4)
Na3—O15v2.31 (2)S5—O201.440 (5)
Na3—O7iii2.48 (2)S5—O191.454 (5)
Na3—O8iii2.57 (2)S5—O181.482 (4)
Na3—O16v2.62 (2)S5—O171.495 (5)
Na3—O31Wiii2.67 (2)S6—O241.446 (5)
Cs2—O23.127 (4)S6—O231.452 (5)
Cs2—O73.142 (5)S6—O221.484 (5)
Cs2—O15vii3.167 (5)S6—O211.496 (4)
Cs2—O23viii3.176 (5)O3—Cs4vii3.299 (5)
Cs2—O19viii3.200 (5)O4—Cs4i3.293 (5)
Cs2—O18viii3.225 (4)O7—Na3xii2.48 (2)
Cs2—O10vii3.244 (4)O7—Cs1viii3.194 (4)
Cs2—O28Wvii3.284 (5)O8—Na3xii2.57 (2)
Cs3—O203.061 (5)O10—Cs2x3.244 (4)
Cs3—O20i3.061 (5)O11—Cs3xiii3.280 (5)
Cs3—O32W3.229 (7)O15—Na3xiii2.31 (2)
Cs3—O32Wi3.229 (7)O15—Cs2x3.167 (5)
Cs3—O11v3.280 (5)O15—Cs1xiii3.298 (5)
Cs3—O11ix3.280 (5)O16—Na3xiii2.62 (2)
Cs4—O32Wx3.056 (6)O18—Cs2iv3.225 (4)
Cs4—O123.126 (5)O19—Cs2iv3.200 (5)
Cs4—O173.190 (4)O19—Cs4xiv3.226 (5)
Cs4—O20xi3.198 (5)O20—Cs4xiv3.198 (5)
Cs4—O19xi3.226 (5)O23—Cs2iv3.176 (5)
Cs4—O4i3.293 (5)O26W—H26A0.80
Cs4—O3x3.299 (5)O26W—H26B0.80
Fe1—O251.909 (5)O27W—H27A0.80
Fe1—O51.999 (4)O27W—H27B0.80
Fe1—O182.005 (4)O28W—Cs2x3.284 (5)
Fe1—O12.017 (4)O28W—H28A0.80
Fe1—O222.032 (4)O28W—H28B0.80
Fe1—O26W2.099 (5)O29W—H29A0.80
Fe2—O251.943 (4)O29W—H29B0.80
Fe2—O21.986 (4)O30W—H30A0.80
Fe2—O131.993 (4)O30W—H30B0.80
Fe2—O62.024 (4)O31W—Na3xii2.67 (2)
Fe2—O92.025 (5)O31W—H31A0.80
Fe2—O27W2.047 (5)O31W—H31B0.80
Fe3—O251.939 (4)O32W—Cs4vii3.056 (6)
Fe3—O211.986 (4)O32W—H32A0.80
Fe3—O102.000 (5)O32W—H32B0.80
Fe3—O172.004 (4)O33W—H33A0.80
Fe3—O142.034 (4)O33W—H33B0.80
Fe3—O28W2.077 (4)
O8—Na1—O2497.81 (18)O13—Fe2—O991.65 (19)
O8—Na1—O31W86.4 (2)O6—Fe2—O9172.84 (18)
O24—Na1—O31W175.3 (2)O25—Fe2—O27W178.67 (19)
O8—Na1—O1694.79 (18)O2—Fe2—O27W84.46 (18)
O24—Na1—O1693.69 (18)O13—Fe2—O27W83.57 (18)
O31W—Na1—O1687.9 (2)O6—Fe2—O27W86.5 (2)
O8—Na1—O29W174.4 (2)O9—Fe2—O27W86.5 (2)
O24—Na1—O29W85.43 (19)O25—Fe3—O2195.76 (17)
O31W—Na1—O29W90.2 (2)O25—Fe3—O1097.32 (17)
O16—Na1—O29W89.5 (2)O21—Fe3—O10166.92 (18)
O8—Na1—O30W87.1 (2)O25—Fe3—O1794.62 (17)
O24—Na1—O30W88.9 (2)O21—Fe3—O1790.87 (18)
O31W—Na1—O30W89.4 (2)O10—Fe3—O1788.19 (18)
O16—Na1—O30W176.6 (2)O25—Fe3—O1494.13 (17)
O29W—Na1—O30W88.4 (2)O21—Fe3—O1489.36 (18)
O4—Na2—O4i117.8 (3)O10—Fe3—O1489.59 (18)
O4—Na2—O12116.83 (17)O17—Fe3—O14171.18 (18)
O4i—Na2—O12104.47 (18)O25—Fe3—O28W178.57 (19)
O4—Na2—O12i104.47 (18)O21—Fe3—O28W85.37 (18)
O4i—Na2—O12i116.83 (17)O10—Fe3—O28W81.55 (18)
O12—Na2—O12i94.5 (3)O17—Fe3—O28W86.23 (19)
O23—Cs1—O23ii92.46 (18)O14—Fe3—O28W85.00 (18)
O23—Cs1—O7iii143.14 (12)O4—S1—O3112.1 (3)
O23ii—Cs1—O7iii72.88 (12)O4—S1—O1108.8 (3)
O23—Cs1—O7iv72.88 (12)O3—S1—O1109.7 (3)
O23ii—Cs1—O7iv143.14 (13)O4—S1—O2110.1 (3)
O7iii—Cs1—O7iv137.13 (17)O3—S1—O2108.1 (3)
O23—Cs1—O15v69.37 (12)O1—S1—O2107.9 (2)
O23ii—Cs1—O15v129.87 (12)O8—S2—O7111.7 (3)
O7iii—Cs1—O15v93.97 (13)O8—S2—O6109.6 (3)
O7iv—Cs1—O15v77.18 (12)O7—S2—O6109.0 (3)
O23—Cs1—O15vi129.87 (12)O8—S2—O5109.9 (3)
O23ii—Cs1—O15vi69.37 (12)O7—S2—O5109.1 (3)
O7iii—Cs1—O15vi77.18 (12)O6—S2—O5107.5 (2)
O7iv—Cs1—O15vi93.97 (13)O12—S3—O11112.5 (3)
O15v—Cs1—O15vi155.91 (17)O12—S3—O9108.2 (3)
O15v—Na3—O7iii164.3 (12)O11—S3—O9110.0 (3)
O15v—Na3—O8iii126.9 (10)O12—S3—O10109.4 (3)
O7iii—Na3—O8iii56.6 (5)O11—S3—O10108.5 (3)
O15v—Na3—O16v57.8 (5)O9—S3—O10108.1 (3)
O7iii—Na3—O16v110.0 (9)O16—S4—O15111.6 (3)
O8iii—Na3—O16v86.4 (7)O16—S4—O13110.5 (3)
O15v—Na3—O31Wiii71.1 (6)O15—S4—O13107.5 (3)
O7iii—Na3—O31Wiii121.7 (9)O16—S4—O14110.7 (3)
O8iii—Na3—O31Wiii72.5 (6)O15—S4—O14108.5 (3)
O16v—Na3—O31Wiii91.6 (7)O13—S4—O14107.9 (2)
O2—Cs2—O778.34 (11)O20—S5—O19110.8 (3)
O2—Cs2—O15vii157.84 (12)O20—S5—O18111.4 (3)
O7—Cs2—O15vii79.88 (13)O19—S5—O18107.5 (3)
O2—Cs2—O23viii106.28 (12)O20—S5—O17108.7 (3)
O7—Cs2—O23viii73.58 (12)O19—S5—O17110.3 (3)
O15vii—Cs2—O23viii71.05 (12)O18—S5—O17108.2 (2)
O2—Cs2—O19viii65.12 (11)O24—S6—O23112.1 (3)
O7—Cs2—O19viii132.24 (12)O24—S6—O22109.6 (3)
O15vii—Cs2—O19viii135.21 (12)O23—S6—O22109.1 (3)
O23viii—Cs2—O19viii87.77 (12)O24—S6—O21108.9 (3)
O2—Cs2—O18viii108.27 (11)O23—S6—O21109.0 (3)
O7—Cs2—O18viii151.50 (12)O22—S6—O21108.1 (2)
O15vii—Cs2—O18viii92.89 (12)S1—O1—Fe1131.4 (3)
O23viii—Cs2—O18viii77.99 (11)S1—O2—Fe2135.0 (2)
O19viii—Cs2—O18viii43.24 (11)S1—O2—Cs2113.4 (2)
O2—Cs2—O10vii105.86 (12)Fe2—O2—Cs2109.81 (16)
O7—Cs2—O10vii109.14 (12)S1—O3—Cs4vii138.0 (2)
O15vii—Cs2—O10vii77.59 (12)S1—O4—Na2153.2 (3)
O23viii—Cs2—O10vii147.58 (12)S1—O4—Cs4i107.7 (2)
O19viii—Cs2—O10vii109.66 (12)Na2—O4—Cs4i91.82 (16)
O18viii—Cs2—O10vii95.90 (10)S2—O5—Fe1132.9 (3)
O2—Cs2—O28Wvii76.98 (11)S2—O6—Fe2132.6 (3)
O7—Cs2—O28Wvii66.09 (12)S2—O7—Na3xii94.8 (6)
O15vii—Cs2—O28Wvii90.50 (11)S2—O7—Cs2107.8 (2)
O23viii—Cs2—O28Wvii138.05 (11)Na3xii—O7—Cs2132.4 (6)
O19viii—Cs2—O28Wvii128.12 (12)S2—O7—Cs1viii130.4 (3)
O18viii—Cs2—O28Wvii142.04 (11)Cs2—O7—Cs1viii92.65 (12)
O10vii—Cs2—O28Wvii48.16 (11)S2—O8—Na1143.0 (3)
O2—Cs2—H27A47.8S2—O8—Na3xii91.1 (6)
O7—Cs2—H27A98.7Na1—O8—Na3xii102.2 (5)
O15vii—Cs2—H27A141.1S3—O9—Fe2132.7 (3)
O23viii—Cs2—H27A71.3S3—O10—Fe3137.3 (3)
O19viii—Cs2—H27A33.7S3—O10—Cs2x115.3 (2)
O18viii—Cs2—H27A69.9Fe3—O10—Cs2x103.41 (16)
O10vii—Cs2—H27A136.8S3—O11—Cs3xiii126.7 (3)
O28Wvii—Cs2—H27A124.8S3—O12—Na2121.5 (3)
O20—Cs3—O20i122.48 (18)S3—O12—Cs4127.2 (3)
O20—Cs3—O32W136.77 (16)Na2—O12—Cs494.16 (16)
O20i—Cs3—O32W85.01 (15)S4—O13—Fe2133.5 (3)
O20—Cs3—O32Wi85.01 (15)S4—O14—Fe3131.9 (3)
O20i—Cs3—O32Wi136.77 (16)S4—O15—Na3xiii100.8 (7)
O32W—Cs3—O32Wi96.4 (2)S4—O15—Cs2x107.0 (2)
O20—Cs3—O11v77.79 (12)Na3xiii—O15—Cs2x132.1 (6)
O20i—Cs3—O11v142.44 (13)S4—O15—Cs1xiii119.1 (3)
O32W—Cs3—O11v62.67 (15)Cs2x—O15—Cs1xiii90.26 (12)
O32Wi—Cs3—O11v69.73 (16)S4—O16—Na1141.4 (3)
O20—Cs3—O11ix142.44 (13)S4—O16—Na3xiii88.3 (5)
O20i—Cs3—O11ix77.79 (12)Na1—O16—Na3xiii112.3 (5)
O32W—Cs3—O11ix69.73 (16)S5—O17—Fe3131.7 (3)
O32Wi—Cs3—O11ix62.67 (15)S5—O17—Cs4101.83 (19)
O11v—Cs3—O11ix105.68 (16)Fe3—O17—Cs4126.26 (18)
O20—Cs3—H32A143.5S5—O18—Fe1138.8 (3)
O20i—Cs3—H32A87.7S5—O18—Cs2iv103.6 (2)
O32W—Cs3—H32A14.2Fe1—O18—Cs2iv112.07 (17)
O32Wi—Cs3—H32A84.9S5—O19—Cs2iv105.5 (2)
O11v—Cs3—H32A65.8S5—O19—Cs4xiv101.8 (2)
O11ix—Cs3—H32A56.7Cs2iv—O19—Cs4xiv106.67 (14)
O32Wx—Cs4—O12145.10 (16)S5—O20—Cs3131.3 (3)
O32Wx—Cs4—O1778.52 (15)S5—O20—Cs4xiv103.5 (2)
O12—Cs4—O1767.68 (12)Cs3—O20—Cs4xiv94.45 (13)
O32Wx—Cs4—O20xi85.62 (15)S6—O21—Fe3133.6 (3)
O12—Cs4—O20xi117.68 (13)S6—O22—Fe1131.5 (3)
O17—Cs4—O20xi145.50 (11)S6—O23—Cs2iv109.0 (2)
O32Wx—Cs4—O19xi112.90 (15)S6—O23—Cs1127.0 (3)
O12—Cs4—O19xi101.49 (12)Cs2iv—O23—Cs192.34 (12)
O17—Cs4—O19xi167.99 (11)S6—O24—Na1140.8 (3)
O20xi—Cs4—O19xi43.52 (11)Fe1—O25—Fe3120.1 (2)
O32Wx—Cs4—O4i119.19 (16)Fe1—O25—Fe2119.43 (19)
O12—Cs4—O4i68.40 (12)Fe3—O25—Fe2120.4 (2)
O17—Cs4—O4i86.42 (12)Fe1—O26W—H26A120.4
O20xi—Cs4—O4i127.92 (11)Fe1—O26W—H26B116.6
O19xi—Cs4—O4i84.59 (12)H26A—O26W—H26B108.0
O32Wx—Cs4—O3x79.09 (16)Fe2—O27W—H27A116.2
O12—Cs4—O3x85.99 (12)Fe2—O27W—H27B119.0
O17—Cs4—O3x78.96 (11)H27A—O27W—H27B108.0
O20xi—Cs4—O3x67.99 (11)Fe3—O28W—Cs2x100.27 (16)
O19xi—Cs4—O3x106.21 (12)Fe3—O28W—H28A128.4
O4i—Cs4—O3x153.91 (11)Cs2x—O28W—H28A80.2
O25—Fe1—O596.73 (16)Fe3—O28W—H28B108.9
O25—Fe1—O1897.09 (17)Cs2x—O28W—H28B131.6
O5—Fe1—O18166.17 (18)H28A—O28W—H28B108.0
O25—Fe1—O197.17 (17)Na1—O29W—H29A128.9
O5—Fe1—O188.80 (18)Na1—O29W—H29B122.4
O18—Fe1—O188.98 (19)H29A—O29W—H29B108.0
O25—Fe1—O2294.93 (17)Na1—O30W—H30A117.6
O5—Fe1—O2289.17 (18)Na1—O30W—H30B132.7
O18—Fe1—O2290.15 (18)H30A—O30W—H30B108.0
O1—Fe1—O22167.88 (19)Na1—O31W—Na3xii97.3 (5)
O25—Fe1—O26W177.96 (18)Na1—O31W—H31A117.6
O5—Fe1—O26W84.56 (17)Na3xii—O31W—H31A128.5
O18—Fe1—O26W81.64 (17)Na1—O31W—H31B134.3
O1—Fe1—O26W84.43 (18)Na3xii—O31W—H31B53.3
O22—Fe1—O26W83.49 (18)H31A—O31W—H31B108.0
O25—Fe2—O296.72 (17)Cs4vii—O32W—Cs393.91 (18)
O25—Fe2—O1395.26 (17)Cs4vii—O32W—H32A108.5
O2—Fe2—O13167.92 (18)Cs3—O32W—H32A83.9
O25—Fe2—O694.16 (16)Cs4vii—O32W—H32B119.5
O2—Fe2—O689.06 (17)Cs3—O32W—H32B136.4
O13—Fe2—O688.54 (18)H32A—O32W—H32B108.0
O25—Fe2—O992.94 (18)H33A—O33W—H33B108.0
O2—Fe2—O989.27 (18)
Symmetry codes: (i) x, y, z; (ii) x, y, z+1; (iii) x+1/2, y+1/2, z+1; (iv) x1/2, y+1/2, z; (v) x, y+1, z; (vi) x, y+1, z+1; (vii) x+1/2, y+1/2, z; (viii) x+1/2, y1/2, z; (ix) x, y+1, z; (x) x1/2, y1/2, z; (xi) x1/2, y1/2, z; (xii) x+1/2, y1/2, z+1; (xiii) x, y1, z; (xiv) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O26W—H26A···O11v0.801.962.740 (6)167
O26W—H26B···O15v0.802.182.977 (7)178
O27W—H27A···O19viii0.801.892.673 (7)164
O27W—H27B···O33W0.801.922.658 (7)152
O28W—H28A···O3x0.801.992.773 (6)166
O28W—H28B···O33Wiv0.801.862.654 (6)174
O29W—H29A···O7xii0.802.062.830 (7)163
O29W—H29B···O24ii0.802.152.930 (7)164
O30W—H30A···O16iii0.802.303.069 (7)162
O30W—H30B···O23ii0.802.092.858 (7)161
O31W—H31A···O8xii0.802.122.911 (8)168
O31W—H31B···O15iii0.802.122.908 (7)168
O32W—H32A···O12ix0.802.072.868 (9)172
O32W—H32B···O9v0.802.703.248 (8)127
O32W—H32B···O19vii0.802.693.271 (8)131
O33W—H33A···O26Wxiii0.802.102.875 (6)165
O33W—H33B···O29Wxii0.802.253.029 (8)164
Symmetry codes: (ii) x, y, z+1; (iii) x+1/2, y+1/2, z+1; (iv) x1/2, y+1/2, z; (v) x, y+1, z; (vii) x+1/2, y+1/2, z; (viii) x+1/2, y1/2, z; (ix) x, y+1, z; (x) x1/2, y1/2, z; (xii) x+1/2, y1/2, z+1; (xiii) x, y1, z.

Experimental details

Crystal data
Chemical formulaCs2.91Na1.34Fe0.25[Fe3O(SO4)6(H2O)3]·5H2O
Mr1335.58
Crystal system, space groupMonoclinic, C2
Temperature (K)297
a, b, c (Å)17.183 (5), 9.482 (3), 20.058 (7)
β (°) 110.42 (1)
V3)3062.7 (17)
Z4
Radiation typeMo Kα
µ (mm1)5.47
Crystal size (mm)0.12 × 0.05 × 0.04
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.62, 0.80
No. of measured, independent and
observed [I > 2σ(I)] reflections
21065, 5377, 4867
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.054, 1.06
No. of reflections5377
No. of parameters439
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.57
Absolute structureFlack (1983), with 2509 Friedel pairs
Absolute structure parameter0.011 (13)

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SAINT (Bruker, 1999, SHELXS97 (Sheldrick, 2008), Mercury (Macrae et al., 2008) and DIAMOND (Brandenburg, 2012), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Na1—O82.224 (5)Fe1—O251.909 (5)
Na1—O242.256 (5)Fe1—O51.999 (4)
Na1—O31W2.302 (6)Fe1—O182.005 (4)
Na1—O162.309 (5)Fe1—O12.017 (4)
Na1—O29W2.325 (6)Fe1—O222.032 (4)
Na1—O30W2.352 (6)Fe1—O26W2.099 (5)
Na2—O42.231 (5)Fe2—O251.943 (4)
Na2—O4i2.231 (5)Fe2—O21.986 (4)
Na2—O122.336 (6)Fe2—O131.993 (4)
Na2—O12i2.336 (6)Fe2—O62.024 (4)
Cs1—O233.177 (5)Fe2—O92.025 (5)
Cs1—O23ii3.177 (5)Fe2—O27W2.047 (5)
Cs1—O7iii3.194 (5)Fe3—O251.939 (4)
Cs1—O7iv3.194 (4)Fe3—O211.986 (4)
Cs1—O15v3.298 (5)Fe3—O102.000 (5)
Cs1—O15vi3.298 (5)Fe3—O172.004 (4)
Na3—O15v2.31 (2)Fe3—O142.034 (4)
Na3—O7iii2.48 (2)Fe3—O28W2.077 (4)
Na3—O8iii2.57 (2)S1—O41.437 (5)
Na3—O16v2.62 (2)S1—O31.457 (5)
Na3—O31Wiii2.67 (2)S1—O11.487 (5)
Cs2—O23.127 (4)S1—O21.500 (5)
Cs2—O73.142 (5)S2—O81.448 (5)
Cs2—O15vii3.167 (5)S2—O71.450 (4)
Cs2—O23viii3.176 (5)S2—O61.480 (4)
Cs2—O19viii3.200 (5)S2—O51.496 (4)
Cs2—O18viii3.225 (4)S3—O121.447 (5)
Cs2—O10vii3.244 (4)S3—O111.449 (5)
Cs2—O28Wvii3.284 (5)S3—O91.495 (5)
Cs3—O203.061 (5)S3—O101.496 (5)
Cs3—O20i3.061 (5)S4—O161.443 (5)
Cs3—O32W3.229 (7)S4—O151.459 (5)
Cs3—O32Wi3.229 (7)S4—O131.489 (5)
Cs3—O11v3.280 (5)S4—O141.490 (4)
Cs3—O11ix3.280 (5)S5—O201.440 (5)
Cs4—O32Wx3.056 (6)S5—O191.454 (5)
Cs4—O123.126 (5)S5—O181.482 (4)
Cs4—O173.190 (4)S5—O171.495 (5)
Cs4—O20xi3.198 (5)S6—O241.446 (5)
Cs4—O19xi3.226 (5)S6—O231.452 (5)
Cs4—O4i3.293 (5)S6—O221.484 (5)
Cs4—O3x3.299 (5)S6—O211.496 (4)
Symmetry codes: (i) x, y, z; (ii) x, y, z+1; (iii) x+1/2, y+1/2, z+1; (iv) x1/2, y+1/2, z; (v) x, y+1, z; (vi) x, y+1, z+1; (vii) x+1/2, y+1/2, z; (viii) x+1/2, y1/2, z; (ix) x, y+1, z; (x) x1/2, y1/2, z; (xi) x1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O26W—H26A···O11v0.801.962.740 (6)166.7
O26W—H26B···O15v0.802.182.977 (7)177.9
O27W—H27A···O19viii0.801.892.673 (7)164.4
O27W—H27B···O33W0.801.922.658 (7)152.3
O28W—H28A···O3x0.801.992.773 (6)166.0
O28W—H28B···O33Wiv0.801.862.654 (6)173.9
O29W—H29A···O7xii0.802.062.830 (7)162.5
O29W—H29B···O24ii0.802.152.930 (7)163.6
O30W—H30A···O16iii0.802.303.069 (7)162.1
O30W—H30B···O23ii0.802.092.858 (7)161.4
O31W—H31A···O8xii0.802.122.911 (8)168.1
O31W—H31B···O15iii0.802.122.908 (7)168.0
O32W—H32A···O12ix0.802.072.868 (9)172.0
O32W—H32B···O9v0.802.703.248 (8)127.0
O32W—H32B···O19vii0.802.693.271 (8)130.9
O33W—H33A···O26Wxiii0.802.102.875 (6)164.6
O33W—H33B···O29Wxii0.802.253.029 (8)164.2
Symmetry codes: (ii) x, y, z+1; (iii) x+1/2, y+1/2, z+1; (iv) x1/2, y+1/2, z; (v) x, y+1, z; (vii) x+1/2, y+1/2, z; (viii) x+1/2, y1/2, z; (ix) x, y+1, z; (x) x1/2, y1/2, z; (xii) x+1/2, y1/2, z+1; (xiii) x, y1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds