Download citation
Download citation
link to html
The three pyran structures 6-methyl­amino-5-nitro-2,4-di­phenyl-4H-pyran-3-carbo­nitrile, C19H15N3O3, (I), 4-(3-fluoro­phen­yl)-6-methyl­amino-5-nitro-2-phenyl-4H-pyran-3-carbo­nitrile, C19H14FN3O3, (II), and 4-(4-chloro­phen­yl)-6-methyl­amino-5-nitro-2-phenyl-4H-pyran-3-carbo­nitrile, C19H14ClN3O3, (III), differ in the nature of the aryl group at the 4-position. The heterocyclic ring in all three structures adopts a flattened boat conformation. The dihedral angle between the pseudo-axial phenyl substituent and the flat part of the pyran ring is 89.97 (1)° in (I), 80.11 (1)° in (II) and 87.77 (1)° in (III). In all three crystal structures, a strong intra­molecular N-H...O hydrogen bond links the flat conjugated H-N-C=C-N-O fragment into a six-membered ring. In (II), mol­ecules are linked into dimeric aggregates by N-H... O(nitro) hydrogen bonds, generating an R22(12) graph-set motif. In (III), inter­molecular N-H...N and C-H...N hydrogen bonds link the mol­ecules into a linear chain pattern generating C(8) and C(9) graph-set motifs, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113010676/ov3028sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113010676/ov3028Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113010676/ov3028IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113010676/ov3028IIIsup4.hkl
Contains datablock III

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113010676/ov3028Isup5.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113010676/ov3028IIsup6.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113010676/ov3028IIIsup7.cml
Supplementary material

CCDC references: 950439; 950440; 950441

Comment top

The synthesis of hydrogenated compounds has been extensively studied due to their interesting biological properties. For example, derivatives of 1,4-dihydropyridine exhibit high biological activities as calcium channel blockers (Bossert et al., 1981) and as calcium agonists or antagonists (Triggle et al., 1980; Kokubun & Reuter, 1984; Bossert & Vater, 1989; Wang et al., 1989; Alajarin et al., 1995). 4H-Pyran derivatives have structures similar to those of 1,4-dihydropyridine and elicit the interest of organic chemists as well as of crystallographers. The title compounds, 6-methylamino-5-nitro-2,4-diphenyl-4H-pyran-3-carbonitrile, (I), 4-(3-fluorophenyl)-6-methylamino-5-nitro-2-phenyl-4H-pyran-3-carbonitrile, (II), and 4-(4-chlorophenyl)-6-methylamino-5-nitro-2-phenyl-4H-pyran-3-carbonitrile, (III), and some related compounds are widely used as organic intermediates in organic chemistry (Liang et al., 2009). Much interest has recently been paid to the design of polyfunctionalized substituted pyran derivatives, owing to their wide range of biological activities (Lokaj et al., 1990; Marco et al., 1993). 4H-Pyran derivatives are potential bioactive compounds and can be used as calcium antagonists (Suarez et al., 2002). Thus, there has been a growing interest in the structures of 4H-pyran derivatives. The high biological activities of these compounds, in conjunction with our research interests, prompted us to synthesize and establish the structures of compounds (I)–(III).

The central six-membered pyran ring in all three molecules has a boat conformation, with atoms O1 and C3 displaced diagonally opposite to the C1/C2/C4/C5 mean plane (Table 1). The puckering parameters (Cremer & Pople, 1975) for this ring are q2 = 0.2768 (12) Å, θ = 97.8 (3)° and ϕ = 352.1 (3)° for (I), q2 = 0.2261 Å, θ = 103.10° and ϕ = 3.5845° for (II), and q2 = 0.1011 Å, θ = 88.67° and ϕ = 180.0° for (III). Atoms C1/C2/C4/C5 are coplanar to within 0.0193 (1) Å for (I), 0.0064 (1) Å for (II) and 0.0001 (1) Å for (III). The differences in the deviations are due to the steric hindrance of the different substituents at the C3 position of the pyran ring. The heterocycles in (I), (II) and (III) have similar conformations to those in pyrans with comparable structures, and in derivatives of1,4-dihydropyridine, for example, 3,5-dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (nifedipine; Triggle et al., 1980), 3-(2-methoxyethyl) 5-propan-2-yl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (nimodipine; Wang et al., 1989) and 5-O-methyl 3-O-(oxolan-2-ylmethyl) 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (furnidipine; Alajarin et al., 1995).

The phenyl ring is attached to the pyran ring by a (-)-synclinal conformation in (I) and (II) and by a (+)-synclinal conformation in (III), which is evidenced by the C12—C11—C1—C2 torsion angles (Table 2). Similarly, the methoxybenzene ring is attached to the pyran ring by (-)-synclinal, (+)-anticlinal and (+)-synclinal conformations in (I), (II) and (III), respectively, as evidenced by the C4—C3—C31—C32 torsion angles (Table 2). The orientation of nitro atom N1 with respect to atom N2 bearing the methyl group is described by the N1—C4—C5—N2 torsion angles (Table 2), indicating a (+)-synperiplanar conformation in (I) and (II), and a (-)-synperiplanar conformation in (III). These conformations and deviations from the ideal value of 0° in all three structures may be due to the significant difference in the mode of participation of atom N2 in the hydrogen bonding.

The dihedral angles between the pseudo-axial aryl substituent and the C1/C2/C4/C5 plane of the boat of the heterocycle are 89.97 (1)° in (I), 80.11 (1)° in (II) and 87.77 (1)° in (III), minimizing possible intramolecular steric contacts in all three molecules. Similar orientations of sterically demanding substituents were found in all previously determined derivatives of 4H-pyrans (Sharanina et al., 1986; Klokol et al., 1987; Shestopalov et al., 1991; Samet et al., 1996; Florencio & García-Blanco, (1987); Bellanato et al., 1988; Lokaj et al., 1990; Marco et al., 1993). The value of the angle is close to 90° in practically all known 4H-pyran derivatives containing sterically demanding substituents in the 4-position of the heterocycle.

As was described previously for related compounds (Nesterov et al., 2004, 2006), there is conjugation in all three title compounds between the donor (NH) and acceptor (C—NO2) groups via the C4C5 double bond (Tables 3, 4 and 5). Thus, in all three molecules, the C5—N2 distances are shorter than the average conjugated C—N single bond (1.370 Å) found in the Cambridge Structural Database (Version?; Allen, 2002) (Table 6). In contrast, the C1C2 bonds are elongated in comparison with the C4C5 bond and the standard value (Allen et al., 1987). The C4—N1 bonds are considerably shorter than usual for C—NO2 bonds (1.468 Å; Allen et al., 1987) (Table 6) and the N1—O2 bonds are distinctly longer than the standard value (1.239 Å; Allen et al., 1987), which may be due to the intramolecular N—H···O hydrogen bond found in all three structures (Table 6). There is a long Csp2—Csp1 bond (C2—C21; Table 6) in all three structures due to conjugation.

An intramolecular N2—H2···O2 hydrogen bond, which stabilizes the crystal structure, exists in all three molecules and links the flat conjugated H—N—CC—N—O fragment into a six-membered ring, generating an S(6) graph-set motif (Bernstein et al., 1995). This seems to be a common feature in related structures (Nesterov et al., 2004, 2006; Nesterov & Viltchinskaia, 2001).

In the crystal structure of (I), the molecules appear to pack as a molecular species and the structure contains some weak C—H···π interactions.

The crystal structure of (II) has the above-mentioned bifurcated intramolecular N—H···O(nitro) and N—H···N(nitro) hydrogen bonds. The H atom of the N—H group participates in both inter- and intramolecular N—H···O interactions. The intermolecular N2—H2···O2i hydrogen bond (see Table 4 for symmetry code) links inversion-related molecules into an aggregate, forming an R22(12) ring motif (Fig. 2). This ring motif is linked through van der Waals interactions, stabilizing the crystal structure.

The crystal structure of (III) appears to form normal intramolecular N—H···O(nitro) and intermolecular N—H···N(cyano) contacts, resulting in one-dimensional chains that lie parallel to the [100] direction, in addition to some weak C—H···N and C—H···π interactions. The N2—H2···N3 and C6—H6B···N3ii hydrogen bonds (see Table 5 for symmetry code) together form a linear chain, generating C(8) and C(9) motifs, respectively (Fig. 3).

Related literature top

For related literature, see: Alajarin et al. (1995); Allen (2002); Allen et al. (1987); Bellanato et al. (1988); Bernstein et al. (1995); Bossert & Vater (1989); Bossert et al. (1981); Cremer & Pople (1975); Florencio & García-Blanco (1987); Klokol et al. (1987); Kokubun & Reuter (1984); Liang et al. (2009); Lokaj et al. (1990); Marco et al. (1993); Nesterov & Viltchinskaia (2001); Nesterov et al. (2004, 2006); Samet et al. (1996); Sharanina et al. (1986); Shestopalov et al. (1991); Suarez et al. (2002); Triggle et al. (1980); Wang et al. (1989).

Experimental top

For the preparation of (I), a mixture of benzoylacetonitrile (1.0 mmol), benzaldehyde (1.0 mmol) and Et3N (1.0 mmol) was dissolved in EtOH (10 ml) in a 50 ml round-bottomed flask. The reaction mixture was stirred at room temperature for 5–10 min. (E)-N-Methyl-1-methylsulfanyl-2-nitroethenamine (1.0 mmol) was then added and the reaction mixture was refluxed at 353 K. Consumption of the starting materials was monitored by thin-layer chromatography (TLC). After 90 min, the precipated solid was filtered off, washed with diethyl ether (5–7 ml) and dried under vacuum to obtain the product as a yellow solid. The compound was further recrystallized from EtOH to obtain crystals of (I) suitable for single-crystal X-ray studies (m.p. 513 K, yield 93%).

For the preparation of (II), a mixture of benzoylacetonitrile (1.0 mmol), 3-fluorobenzaldehyde (1.0 mmol) and Et3N (1.0 mmol) was dissolved in EtOH (10 ml) in a 50 ml round-bottomed flask. The reaction mixture was stirred at room temperature for 5–10 min. (E)-N-Methyl-1-methylsulfanyl-2-nitroethenamine (1.0 mmol) was then added and the reaction mixture was refluxed at 353 K. Consumption of the starting materials was monitored by TLC. After 90 min, the precipated solid was filtered off, washed with diethyl ether (5–7 ml) and dried under vacuum to obtain the product as yellow solid. The compound was further recrystallized from EtOH to obtain crystals of (II) suitable for the single-crystal X-ray studies (m.p. 463 K, yield 91%).

For the preparation of (III), a mixture of benzoylacetonitrile (1.0 mmol), 4-chlorobenzaldehyde (1.0 mmol) and Et3N (1.0 mmol) was dissolved in EtOH (10 ml) in a 50 ml round-bottomed flask. The reaction mixture was stirred at room temperature for 5–10 min. (E)-N-Methyl-1-methylsulfanyl-2-nitroethenamine (1.0 mmol) was then added and the reaction mixture was refluxed at 353 K. Consumption of the starting materials was monitored by TLC. After 90 min, the precipated solid was filtered off, washed with diethyl ether (5–7 ml) and dried under vacuum to obtain the product as yellow solid. The compound was further recrystallized from EtOH to obtain crystals of (III) suitable for the single-crystal X-ray studies (m.p. 481 K, yield 95%).

Refinement top

H atoms were placed in calculated positions and allowed to ride on their parent atoms, with C—H = 0.93–0.98 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N) for amide, methylene and methyne H atoms, or 1.5Ueq(C) for methyl H atoms.

Computing details top

For all compounds, data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structures of (a) (I), (b) (II) and (c) (III), showing the atom-numbering schemes. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. A partial packing view of (II), showing the R22(12) ring motif. Dashed lines indicate hydrogen bonds. [OK?] [Symmetry code: (i) -x + 1, -y, -z + 1.]
[Figure 3] Fig. 3. A partial packing view of (III), showing the C(8) and C(9) chain motifs that lie parallel to the [100] direction of the unit cell. Dashed lines indicate hydrogen bonds. [OK?] [Symmetry code: (ii) x + 1, y, z.]
(I) 6-Methylamino-5-nitro-2,4-diphenyl-4H-pyran-3-carbonitrile top
Crystal data top
C19H15N3O3F(000) = 1392
Mr = 333.34Dx = 1.372 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2000 reflections
a = 18.6202 (12) Åθ = 2–27°
b = 11.7427 (7) ŵ = 0.10 mm1
c = 14.9474 (9) ÅT = 293 K
β = 98.999 (2)°Block, colourless
V = 3228.0 (3) Å30.24 × 0.22 × 0.20 mm
Z = 8
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
3513 independent reflections
Radiation source: fine-focus sealed tube2904 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 0 pixels mm-1θmax = 27.0°, θmin = 2.1°
ω and ϕ scansh = 2123
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1414
Tmin = 0.977, Tmax = 0.981l = 1219
15966 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0455P)2 + 1.730P]
where P = (Fo2 + 2Fc2)/3
3513 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C19H15N3O3V = 3228.0 (3) Å3
Mr = 333.34Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.6202 (12) ŵ = 0.10 mm1
b = 11.7427 (7) ÅT = 293 K
c = 14.9474 (9) Å0.24 × 0.22 × 0.20 mm
β = 98.999 (2)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
3513 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2904 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.981Rint = 0.026
15966 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.05Δρmax = 0.20 e Å3
3513 reflectionsΔρmin = 0.20 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.10766 (7)0.00323 (10)0.06890 (8)0.0283 (3)
C20.06562 (7)0.08020 (10)0.09280 (8)0.0285 (3)
C30.08190 (7)0.20502 (10)0.07944 (8)0.0295 (3)
H30.03570.24460.06030.035*
C40.12640 (7)0.21377 (10)0.00439 (8)0.0310 (3)
C50.16529 (7)0.12278 (10)0.02210 (8)0.0304 (3)
C60.24148 (9)0.01907 (13)0.11414 (12)0.0515 (4)
H6A0.27090.01570.06290.077*
H6B0.27160.03950.15820.077*
H6C0.20480.03370.14050.077*
C110.10243 (7)0.12612 (10)0.08579 (8)0.0298 (3)
C120.08385 (8)0.16461 (12)0.16724 (10)0.0400 (3)
H120.07670.11300.21220.048*
C130.07610 (9)0.28038 (13)0.18086 (12)0.0511 (4)
H130.06410.30660.23540.061*
C140.08605 (9)0.35693 (12)0.11394 (12)0.0508 (4)
H140.07900.43430.12270.061*
C150.10621 (8)0.31954 (12)0.03468 (10)0.0438 (3)
H150.11360.37180.00970.053*
C160.11558 (7)0.20446 (11)0.02032 (9)0.0348 (3)
H160.13060.17950.03280.042*
C210.00120 (7)0.05365 (10)0.12976 (8)0.0311 (3)
C310.11889 (7)0.25881 (10)0.16804 (8)0.0297 (3)
C320.18603 (7)0.21957 (12)0.21042 (9)0.0377 (3)
H320.20800.15840.18600.045*
C330.22042 (9)0.27119 (14)0.28904 (10)0.0488 (4)
H330.26530.24440.31730.059*
C340.18817 (10)0.36206 (15)0.32535 (10)0.0545 (4)
H340.21170.39750.37740.065*
C350.12130 (10)0.40032 (14)0.28477 (11)0.0534 (4)
H350.09930.46100.30980.064*
C360.08652 (8)0.34835 (12)0.20619 (10)0.0407 (3)
H360.04110.37420.17920.049*
N10.12821 (7)0.31884 (9)0.03759 (8)0.0387 (3)
N20.20709 (6)0.12040 (10)0.08505 (8)0.0384 (3)
H20.21470.18370.11100.046*
N30.05244 (7)0.03673 (12)0.15504 (8)0.0453 (3)
O10.16361 (5)0.02091 (7)0.02094 (6)0.0326 (2)
O30.09247 (7)0.39827 (8)0.01189 (8)0.0526 (3)
O20.16606 (7)0.33349 (9)0.09958 (7)0.0533 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0290 (6)0.0280 (6)0.0272 (6)0.0033 (5)0.0024 (5)0.0014 (5)
C20.0296 (6)0.0265 (6)0.0286 (6)0.0032 (5)0.0015 (5)0.0001 (5)
C30.0291 (6)0.0243 (5)0.0341 (6)0.0003 (5)0.0018 (5)0.0002 (5)
C40.0378 (7)0.0254 (6)0.0288 (6)0.0031 (5)0.0020 (5)0.0023 (5)
C50.0318 (6)0.0282 (6)0.0300 (6)0.0054 (5)0.0015 (5)0.0021 (5)
C60.0547 (9)0.0446 (8)0.0614 (10)0.0019 (7)0.0281 (8)0.0016 (7)
C110.0297 (6)0.0262 (6)0.0327 (6)0.0003 (5)0.0023 (5)0.0038 (5)
C120.0463 (8)0.0364 (7)0.0394 (7)0.0056 (6)0.0128 (6)0.0072 (6)
C130.0561 (10)0.0428 (8)0.0583 (10)0.0047 (7)0.0217 (8)0.0217 (7)
C140.0529 (9)0.0274 (7)0.0725 (11)0.0004 (6)0.0114 (8)0.0120 (7)
C150.0510 (9)0.0280 (6)0.0503 (8)0.0044 (6)0.0012 (7)0.0020 (6)
C160.0396 (7)0.0302 (6)0.0336 (7)0.0041 (5)0.0029 (5)0.0035 (5)
C210.0337 (7)0.0304 (6)0.0278 (6)0.0008 (5)0.0004 (5)0.0017 (5)
C310.0340 (6)0.0249 (6)0.0311 (6)0.0057 (5)0.0079 (5)0.0004 (5)
C320.0377 (7)0.0355 (7)0.0392 (7)0.0026 (6)0.0035 (6)0.0008 (5)
C330.0461 (8)0.0566 (9)0.0407 (8)0.0127 (7)0.0031 (7)0.0031 (7)
C340.0688 (11)0.0605 (10)0.0341 (7)0.0248 (9)0.0076 (7)0.0118 (7)
C350.0730 (11)0.0448 (8)0.0468 (9)0.0081 (8)0.0231 (8)0.0159 (7)
C360.0450 (8)0.0351 (7)0.0443 (8)0.0003 (6)0.0141 (6)0.0044 (6)
N10.0523 (7)0.0278 (5)0.0348 (6)0.0027 (5)0.0033 (5)0.0031 (4)
N20.0457 (7)0.0325 (6)0.0399 (6)0.0039 (5)0.0155 (5)0.0025 (5)
N30.0365 (7)0.0586 (8)0.0412 (7)0.0012 (6)0.0074 (5)0.0110 (6)
O10.0335 (5)0.0264 (4)0.0393 (5)0.0008 (4)0.0101 (4)0.0049 (4)
O30.0710 (7)0.0276 (5)0.0604 (7)0.0080 (5)0.0136 (6)0.0055 (5)
O20.0800 (8)0.0387 (5)0.0451 (6)0.0035 (5)0.0223 (6)0.0122 (5)
Geometric parameters (Å, º) top
C1—C21.3370 (18)C13—H130.9300
C1—O11.3833 (15)C14—C151.370 (2)
C1—C111.4708 (16)C14—H140.9300
C2—C211.4312 (18)C15—C161.3836 (19)
C2—C31.5162 (16)C15—H150.9300
C3—C41.4988 (18)C16—H160.9300
C3—C311.5303 (17)C21—N31.1393 (17)
C3—H30.9800C31—C361.3788 (18)
C4—C51.3829 (18)C31—C321.3888 (18)
C4—N11.3870 (16)C32—C331.387 (2)
C5—N21.3120 (17)C32—H320.9300
C5—O11.3608 (14)C33—C341.377 (2)
C6—N21.4498 (19)C33—H330.9300
C6—H6A0.9600C34—C351.373 (3)
C6—H6B0.9600C34—H340.9300
C6—H6C0.9600C35—C361.391 (2)
C11—C121.3921 (18)C35—H350.9300
C11—C161.3924 (18)C36—H360.9300
C12—C131.385 (2)N1—O31.2412 (15)
C12—H120.9300N1—O21.2606 (16)
C13—C141.379 (2)N2—H20.8600
C2—C1—O1120.54 (11)C15—C14—H14119.8
C2—C1—C11128.02 (12)C13—C14—H14119.8
O1—C1—C11111.43 (10)C14—C15—C16120.37 (14)
C1—C2—C21120.30 (11)C14—C15—H15119.8
C1—C2—C3122.39 (11)C16—C15—H15119.8
C21—C2—C3117.28 (11)C15—C16—C11119.73 (13)
C4—C3—C2108.07 (10)C15—C16—H16120.1
C4—C3—C31113.13 (10)C11—C16—H16120.1
C2—C3—C31110.93 (10)N3—C21—C2175.68 (13)
C4—C3—H3108.2C36—C31—C32119.00 (12)
C2—C3—H3108.2C36—C31—C3120.40 (12)
C31—C3—H3108.2C32—C31—C3120.59 (11)
C5—C4—N1120.46 (12)C33—C32—C31120.33 (14)
C5—C4—C3122.47 (11)C33—C32—H32119.8
N1—C4—C3117.06 (11)C31—C32—H32119.8
N2—C5—O1112.36 (11)C34—C33—C32120.05 (15)
N2—C5—C4128.15 (12)C34—C33—H33120.0
O1—C5—C4119.48 (11)C32—C33—H33120.0
N2—C6—H6A109.5C35—C34—C33120.06 (14)
N2—C6—H6B109.5C35—C34—H34120.0
H6A—C6—H6B109.5C33—C34—H34120.0
N2—C6—H6C109.5C34—C35—C36120.00 (15)
H6A—C6—H6C109.5C34—C35—H35120.0
H6B—C6—H6C109.5C36—C35—H35120.0
C12—C11—C16119.68 (12)C31—C36—C35120.54 (15)
C12—C11—C1120.05 (12)C31—C36—H36119.7
C16—C11—C1120.26 (11)C35—C36—H36119.7
C13—C12—C11119.54 (14)O3—N1—O2120.89 (11)
C13—C12—H12120.2O3—N1—C4118.45 (12)
C11—C12—H12120.2O2—N1—C4120.66 (12)
C14—C13—C12120.28 (14)C5—N2—C6124.89 (12)
C14—C13—H13119.9C5—N2—H2117.6
C12—C13—H13119.9C6—N2—H2117.6
C15—C14—C13120.30 (13)C5—O1—C1119.99 (10)
O1—C1—C2—C21170.28 (10)C14—C15—C16—C111.8 (2)
C11—C1—C2—C218.58 (19)C12—C11—C16—C153.5 (2)
O1—C1—C2—C37.59 (17)C1—C11—C16—C15176.09 (12)
C11—C1—C2—C3173.56 (11)C4—C3—C31—C36119.21 (13)
C1—C2—C3—C424.38 (15)C2—C3—C31—C36119.16 (13)
C21—C2—C3—C4153.54 (10)C4—C3—C31—C3259.70 (15)
C1—C2—C3—C31100.17 (14)C2—C3—C31—C3261.93 (15)
C21—C2—C3—C3181.90 (13)C36—C31—C32—C331.1 (2)
C2—C3—C4—C520.51 (16)C3—C31—C32—C33177.79 (12)
C31—C3—C4—C5102.72 (13)C31—C32—C33—C340.2 (2)
C2—C3—C4—N1160.47 (10)C32—C33—C34—C351.2 (2)
C31—C3—C4—N176.30 (14)C33—C34—C35—C360.9 (2)
N1—C4—C5—N20.5 (2)C32—C31—C36—C351.5 (2)
C3—C4—C5—N2178.49 (12)C3—C31—C36—C35177.46 (13)
N1—C4—C5—O1179.01 (11)C34—C35—C36—C310.5 (2)
C3—C4—C5—O10.02 (18)C5—C4—N1—O3179.91 (12)
C2—C1—C11—C1237.61 (19)C3—C4—N1—O31.05 (17)
O1—C1—C11—C12143.44 (12)C5—C4—N1—O21.00 (19)
C2—C1—C11—C16141.99 (13)C3—C4—N1—O2178.05 (11)
O1—C1—C11—C1636.96 (15)O1—C5—N2—C66.75 (18)
C16—C11—C12—C132.3 (2)C4—C5—N2—C6174.65 (14)
C1—C11—C12—C13177.30 (13)N2—C5—O1—C1160.86 (10)
C11—C12—C13—C140.6 (2)C4—C5—O1—C120.41 (16)
C12—C13—C14—C152.3 (3)C2—C1—O1—C516.76 (16)
C13—C14—C15—C161.1 (2)C11—C1—O1—C5162.27 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.862.002.6154 (16)128
(II) 4-(3-Fluorophenyl)-6-methylamino-5-nitro-2-phenyl-4H-pyran-3-carbonitrile top
Crystal data top
C19H14FN3O3Z = 2
Mr = 351.33F(000) = 364
Triclinic, P1Dx = 1.405 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6736 (14) ÅCell parameters from 2000 reflections
b = 8.6808 (15) Åθ = 1–27°
c = 13.152 (2) ŵ = 0.11 mm1
α = 81.498 (11)°T = 293 K
β = 75.721 (11)°Block, colourless
γ = 79.851 (11)°0.23 × 0.21 × 0.19 mm
V = 830.8 (3) Å3
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
3597 independent reflections
Radiation source: fine-focus sealed tube2829 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 0 pixels mm-1θmax = 27.0°, θmin = 1.6°
ω and ϕ scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1110
Tmin = 0.976, Tmax = 0.980l = 1616
12513 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0768P)2 + 0.1237P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3597 reflectionsΔρmax = 0.22 e Å3
237 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.054 (6)
Crystal data top
C19H14FN3O3γ = 79.851 (11)°
Mr = 351.33V = 830.8 (3) Å3
Triclinic, P1Z = 2
a = 7.6736 (14) ÅMo Kα radiation
b = 8.6808 (15) ŵ = 0.11 mm1
c = 13.152 (2) ÅT = 293 K
α = 81.498 (11)°0.23 × 0.21 × 0.19 mm
β = 75.721 (11)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
3597 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2829 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.980Rint = 0.038
12513 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.05Δρmax = 0.22 e Å3
3597 reflectionsΔρmin = 0.19 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.04183 (18)0.25859 (17)0.28829 (11)0.0355 (3)
C20.08146 (18)0.11563 (16)0.28764 (11)0.0352 (3)
C30.04007 (18)0.03395 (16)0.31565 (11)0.0344 (3)
H30.03670.10770.36110.041*
C40.16379 (18)0.00630 (16)0.37773 (10)0.0344 (3)
C50.20049 (17)0.15838 (17)0.37405 (10)0.0348 (3)
C60.3585 (2)0.3670 (2)0.39809 (15)0.0529 (4)
H6A0.40820.39260.32420.079*
H6B0.44560.37540.43760.079*
H6C0.24960.43880.42030.079*
C110.14315 (18)0.41106 (16)0.25639 (12)0.0373 (3)
C120.1687 (2)0.4470 (2)0.15451 (14)0.0529 (4)
H120.12100.37520.10520.063*
C130.2656 (3)0.5904 (2)0.12646 (16)0.0643 (5)
H130.28250.61500.05800.077*
C140.3372 (2)0.6971 (2)0.19893 (16)0.0579 (5)
H140.40330.79280.17960.069*
C150.3111 (2)0.66202 (19)0.29966 (15)0.0533 (4)
H150.35940.73420.34870.064*
C160.2133 (2)0.51997 (18)0.32857 (13)0.0462 (4)
H160.19440.49730.39670.055*
C210.24361 (19)0.09982 (17)0.25715 (11)0.0392 (3)
C310.14277 (18)0.11054 (17)0.21553 (11)0.0365 (3)
C320.1658 (2)0.27203 (18)0.21524 (12)0.0427 (4)
H320.12050.33590.27590.051*
C330.2571 (2)0.3370 (2)0.12377 (14)0.0506 (4)
C340.3244 (2)0.2490 (2)0.03192 (13)0.0551 (4)
H340.38360.29590.02890.066*
C350.3015 (3)0.0891 (2)0.03283 (14)0.0628 (5)
H350.34610.02610.02840.075*
C360.2128 (3)0.0196 (2)0.12361 (13)0.0541 (4)
H360.20020.08900.12290.065*
N10.24545 (17)0.11560 (14)0.43778 (9)0.0401 (3)
N20.31636 (16)0.20741 (14)0.41642 (10)0.0406 (3)
H20.37070.14040.45770.049*
N30.37260 (19)0.08219 (18)0.23414 (12)0.0544 (4)
O10.10934 (13)0.27976 (11)0.32151 (8)0.0406 (3)
O20.35908 (16)0.09167 (14)0.48660 (9)0.0516 (3)
O30.20321 (18)0.24970 (13)0.44459 (10)0.0570 (3)
F10.28240 (19)0.49606 (13)0.12553 (10)0.0838 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0337 (7)0.0366 (7)0.0366 (7)0.0019 (5)0.0120 (5)0.0023 (6)
C20.0340 (7)0.0355 (7)0.0359 (7)0.0020 (5)0.0095 (5)0.0045 (6)
C30.0352 (7)0.0304 (7)0.0360 (7)0.0046 (5)0.0069 (5)0.0011 (5)
C40.0363 (7)0.0330 (7)0.0315 (7)0.0006 (5)0.0086 (5)0.0010 (5)
C50.0314 (6)0.0376 (7)0.0326 (7)0.0009 (5)0.0072 (5)0.0018 (5)
C60.0575 (10)0.0465 (9)0.0630 (10)0.0099 (7)0.0262 (8)0.0079 (8)
C110.0349 (7)0.0332 (7)0.0449 (8)0.0034 (5)0.0141 (6)0.0013 (6)
C120.0641 (11)0.0470 (9)0.0504 (9)0.0038 (8)0.0258 (8)0.0069 (7)
C130.0799 (13)0.0558 (11)0.0625 (11)0.0039 (9)0.0400 (10)0.0009 (9)
C140.0573 (10)0.0386 (9)0.0806 (13)0.0032 (7)0.0332 (9)0.0024 (8)
C150.0550 (10)0.0387 (9)0.0653 (11)0.0020 (7)0.0152 (8)0.0108 (8)
C160.0525 (9)0.0388 (8)0.0473 (9)0.0009 (6)0.0153 (7)0.0045 (7)
C210.0396 (7)0.0373 (8)0.0410 (8)0.0015 (6)0.0108 (6)0.0072 (6)
C310.0346 (7)0.0391 (8)0.0363 (7)0.0036 (5)0.0101 (5)0.0045 (6)
C320.0452 (8)0.0399 (8)0.0432 (8)0.0070 (6)0.0085 (6)0.0069 (6)
C330.0522 (9)0.0460 (9)0.0567 (10)0.0028 (7)0.0125 (7)0.0205 (8)
C340.0539 (10)0.0691 (12)0.0433 (9)0.0038 (8)0.0078 (7)0.0213 (8)
C350.0735 (12)0.0695 (13)0.0384 (9)0.0130 (9)0.0001 (8)0.0019 (8)
C360.0685 (11)0.0431 (9)0.0435 (9)0.0089 (8)0.0012 (8)0.0008 (7)
N10.0463 (7)0.0361 (7)0.0351 (6)0.0019 (5)0.0108 (5)0.0020 (5)
N20.0405 (6)0.0397 (7)0.0443 (7)0.0017 (5)0.0177 (5)0.0040 (5)
N30.0469 (8)0.0616 (9)0.0609 (9)0.0074 (6)0.0190 (7)0.0156 (7)
O10.0403 (5)0.0333 (5)0.0512 (6)0.0052 (4)0.0213 (4)0.0039 (4)
O20.0562 (7)0.0516 (7)0.0509 (6)0.0008 (5)0.0290 (5)0.0004 (5)
O30.0816 (9)0.0350 (6)0.0575 (7)0.0039 (5)0.0297 (6)0.0034 (5)
F10.1108 (10)0.0499 (7)0.0839 (8)0.0052 (6)0.0002 (7)0.0309 (6)
Geometric parameters (Å, º) top
C1—C21.330 (2)C13—H130.9300
C1—O11.3853 (16)C14—C151.370 (3)
C1—C111.4718 (19)C14—H140.9300
C2—C211.4319 (19)C15—C161.380 (2)
C2—C31.5141 (19)C15—H150.9300
C3—C41.5079 (19)C16—H160.9300
C3—C311.5361 (19)C21—N31.1444 (19)
C3—H30.9800C31—C321.382 (2)
C4—N11.3782 (17)C31—C361.386 (2)
C4—C51.389 (2)C32—C331.379 (2)
C5—N21.3154 (18)C32—H320.9300
C5—O11.3567 (16)C33—F11.358 (2)
C6—N21.450 (2)C33—C341.367 (3)
C6—H6A0.9600C34—C351.370 (3)
C6—H6B0.9600C34—H340.9300
C6—H6C0.9600C35—C361.385 (2)
C11—C121.384 (2)C35—H350.9300
C11—C161.385 (2)C36—H360.9300
C12—C131.383 (2)N1—O31.2474 (17)
C12—H120.9300N1—O21.2630 (16)
C13—C141.375 (3)N2—H20.8600
C2—C1—O1121.53 (12)C15—C14—H14120.1
C2—C1—C11127.61 (13)C13—C14—H14120.1
O1—C1—C11110.87 (11)C14—C15—C16120.19 (16)
C1—C2—C21119.50 (13)C14—C15—H15119.9
C1—C2—C3122.92 (12)C16—C15—H15119.9
C21—C2—C3117.57 (12)C15—C16—C11120.20 (15)
C4—C3—C2108.09 (11)C15—C16—H16119.9
C4—C3—C31113.40 (11)C11—C16—H16119.9
C2—C3—C31110.35 (11)N3—C21—C2177.78 (16)
C4—C3—H3108.3C32—C31—C36118.64 (14)
C2—C3—H3108.3C32—C31—C3120.45 (12)
C31—C3—H3108.3C36—C31—C3120.90 (13)
N1—C4—C5119.97 (12)C33—C32—C31119.03 (15)
N1—C4—C3117.38 (12)C33—C32—H32120.5
C5—C4—C3122.63 (12)C31—C32—H32120.5
N2—C5—O1111.37 (12)F1—C33—C34118.58 (15)
N2—C5—C4128.89 (13)F1—C33—C32118.29 (16)
O1—C5—C4119.75 (12)C34—C33—C32123.13 (16)
N2—C6—H6A109.5C33—C34—C35117.52 (15)
N2—C6—H6B109.5C33—C34—H34121.2
H6A—C6—H6B109.5C35—C34—H34121.2
N2—C6—H6C109.5C34—C35—C36121.03 (16)
H6A—C6—H6C109.5C34—C35—H35119.5
H6B—C6—H6C109.5C36—C35—H35119.5
C12—C11—C16119.52 (14)C35—C36—C31120.63 (16)
C12—C11—C1120.54 (13)C35—C36—H36119.7
C16—C11—C1119.93 (13)C31—C36—H36119.7
C13—C12—C11119.59 (16)O3—N1—O2120.41 (12)
C13—C12—H12120.2O3—N1—C4118.95 (12)
C11—C12—H12120.2O2—N1—C4120.63 (12)
C14—C13—C12120.59 (17)C5—N2—C6124.30 (13)
C14—C13—H13119.7C5—N2—H2117.9
C12—C13—H13119.7C6—N2—H2117.9
C15—C14—C13119.89 (15)C5—O1—C1120.39 (11)
O1—C1—C2—C21177.20 (12)C12—C11—C16—C151.3 (2)
C11—C1—C2—C212.7 (2)C1—C11—C16—C15178.87 (14)
O1—C1—C2—C34.2 (2)C4—C3—C31—C3299.19 (15)
C11—C1—C2—C3175.88 (13)C2—C3—C31—C32139.38 (13)
C1—C2—C3—C419.64 (18)C4—C3—C31—C3681.32 (17)
C21—C2—C3—C4161.73 (12)C2—C3—C31—C3640.11 (18)
C1—C2—C3—C31104.89 (15)C36—C31—C32—C330.2 (2)
C21—C2—C3—C3173.74 (15)C3—C31—C32—C33179.34 (13)
C2—C3—C4—N1160.79 (11)C31—C32—C33—F1178.44 (14)
C31—C3—C4—N176.53 (15)C31—C32—C33—C341.0 (3)
C2—C3—C4—C520.86 (17)F1—C33—C34—C35178.30 (16)
C31—C3—C4—C5101.82 (15)C32—C33—C34—C351.1 (3)
N1—C4—C5—N24.7 (2)C33—C34—C35—C360.1 (3)
C3—C4—C5—N2173.60 (13)C34—C35—C36—C310.9 (3)
N1—C4—C5—O1174.93 (11)C32—C31—C36—C351.1 (3)
C3—C4—C5—O16.8 (2)C3—C31—C36—C35178.42 (16)
C2—C1—C11—C1260.1 (2)C5—C4—N1—O3176.16 (13)
O1—C1—C11—C12120.01 (15)C3—C4—N1—O35.45 (18)
C2—C1—C11—C16120.12 (17)C5—C4—N1—O22.7 (2)
O1—C1—C11—C1659.81 (17)C3—C4—N1—O2175.69 (12)
C16—C11—C12—C130.7 (3)O1—C5—N2—C67.4 (2)
C1—C11—C12—C13179.46 (16)C4—C5—N2—C6172.91 (14)
C11—C12—C13—C140.2 (3)N2—C5—O1—C1167.83 (12)
C12—C13—C14—C150.6 (3)C4—C5—O1—C111.87 (19)
C13—C14—C15—C160.0 (3)C2—C1—O1—C513.4 (2)
C14—C15—C16—C110.9 (3)C11—C1—O1—C5166.56 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.862.012.6155 (17)127
N2—H2···O2i0.862.323.0241 (17)140
Symmetry code: (i) x+1, y, z+1.
(III) 4-(4-Chlorophenyl)-6-methylamino-5-nitro-2-phenyl-4H-pyran-3-carbonitrile top
Crystal data top
C19H14ClN3O3Z = 2
Mr = 367.78F(000) = 380
Triclinic, P1Dx = 1.370 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4556 (2) ÅCell parameters from 2000 reflections
b = 9.9562 (2) Åθ = 2–28°
c = 11.1806 (3) ŵ = 0.24 mm1
α = 95.810 (1)°T = 293 K
β = 111.785 (1)°Block, colourless
γ = 109.362 (1)°0.23 × 0.21 × 0.18 mm
V = 891.38 (4) Å3
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
4420 independent reflections
Radiation source: fine-focus sealed tube3554 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 0 pixels mm-1θmax = 28.3°, θmin = 2.0°
ω and ϕ scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1113
Tmin = 0.947, Tmax = 0.958l = 1414
16021 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0624P)2 + 0.2375P]
where P = (Fo2 + 2Fc2)/3
4420 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C19H14ClN3O3γ = 109.362 (1)°
Mr = 367.78V = 891.38 (4) Å3
Triclinic, P1Z = 2
a = 9.4556 (2) ÅMo Kα radiation
b = 9.9562 (2) ŵ = 0.24 mm1
c = 11.1806 (3) ÅT = 293 K
α = 95.810 (1)°0.23 × 0.21 × 0.18 mm
β = 111.785 (1)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
4420 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3554 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.958Rint = 0.029
16021 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.05Δρmax = 0.42 e Å3
4420 reflectionsΔρmin = 0.50 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.60184 (16)0.26728 (15)0.49536 (13)0.0348 (3)
C20.51351 (16)0.31464 (15)0.39939 (13)0.0334 (3)
C30.55526 (16)0.35478 (15)0.28609 (13)0.0335 (3)
H30.56670.45660.28800.040*
C40.72108 (17)0.35033 (16)0.31183 (13)0.0367 (3)
C50.80705 (17)0.30018 (16)0.41388 (14)0.0365 (3)
C61.0321 (2)0.2367 (2)0.55371 (18)0.0559 (4)
H6A1.02620.27830.63210.084*
H6B1.14640.26390.57040.084*
H6C0.97700.13140.53110.084*
C110.57577 (18)0.23797 (16)0.61391 (14)0.0379 (3)
C120.4217 (2)0.14573 (19)0.60158 (17)0.0487 (4)
H120.33560.09430.51760.058*
C130.3964 (2)0.1306 (2)0.7148 (2)0.0603 (5)
H130.29320.06910.70690.072*
C140.5241 (3)0.2064 (2)0.83869 (19)0.0598 (5)
H140.50600.19790.91440.072*
C150.6781 (3)0.2946 (2)0.85164 (17)0.0570 (4)
H150.76420.34410.93600.068*
C160.7055 (2)0.31027 (19)0.73942 (15)0.0482 (4)
H160.81030.36890.74820.058*
C210.37636 (17)0.34091 (15)0.40609 (14)0.0376 (3)
C310.41364 (17)0.25690 (15)0.15294 (13)0.0344 (3)
C320.3707 (2)0.10743 (17)0.12027 (16)0.0496 (4)
H320.43240.06610.17850.060*
C330.2370 (2)0.01769 (18)0.00190 (18)0.0566 (4)
H330.20920.08320.01980.068*
C340.1464 (2)0.07923 (19)0.08268 (15)0.0493 (4)
C350.1868 (2)0.2275 (2)0.05303 (17)0.0578 (4)
H350.12460.26830.11150.069*
C360.3213 (2)0.31618 (18)0.06511 (16)0.0503 (4)
H360.34980.41720.08550.060*
N10.79234 (16)0.41021 (16)0.23030 (13)0.0468 (3)
N20.95153 (16)0.29208 (16)0.44394 (14)0.0473 (3)
H21.00190.32150.39540.057*
N30.26940 (16)0.36726 (16)0.40904 (15)0.0515 (3)
O10.74240 (12)0.25073 (12)0.49902 (10)0.0411 (2)
O20.92913 (17)0.40985 (19)0.24227 (15)0.0734 (4)
O30.71758 (16)0.46488 (15)0.14702 (12)0.0571 (3)
Cl10.02116 (6)0.03401 (7)0.23113 (5)0.0798 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0313 (6)0.0412 (7)0.0342 (6)0.0127 (5)0.0186 (5)0.0075 (5)
C20.0295 (6)0.0390 (7)0.0315 (6)0.0117 (5)0.0156 (5)0.0053 (5)
C30.0328 (7)0.0365 (6)0.0320 (6)0.0130 (5)0.0155 (5)0.0092 (5)
C40.0335 (7)0.0458 (7)0.0344 (7)0.0141 (6)0.0193 (6)0.0122 (6)
C50.0325 (7)0.0448 (7)0.0357 (7)0.0140 (6)0.0197 (6)0.0091 (5)
C60.0442 (9)0.0810 (12)0.0539 (10)0.0348 (9)0.0220 (8)0.0264 (9)
C110.0408 (7)0.0453 (7)0.0368 (7)0.0192 (6)0.0236 (6)0.0140 (6)
C120.0420 (8)0.0597 (9)0.0482 (9)0.0167 (7)0.0249 (7)0.0206 (7)
C130.0570 (11)0.0772 (12)0.0691 (12)0.0277 (9)0.0449 (10)0.0372 (10)
C140.0830 (13)0.0758 (12)0.0540 (10)0.0426 (11)0.0502 (10)0.0327 (9)
C150.0716 (12)0.0654 (11)0.0371 (8)0.0276 (9)0.0262 (8)0.0140 (7)
C160.0467 (9)0.0567 (9)0.0393 (8)0.0149 (7)0.0216 (7)0.0127 (7)
C210.0313 (7)0.0412 (7)0.0357 (7)0.0103 (6)0.0147 (6)0.0038 (5)
C310.0337 (7)0.0398 (7)0.0312 (6)0.0143 (5)0.0159 (5)0.0093 (5)
C320.0551 (10)0.0424 (8)0.0435 (8)0.0201 (7)0.0125 (7)0.0115 (6)
C330.0644 (11)0.0392 (8)0.0492 (9)0.0101 (7)0.0182 (8)0.0037 (7)
C340.0392 (8)0.0580 (9)0.0336 (7)0.0041 (7)0.0134 (6)0.0035 (6)
C350.0524 (10)0.0662 (11)0.0425 (9)0.0241 (9)0.0067 (7)0.0159 (8)
C360.0538 (9)0.0444 (8)0.0442 (8)0.0214 (7)0.0108 (7)0.0110 (7)
N10.0413 (7)0.0606 (8)0.0431 (7)0.0163 (6)0.0250 (6)0.0195 (6)
N20.0376 (7)0.0713 (9)0.0474 (7)0.0276 (6)0.0257 (6)0.0233 (6)
N30.0364 (7)0.0568 (8)0.0603 (9)0.0170 (6)0.0240 (6)0.0056 (7)
O10.0383 (5)0.0597 (6)0.0409 (5)0.0260 (5)0.0251 (4)0.0225 (5)
O20.0541 (8)0.1213 (12)0.0796 (9)0.0429 (8)0.0502 (7)0.0555 (9)
O30.0575 (7)0.0733 (8)0.0500 (7)0.0252 (6)0.0293 (6)0.0334 (6)
Cl10.0573 (3)0.0891 (4)0.0450 (3)0.0041 (3)0.0077 (2)0.0054 (2)
Geometric parameters (Å, º) top
C1—C21.3303 (19)C13—H130.9300
C1—O11.3789 (16)C14—C151.371 (3)
C1—C111.4751 (18)C14—H140.9300
C2—C211.4314 (18)C15—C161.386 (2)
C2—C31.5130 (17)C15—H150.9300
C3—C41.5023 (18)C16—H160.9300
C3—C311.5232 (18)C21—N31.1366 (18)
C3—H30.9800C31—C321.376 (2)
C4—C51.381 (2)C31—C361.378 (2)
C4—N11.3928 (17)C32—C331.385 (2)
C5—N21.3129 (18)C32—H320.9300
C5—O11.3599 (16)C33—C341.367 (3)
C6—N21.453 (2)C33—H330.9300
C6—H6A0.9600C34—C351.367 (3)
C6—H6B0.9600C34—Cl11.7382 (16)
C6—H6C0.9600C35—C361.383 (2)
C11—C121.387 (2)C35—H350.9300
C11—C161.387 (2)C36—H360.9300
C12—C131.386 (2)N1—O31.2378 (17)
C12—H120.9300N1—O21.2512 (17)
C13—C141.375 (3)N2—H20.8600
C2—C1—O1121.66 (11)C15—C14—H14119.7
C2—C1—C11126.91 (12)C13—C14—H14119.7
O1—C1—C11111.24 (11)C14—C15—C16120.18 (17)
C1—C2—C21119.33 (12)C14—C15—H15119.9
C1—C2—C3124.34 (12)C16—C15—H15119.9
C21—C2—C3116.16 (12)C15—C16—C11119.61 (16)
C4—C3—C2108.26 (11)C15—C16—H16120.2
C4—C3—C31115.00 (11)C11—C16—H16120.2
C2—C3—C31110.22 (11)N3—C21—C2176.80 (16)
C4—C3—H3107.7C32—C31—C36118.67 (14)
C2—C3—H3107.7C32—C31—C3121.01 (13)
C31—C3—H3107.7C36—C31—C3120.26 (13)
C5—C4—N1120.09 (12)C31—C32—C33120.92 (15)
C5—C4—C3124.17 (11)C31—C32—H32119.5
N1—C4—C3115.62 (12)C33—C32—H32119.5
N2—C5—O1111.38 (12)C34—C33—C32119.17 (15)
N2—C5—C4128.48 (12)C34—C33—H33120.4
O1—C5—C4120.14 (12)C32—C33—H33120.4
N2—C6—H6A109.5C33—C34—C35121.14 (15)
N2—C6—H6B109.5C33—C34—Cl1118.93 (13)
H6A—C6—H6B109.5C35—C34—Cl1119.93 (14)
N2—C6—H6C109.5C34—C35—C36119.16 (16)
H6A—C6—H6C109.5C34—C35—H35120.4
H6B—C6—H6C109.5C36—C35—H35120.4
C12—C11—C16119.89 (13)C31—C36—C35120.94 (15)
C12—C11—C1120.94 (14)C31—C36—H36119.5
C16—C11—C1119.08 (13)C35—C36—H36119.5
C13—C12—C11119.76 (16)O3—N1—O2121.14 (12)
C13—C12—H12120.1O3—N1—C4118.22 (13)
C11—C12—H12120.1O2—N1—C4120.64 (13)
C14—C13—C12119.97 (16)C5—N2—C6124.45 (13)
C14—C13—H13120.0C5—N2—H2117.8
C12—C13—H13120.0C6—N2—H2117.8
C15—C14—C13120.53 (15)C5—O1—C1120.48 (11)
O1—C1—C2—C21175.10 (12)C12—C11—C16—C152.8 (2)
C11—C1—C2—C210.5 (2)C1—C11—C16—C15173.82 (15)
O1—C1—C2—C30.0 (2)C4—C3—C31—C3258.45 (18)
C11—C1—C2—C3174.66 (13)C2—C3—C31—C3264.24 (17)
C1—C2—C3—C47.15 (18)C4—C3—C31—C36124.33 (15)
C21—C2—C3—C4168.13 (11)C2—C3—C31—C36112.97 (15)
C1—C2—C3—C31119.42 (14)C36—C31—C32—C330.3 (2)
C21—C2—C3—C3165.31 (15)C3—C31—C32—C33176.95 (15)
C2—C3—C4—C57.13 (19)C31—C32—C33—C340.4 (3)
C31—C3—C4—C5116.61 (15)C32—C33—C34—C350.8 (3)
C2—C3—C4—N1168.74 (12)C32—C33—C34—Cl1179.96 (14)
C31—C3—C4—N167.53 (16)C33—C34—C35—C360.3 (3)
N1—C4—C5—N24.4 (2)Cl1—C34—C35—C36179.52 (14)
C3—C4—C5—N2179.95 (14)C32—C31—C36—C350.7 (2)
N1—C4—C5—O1175.64 (13)C3—C31—C36—C35176.53 (15)
C3—C4—C5—O10.1 (2)C34—C35—C36—C310.4 (3)
C2—C1—C11—C1253.2 (2)C5—C4—N1—O3174.20 (14)
O1—C1—C11—C12131.75 (15)C3—C4—N1—O31.8 (2)
C2—C1—C11—C16123.41 (17)C5—C4—N1—O25.1 (2)
O1—C1—C11—C1651.69 (18)C3—C4—N1—O2178.89 (15)
C16—C11—C12—C132.4 (2)O1—C5—N2—C60.3 (2)
C1—C11—C12—C13174.14 (15)C4—C5—N2—C6179.72 (16)
C11—C12—C13—C140.2 (3)N2—C5—O1—C1171.71 (13)
C12—C13—C14—C151.6 (3)C4—C5—O1—C18.3 (2)
C13—C14—C15—C161.2 (3)C2—C1—O1—C58.4 (2)
C14—C15—C16—C111.0 (3)C11—C1—O1—C5166.99 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.862.002.6171 (18)128
N2—H2···N3i0.862.363.0305 (18)135
C6—H6B···N3i0.962.613.244 (2)124
Symmetry code: (i) x+1, y, z.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC19H15N3O3C19H14FN3O3C19H14ClN3O3
Mr333.34351.33367.78
Crystal system, space groupMonoclinic, C2/cTriclinic, P1Triclinic, P1
Temperature (K)293293293
a, b, c (Å)18.6202 (12), 11.7427 (7), 14.9474 (9)7.6736 (14), 8.6808 (15), 13.152 (2)9.4556 (2), 9.9562 (2), 11.1806 (3)
α, β, γ (°)90, 98.999 (2), 9081.498 (11), 75.721 (11), 79.851 (11)95.810 (1), 111.785 (1), 109.362 (1)
V3)3228.0 (3)830.8 (3)891.38 (4)
Z822
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.100.110.24
Crystal size (mm)0.24 × 0.22 × 0.200.23 × 0.21 × 0.190.23 × 0.21 × 0.18
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Bruker Kappa APEXII area-detector
diffractometer
Bruker Kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.977, 0.9810.976, 0.9800.947, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
15966, 3513, 2904 12513, 3597, 2829 16021, 4420, 3554
Rint0.0260.0380.029
(sin θ/λ)max1)0.6390.6390.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.102, 1.05 0.040, 0.136, 1.05 0.045, 0.130, 1.05
No. of reflections351335974420
No. of parameters227237236
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.200.22, 0.190.42, 0.50

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.862.002.6154 (16)128
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.862.012.6155 (17)127
N2—H2···O2i0.862.323.0241 (17)140
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.862.002.6171 (18)128
N2—H2···N3i0.862.363.0305 (18)135
C6—H6B···N3i0.962.613.244 (2)124
Symmetry code: (i) x+1, y, z.
Comparison of ring folding in (I), (II), (III) top
CompoundO1 displacement (Å)C3 displacement (Å)
(I)0.190 (2)0.284 (2)
(II)-0.128 (2)-0.259 (2)
(III)-0.085 (2)-0.091 (2)
Selected torsion angles (°) in (I), (II), (III) top
CompoundC12—C11—C1—C2C4—C3—C31—C32N1—C4—C5—N2
(I)-37.62 (2)-59.72 (2)0.5 (2)
(II)-60.1 (2)99.2 (2)4.7 (2)
(III)53.2 (2)58.42 (2)-4.3 (2)
Selected bond lengths (Å) in (I), (II) and (III) top
CompoundC5—N2C4—N1N1—O2C2—C21
(I)1.3120 (17)1.3870 (16)1.2606 (16)1.4312 (18)
(II)1.3154 (18)1.3782 (17)1.2630 (16)1.4319 (19)
(III)1.3129 (18)1.3928 (17)1.2512 (17)1.4314 (18)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds