Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
rac-Bis{[mu]-trans-2,2'-[pentane-1,5-diyl­bis(aza­ne­diyl)]­ditroponato}­dipalladium(II), [Pd2(C19H20N2O2)2], has been synthesized and fully characterized using single-crystal X-ray diffraction, 1H NMR, FT-IR and mass spectroscopy. The trans coordination, vaulted structure and anti conformation have been unequivocally established from the X-ray diffraction studies. This is the first example of a bis­(aminotropon­ato)­palladium complex. In the crystalline state, the molecule has twofold symmetry and each mol­ecular unit undergoes inter­molecular offset [pi]-stacking of the tropone rings to afford hetero­chiral inter­penetrating dimers that are aligned in a lamellar manner with a herring­bone packing motif.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113004484/ov3021sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113004484/ov3021Isup2.hkl
Contains datablock I

CCDC reference: 950358

Comment top

A variety of 2-aminotroponate complexes, ML2 and MLX (L is 2-aminotroponate), with metal centres such as NiII (Jenkins & Brookhart, 2004), CaII (Datta et al., 2007), TiIV (Mazzeo et al., 2005), AlIII (Pappalardo et al., 2004), ZnII (Meyer et al., 2006; Jin et al., 2010), AuI (Meiners et al., 2007), RhI (Steyl, 2007) and CuII (Mori et al., 2005; Nishinaga et al., 2010; Steyl et al., 2010), have been extensively studied for the development of functional materials that exhibit catalytic activity for molecular transformation, luminescence, magnetic properties and liquid-crystalline behaviour.

As part of our programme towards the development of transition metal-based functional materials with three-dimensional superstructures [Pd (Naota & Koori, 2005) and Pt (Komiya et al., 2011)], we have synthesized a clothes-peg shaped binuclear trans-bis(2-aminotroponato)palladium(II) complex bearing flexible pentamethylene spacers, namely rac-bis{µ-trans-2,2'-[pentane-1,5-diylbis(azanediyl)]ditroponato}dipalladium(II), (I). This is the first example of an (aminotroponato-κ2N,O)palladium(II) complex [see (II) in the scheme]. Reported troponatopalladium complexes are limited to (tropolonato-κ2O,O')palladium(II), (III) (Muetterties et al., 1966; Steyl, 2005), (aminotroponiminato-κ2N,N')palladium(II), (IV) (Eaton et al., 1968), and (dithiotropolonato-κ2S,S')palladium(II), (V) (Forbes & Holm, 1968), the last two of which have not yet been fully characterized with respect to their molecular structures.

Single-crystal X-ray diffraction analysis of (I) shows that the two highly planar trans-bis(2-aminotroponato)palladium coordination sites are doubly linked by pentamethylene spacers in an anti conformation. Each molecular unit undergoes intermolecular offset π-stacking of the tropone rings to afford heterochiral interpenetrating dimers. Such an interpenetrating stacking interaction of clothes-peg shaped binuclear transition metal complexes has been extensively studied as a new motif for stimuli-responsive molecular aggregations (Naota & Koori, 2005; Komiya et al., 2011). In this paper, we describe the synthesis, crystal structure and molecular arrangement of (I) with respect to the characteristic cofacial interpenetrating packing motif of the clothes-peg shaped unit.

Binuclear complex (I) was prepared by reaction of Pd(OAc)2 and 2,2'-[pentane-1,5-diylbis(azanediyl)]ditropone in boiling ethanol. The trans and anti conformation of (I) was established unequivocally by X-ray diffraction analysis of a racemate crystal obtained from a solution in EtOAc–n-hexane [Solvent ratio?] (Fig. 1). The C1—O1 [1.309 (3) Å] and C13—O2 [1.303 (3) Å] bonds are similar to those in (2-aminotroponato)copper(II) [C—O = 1.2970 (18) and 1.2958 (18) Å; C—N = 1.3210 (19) and 1.3196 (19) Å; Steyl et al., 2010]. The two cofacial coordination blades are highly planar, as indicated by the torsion angles along the four coordination sites [N-coordination: C1—C2—N1—Pd1 = 3.73 (17)° and C13i—C14i—N2i—Pd1 = 1.72 (17)°; O-coordination: C2—C1—O1—Pd1 = 1.94 (18)° and C14i—C13i—O2i—Pd1 = 4.77 (18)°; symmetry code: (i) -x + 1, y, -z + 1/2] and by the macroscopic angles of C5—Pd1—C17i = 176° and C5i—Pd1—C17 = 176°.

The packing motif of (I) in the crystalline state is shown in Fig. 2. Each molecular unit undergoes an intermolecular offset π-stacking interaction between cofacial tropone rings to afford heterochiral interpenetrating dimers [C15(R)—C17ii(S) = 3.551 (2) Å; C17(R)—C15ii(S) = 3.551 (2) Å; symmetry code: (ii) -x + 1, -y + 1, -z] (Fig. 2). It is noteworthy that the dimer unit is bound with inward stacking, although double outward stacking is another motif for interpenetrative association of H-shaped units. This can be interpreted as a result of compensation to obtain broad-range crystal stability from the intra- and intermolecular interactions, rather than locally strong stabilization from double outward intermolecular stacking.

Fig. 3 shows the packing structure of (I), where the heterochiral dimers are aligned in a layer-by-layer structure with the unit-height direction along the crystallographic a axis (Fig. 3a). The layer in the ac plane consists of a herring-bone packing structure supported by a homochiral C—H···π interaction between the tropone rings, with C4(R)—H19iii(R)/C4ii(S)—H19iv(S) = 2.83 Å [symmetry codes: (iii) x + 1/2, -y + 3/2, -z; (iv) -x + 1/2, y - 1/2, z] (Fig. 3b). Thus, the present clothes-peg shaped molecule is packed mainly by heterochiral ππ and C—H···π interactions.

Related literature top

For related literature, see: Datta et al. (2007); Eaton et al. (1968); Forbes & Holm (1968); Jenkins & Brookhart (2004); Jin et al. (2010); Komiya et al. (2011); Mazzeo et al. (2005); Meiners et al. (2007); Meyer et al. (2006); Mori et al. (2005); Muetterties et al. (1966); Naota & Koori (2005); Nishinaga et al. (2010); Pappalardo et al. (2004); Steyl (2005, 2007); Steyl et al. (2010).

Experimental top

2,2'-[Pentane-1,5-diylbis(azanediyl)]ditropone was prepared by condensation of 2-chlorotropone (50 mg, 0.36 mmol) and pentane-1,5-diamine (21 mg, 0.20 mmol) in the presence of triethylamine (36 mg, 0.38 mmol) in boiling ethanol. The title complex, (I), was obtained by reaction of Pd(OAc)2 (27 mg, 0.13 mmol) with the ligand (32 mg, 0.10 mmol) in the presence of N,N,N',N'-tetramethylethylenediamine (39 mg, 0.33 mmol) in boiling toluene. The reaction mixture was subjected to column chromatography (SiO2, eluent EtOAc) to give (I) (15 mg, 35%) as a red solid. Single crystals suitable for X-ray diffraction analysis were obtained by recrystallization from EtOAc–n-hexane [Solvent ratio?]. Spectroscopic analysis: IR (KBr, ν, cm-1): 2958, 2932, 2851, 1594, 1565, 1512, 1447, 1402, 1319, 1215; 1H NMR (CDCl3, 500 MHz, δ, p.p.m.): 1.50–1.64 (m, 4H), 1.86–2.15 (m, 4H), 2.24 (tt, J = 7.5 and 7.5 Hz, 4H), 3.46–3.50 (m, 8H), 6.22 (d, J = 10.5 Hz, 4H, H7), 6.25 (dd, J = 9.0 and 9.0 Hz, 4H, H5), 6.60 (d, J = 11.9 Hz, 4H, H3), 6.61 (ddd, J = 10.5, 9.0 and 1.4 Hz, 4H, H6), 6.87 (ddd, J = 11.9, 9.0 and 1.4 Hz, 4H, H4); MS (ESI) m/z: 830 [M]+.

Refinement top

H atoms were visible in difference maps and were subsequently treated as riding, with C—H = 0.99 (CH2) or 0.95 Å (aromatic), and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1999); cell refinement: RAPID-AUTO (Rigaku, 1999); data reduction: RAPID-AUTO (Rigaku, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010) and ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of complex (I). [Symmetry code: (i) -x + 1, y, -z + 1/2.]
[Figure 2] Fig. 2. Illustrations of the intermolecular π-stacking interaction (dashed line) between the enantiomers of (I). [Symmetry codes: (i) -x + 1, y, -z + 3/2; (ii) -x + 1, -y + 1, -z.]
[Figure 3] Fig. 3. The crystal packing of (I), showing (a) the lamellar-like array of dimer units along the a axis and (b) a b-axis projection showing the herring-bone packing motif, with C—H···π interactions indicated by dashed lines. [C4···H19iii = 2.83 Å; symmetry code: (iii) x + 1/2, -y + 3/2, -z.]
rac-Bis{µ-trans-2,2'-[pentane-1,5-diylbis(azanediyl)]ditroponato}dipalladium(II) top
Crystal data top
[Pd(C19H20N2O2)2]F(000) = 1680.00
Mr = 829.56Dx = 1.643 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2n 2abCell parameters from 49440 reflections
a = 16.282 (3) Åθ = 3.1–27.5°
b = 17.740 (3) ŵ = 1.12 mm1
c = 11.608 (2) ÅT = 173 K
V = 3352.9 (10) Å3Block, red
Z = 40.40 × 0.20 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3452 reflections with F2 > 2σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.033
ω scansθmax = 27.5°
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
h = 2120
Tmin = 0.662, Tmax = 0.799k = 2322
64124 measured reflectionsl = 1515
3829 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0272P)2 + 1.7779P]
where P = (Fo2 + 2Fc2)/3
3829 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.34 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
[Pd(C19H20N2O2)2]V = 3352.9 (10) Å3
Mr = 829.56Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 16.282 (3) ŵ = 1.12 mm1
b = 17.740 (3) ÅT = 173 K
c = 11.608 (2) Å0.40 × 0.20 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3829 independent reflections
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
3452 reflections with F2 > 2σ(F2)
Tmin = 0.662, Tmax = 0.799Rint = 0.033
64124 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.09Δρmax = 0.38 e Å3
3829 reflectionsΔρmin = 0.34 e Å3
217 parameters
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.623341 (8)0.760709 (8)0.367449 (10)0.02564 (5)
O10.58644 (8)0.86265 (7)0.41360 (11)0.0345 (3)
O20.34057 (8)0.65744 (7)0.17642 (11)0.0322 (3)
N10.67320 (8)0.82079 (9)0.24093 (12)0.0285 (3)
N20.42353 (8)0.70238 (8)0.00220 (12)0.0276 (3)
C10.60679 (11)0.91671 (11)0.34242 (15)0.0300 (4)
C20.65593 (10)0.89381 (10)0.24189 (14)0.0282 (4)
C30.68211 (11)0.94494 (12)0.15400 (16)0.0347 (4)
C40.67083 (12)1.02111 (12)0.14284 (17)0.0392 (5)
C50.63270 (12)1.07347 (12)0.2152 (2)0.0436 (5)
C60.59417 (13)1.05811 (12)0.3171 (2)0.0434 (5)
C70.58263 (12)0.98905 (12)0.37221 (16)0.0375 (5)
C80.72596 (11)0.78597 (12)0.15367 (16)0.0338 (4)
C90.68635 (11)0.77460 (11)0.03450 (16)0.0343 (4)
C100.59394 (11)0.76029 (10)0.03811 (15)0.0301 (4)
C110.56234 (11)0.73315 (10)0.07839 (15)0.0302 (4)
C120.46919 (12)0.73944 (10)0.09013 (15)0.0317 (4)
C130.35795 (10)0.60526 (11)0.10133 (15)0.0289 (4)
C140.40696 (10)0.62919 (10)0.00114 (14)0.0278 (4)
C150.43344 (11)0.58015 (11)0.08863 (16)0.0343 (4)
C160.41804 (12)0.50485 (12)0.10788 (16)0.0371 (5)
C170.37316 (12)0.45295 (12)0.04348 (19)0.0398 (5)
C180.33420 (12)0.46632 (11)0.05929 (18)0.0377 (5)
C190.32782 (11)0.53300 (11)0.12258 (16)0.0339 (4)
H3A0.71240.92230.09320.0416*
H4A0.69271.04200.07400.0471*
H5A0.63371.12470.19130.0523*
H6A0.57211.10060.35610.0521*
H7A0.55300.99210.44250.0450*
H8A0.74420.73620.18280.0405*
H8B0.77550.81770.14410.0405*
H9A0.69680.82000.01290.0411*
H9B0.71330.73140.00390.0411*
H10A0.56520.80740.05980.0361*
H10B0.58170.72190.09750.0361*
H11A0.58860.76320.14010.0362*
H11B0.57870.67990.08940.0362*
H12A0.45400.79350.09170.0381*
H12B0.45250.71710.16470.0381*
H15A0.46760.60330.14480.0412*
H16A0.44190.48510.17620.0445*
H17A0.36910.40330.07380.0478*
H18A0.30760.42390.09240.0452*
H19A0.29770.52830.19230.0407*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02373 (8)0.03505 (9)0.01813 (8)0.00128 (5)0.00114 (4)0.00022 (5)
O10.0403 (7)0.0364 (7)0.0270 (7)0.0027 (6)0.0088 (6)0.0024 (6)
O20.0335 (7)0.0380 (7)0.0250 (6)0.0013 (6)0.0064 (5)0.0010 (6)
N10.0236 (7)0.0387 (8)0.0231 (7)0.0014 (6)0.0018 (6)0.0012 (6)
N20.0263 (7)0.0384 (8)0.0179 (7)0.0015 (6)0.0000 (6)0.0012 (6)
C10.0256 (8)0.0397 (10)0.0246 (9)0.0034 (7)0.0017 (7)0.0021 (8)
C20.0217 (8)0.0392 (10)0.0235 (8)0.0039 (7)0.0022 (7)0.0010 (7)
C30.0307 (9)0.0436 (11)0.0298 (9)0.0064 (8)0.0017 (8)0.0020 (8)
C40.0342 (10)0.0461 (12)0.0374 (11)0.0087 (9)0.0059 (8)0.0124 (9)
C50.0377 (11)0.0395 (11)0.0536 (13)0.0008 (9)0.0067 (10)0.0104 (10)
C60.0408 (11)0.0375 (11)0.0520 (13)0.0067 (9)0.0036 (10)0.0015 (10)
C70.0342 (10)0.0423 (11)0.0361 (11)0.0027 (9)0.0025 (8)0.0028 (9)
C80.0260 (9)0.0455 (11)0.0298 (9)0.0021 (8)0.0071 (7)0.0022 (8)
C90.0328 (9)0.0429 (11)0.0271 (9)0.0028 (8)0.0097 (7)0.0033 (8)
C100.0305 (9)0.0363 (10)0.0235 (9)0.0002 (8)0.0060 (7)0.0019 (7)
C110.0357 (10)0.0329 (9)0.0220 (9)0.0008 (8)0.0067 (7)0.0003 (7)
C120.0377 (10)0.0391 (10)0.0184 (8)0.0019 (8)0.0019 (7)0.0025 (7)
C130.0240 (8)0.0397 (10)0.0228 (8)0.0022 (7)0.0029 (7)0.0005 (7)
C140.0231 (8)0.0398 (10)0.0204 (8)0.0017 (7)0.0039 (7)0.0001 (7)
C150.0316 (9)0.0469 (11)0.0245 (9)0.0009 (8)0.0003 (7)0.0032 (8)
C160.0341 (10)0.0470 (11)0.0302 (9)0.0036 (9)0.0033 (8)0.0106 (9)
C170.0378 (11)0.0374 (10)0.0443 (12)0.0042 (8)0.0062 (9)0.0068 (9)
C180.0336 (10)0.0348 (10)0.0447 (11)0.0014 (8)0.0017 (9)0.0030 (9)
C190.0290 (9)0.0411 (11)0.0315 (10)0.0011 (8)0.0007 (7)0.0025 (8)
Geometric parameters (Å, º) top
Pd1—O11.9795 (13)C15—C161.377 (3)
Pd1—O2i1.9901 (13)C16—C171.393 (3)
Pd1—N11.9880 (15)C17—C181.372 (3)
Pd1—N2i1.9856 (15)C18—C191.396 (3)
O1—C11.309 (3)C3—H3A0.950
O2—C131.303 (3)C4—H4A0.950
N1—C21.326 (3)C5—H5A0.950
N1—C81.465 (3)C6—H6A0.950
N2—C121.461 (3)C7—H7A0.950
N2—C141.326 (3)C8—H8A0.990
C1—C21.472 (3)C8—H8B0.990
C1—C71.386 (3)C9—H9A0.990
C2—C31.430 (3)C9—H9B0.990
C3—C41.370 (3)C10—H10A0.990
C4—C51.398 (3)C10—H10B0.990
C5—C61.367 (4)C11—H11A0.990
C6—C71.395 (3)C11—H11B0.990
C8—C91.540 (3)C12—H12A0.990
C9—C101.526 (3)C12—H12B0.990
C10—C111.525 (3)C15—H15A0.950
C11—C121.527 (3)C16—H16A0.950
C13—C141.473 (3)C17—H17A0.950
C13—C191.395 (3)C18—H18A0.950
C14—C151.424 (3)C19—H19A0.950
O1···C10i3.498 (3)C9···H6Aii3.5569
O1···C12i3.130 (3)C9···H17Av3.3146
O2···C8i3.204 (3)C10···H6Aii3.2680
N1···C102.891 (3)C10···H17Av2.9930
N2···C102.988 (3)C11···H6Aii3.0496
C1···C43.144 (3)C11···H12Bxiv3.0059
C1···C53.177 (3)C11···H17Av3.1979
C2···C53.224 (3)C11···H18Av3.5028
C2···C63.205 (3)C12···H5Axii3.1614
C2···C93.242 (3)C12···H6Aii3.3535
C2···C103.496 (3)C12···H8Bvii3.3708
C3···C63.109 (3)C12···H11Axiv3.2976
C3···C73.107 (3)C12···H12Bxiv3.1439
C3···C82.909 (3)C13···H3Avii3.3100
C3···C93.326 (3)C13···H8Bvii3.4335
C4···C73.078 (3)C13···H9Avii3.1133
C6···C6i3.440 (3)C13···H16Aviii3.3329
C11···C143.264 (3)C14···H3Avii3.4742
C11···C153.433 (3)C14···H8Bvii2.8829
C12···C152.885 (3)C14···H9Avii3.5404
C13···C163.167 (3)C15···H3Avii3.5999
C13···C173.192 (3)C15···H8Bvii3.2109
C14···C173.216 (3)C15···H15Axiv3.5133
C14···C183.195 (3)C16···H3Avii3.5932
C15···C183.104 (3)C16···H16Axiv3.4068
C15···C193.109 (3)C16···H19Avi3.0930
C16···C193.093 (3)C17···H3Avii3.4761
C4···C7ii3.459 (3)C17···H4Avii2.9610
C4···C17iii3.521 (3)C17···H10Bv3.2481
C4···C18iii3.554 (3)C17···H11Bv2.9235
C7···C4iv3.459 (3)C17···H15Av3.5355
C15···C17v3.551 (3)C17···H19Avi3.3209
C16···C19vi3.521 (3)C18···H3Avii3.3123
C17···C4vii3.521 (3)C18···H4Avii2.7791
C17···C15v3.551 (3)C18···H11Bv2.9767
C18···C4vii3.554 (3)C18···H15Av3.5959
C19···C16viii3.521 (3)C19···H3Avii3.2305
Pd1···H8A2.9422C19···H4Avii3.4374
Pd1···H10Ai3.2902C19···H16Aviii3.0018
Pd1···H10B3.2794H3A···C13iii3.3100
Pd1···H10Bi3.4328H3A···C14iii3.4742
Pd1···H12Ai2.9490H3A···C15iii3.5999
O1···H7A2.3844H3A···C16iii3.5932
O1···H10Ai2.6746H3A···C17iii3.4761
O1···H12Ai2.4925H3A···C18iii3.3123
O2···H8Ai2.5557H3A···C19iii3.2305
O2···H10Bi3.1297H3A···H6Aii3.6000
O2···H19A2.4016H3A···H7Aii3.4783
N1···H3A2.5672H3A···H19Ax3.4158
N1···H9A2.9718H4A···O1ii3.0531
N1···H9B3.3201H4A···C1ii3.1175
N1···H10A2.7513H4A···C7ii3.0000
N1···H10B2.8411H4A···C17iii2.9610
N2···H10A3.0396H4A···C18iii2.7791
N2···H10B2.8239H4A···C19iii3.4374
N2···H11A3.3340H4A···H7Aii2.8051
N2···H11B2.7697H4A···H17Aiii3.0320
N2···H15A2.5522H4A···H18Aiii2.7559
C1···H3A3.3668H4A···H19Ax3.2161
C1···H6A3.3148H5A···O1ii3.3215
C1···H10Ai3.5906H5A···C12xii3.1614
C2···H4A3.3265H5A···H8Axi2.8074
C2···H7A3.3581H5A···H11Aiv2.8855
C2···H8A3.2170H5A···H12Axii2.3412
C2···H8B2.6273H5A···H12Bxii3.1535
C2···H9A3.3027H5A···H19Ax3.4468
C2···H10A3.0001H6A···C9iv3.5569
C3···H5A3.3128H6A···C10iv3.2680
C3···H8B2.7244H6A···C11iv3.0496
C3···H9A2.9539H6A···C12iv3.3535
C3···H10A3.2820H6A···H3Aiv3.6000
C4···H6A3.2717H6A···H7Axiii3.5092
C5···H3A3.2987H6A···H9Aiv2.9025
C5···H6Ai3.4687H6A···H10Aiv2.8749
C5···H7A3.2755H6A···H11Aiv2.4306
C6···H4A3.2594H6A···H12Aiv2.7562
C6···H6Ai3.4553H7A···C3iv3.4194
C7···H5A3.3000H7A···C4iv3.0238
C8···H3A2.5279H7A···C7xiii3.1002
C8···H10A2.8604H7A···H3Aiv3.4783
C8···H10B2.6900H7A···H4Aiv2.8051
C9···H3A2.7403H7A···H6Axiii3.5092
C9···H11A2.5844H7A···H7Axiii2.1986
C9···H11B2.8223H8A···C5xv3.5352
C10···H3A3.5196H8A···H5Axv2.8074
C10···H8A2.9978H8A···H11Aix3.4119
C10···H8B3.3605H8A···H12Biii3.4974
C10···H12A2.7949H8A···H17Av3.3371
C10···H12B3.3812H8B···N2iii2.9697
C11···H9A2.7833H8B···C12iii3.3708
C11···H9B2.6057H8B···C13iii3.4335
C11···H15A2.8776H8B···C14iii2.8829
C12···H10A2.6317H8B···C15iii3.2109
C12···H10B2.8630H8B···H12Aiii3.5634
C12···H15A2.4969H8B···H12Biii2.9563
C13···H15A3.3688H8B···H15Aiii3.4261
C13···H18A3.3225H9A···Pd1xvi3.5424
C14···H10B3.4709H9A···O2iii3.0395
C14···H11B3.1193H9A···C6ii3.3710
C14···H12A3.1997H9A···C13iii3.1133
C14···H12B2.5857H9A···C14iii3.5404
C14···H16A3.3310H9A···H6Aii2.9025
C14···H19A3.3601H9B···Pd1xvi3.0532
C15···H11B2.9533H9B···O2iii3.4918
C15···H12B2.6031H9B···H17Av2.8852
C15···H17A3.3114H9B···H18Av2.9584
C16···H18A3.2714H10A···H6Aii2.8749
C17···H15A3.2956H10B···C17v3.2481
C17···H19A3.2845H10B···H17Av2.3769
C18···H16A3.2647H11A···C5ii3.4247
C19···H17A3.3073H11A···C6ii3.2092
H3A···H4A2.1585H11A···C12xiv3.2976
H3A···H8A3.4989H11A···H5Aii2.8855
H3A···H8B2.2024H11A···H6Aii2.4306
H3A···H9A2.2081H11A···H8Axvi3.4119
H3A···H9B3.5698H11A···H12Axiv3.2351
H3A···H10A3.1695H11A···H12Bxiv2.5013
H4A···H5A2.2203H11B···C17v2.9235
H5A···H6A2.2022H11B···C18v2.9767
H5A···H6Ai3.4212H11B···H12Bxiv2.9737
H6A···H6Ai3.4022H11B···H15Axiv3.4542
H6A···H7A2.1924H11B···H17Av2.5473
H8A···H9A2.8214H11B···H18Av2.6110
H8A···H9B2.2267H12A···C5xii3.1016
H8A···H10A3.4819H12A···H5Axii2.3412
H8A···H10B2.8365H12A···H6Aii2.7562
H8B···H9A2.2286H12A···H8Bvii3.5634
H8B···H9B2.5152H12A···H11Axiv3.2351
H8B···H10A3.5662H12A···H12Bxiv3.4864
H9A···H10A2.3140H12B···C11xiv3.0059
H9A···H10B2.8615H12B···C12xiv3.1439
H9A···H11A2.5095H12B···H5Axii3.1535
H9A···H11B3.2660H12B···H8Avii3.4974
H9B···H10A2.8600H12B···H8Bvii2.9563
H9B···H10B2.4511H12B···H11Axiv2.5013
H9B···H11A2.6342H12B···H11Bxiv2.9737
H9B···H11B2.5736H12B···H12Axiv3.4864
H10A···H11A2.4777H12B···H12Bxiv2.5132
H10A···H11B2.8573H12B···H15Axiv3.2647
H10A···H12A2.5366H15A···C15xiv3.5133
H10A···H12B3.5671H15A···C17v3.5355
H10B···H11A2.8560H15A···C18v3.5959
H10B···H11B2.2945H15A···H8Bvii3.4261
H10B···H12A3.2806H15A···H11Bxiv3.4542
H11A···H12A2.3257H15A···H12Bxiv3.2647
H11A···H12B2.3796H15A···H15Axiv2.6612
H11A···H15A3.4548H15A···H16Axiv3.3001
H11B···H12A2.8609H16A···O2vi3.4703
H11B···H12B2.3280H16A···C13vi3.3329
H11B···H15A2.3520H16A···C16xiv3.4068
H12A···H15A3.4361H16A···C19vi3.0018
H12B···H15A2.0459H16A···H15Axiv3.3001
H15A···H16A2.1693H16A···H16Axiv2.5526
H16A···H17A2.2185H16A···H19Avi2.8108
H17A···H18A2.2035H17A···O2vi3.1286
H18A···H19A2.1921H17A···C4vii3.5865
Pd1···H9Aix3.5424H17A···C9v3.3146
Pd1···H9Bix3.0532H17A···C10v2.9930
O1···H4Aiv3.0531H17A···C11v3.1979
O1···H5Aiv3.3215H17A···H4Avii3.0320
O2···H9Avii3.0395H17A···H8Av3.3371
O2···H9Bvii3.4918H17A···H9Bv2.8852
O2···H16Aviii3.4703H17A···H10Bv2.3769
O2···H17Aviii3.1286H17A···H11Bv2.5473
N1···H18Ax3.4461H17A···H19Avi3.1934
N2···H8Bvii2.9697H18A···N1xvii3.4461
C1···H4Aiv3.1175H18A···C1xvii3.3581
C1···H18Ax3.3581H18A···C2xvii3.1753
C2···H18Ax3.1753H18A···C11v3.5028
C2···H19Ax3.4067H18A···H4Avii2.7559
C3···H7Aii3.4194H18A···H9Bv2.9584
C3···H19Ax2.9856H18A···H11Bv2.6110
C4···H7Aii3.0238H19A···C2xvii3.4067
C4···H17Aiii3.5865H19A···C3xvii2.9856
C4···H19Ax2.8189H19A···C4xvii2.8189
C5···H8Axi3.5352H19A···C5xvii3.0018
C5···H11Aiv3.4247H19A···C6xvii3.3575
C5···H12Axii3.1016H19A···C16viii3.0930
C5···H19Ax3.0018H19A···C17viii3.3209
C6···H9Aiv3.3710H19A···H3Axvii3.4158
C6···H11Aiv3.2092H19A···H4Axvii3.2161
C6···H19Ax3.3575H19A···H5Axvii3.4468
C7···H4Aiv3.0000H19A···H16Aviii2.8108
C7···H7Axiii3.1002H19A···H17Aviii3.1934
O1—Pd1—O2i178.95 (6)C3—C4—H4A114.430
O1—Pd1—N180.45 (6)C5—C4—H4A114.418
O1—Pd1—N2i98.81 (6)C4—C5—H5A116.859
O2i—Pd1—N1100.60 (6)C6—C5—H5A116.854
O2i—Pd1—N2i80.14 (6)C5—C6—H6A115.331
N1—Pd1—N2i177.90 (6)C7—C6—H6A115.336
Pd1—O1—C1114.95 (12)C1—C7—H7A114.322
Pd1i—O2—C13114.76 (12)C6—C7—H7A114.319
Pd1—N1—C2115.54 (11)N1—C8—H8A108.399
Pd1—N1—C8121.62 (13)N1—C8—H8B108.401
C2—N1—C8122.84 (15)C9—C8—H8A108.392
Pd1i—N2—C12121.35 (11)C9—C8—H8B108.392
Pd1i—N2—C14116.04 (11)H8A—C8—H8B107.453
C12—N2—C14122.51 (14)C8—C9—H9A108.701
O1—C1—C2115.85 (17)C8—C9—H9B108.711
O1—C1—C7116.69 (16)C10—C9—H9A108.705
C2—C1—C7127.41 (17)C10—C9—H9B108.701
N1—C2—C1113.06 (15)H9A—C9—H9B107.624
N1—C2—C3123.40 (16)C9—C10—H10A109.398
C1—C2—C3123.54 (17)C9—C10—H10B109.405
C2—C3—C4130.78 (18)C11—C10—H10A109.412
C3—C4—C5131.2 (2)C11—C10—H10B109.410
C4—C5—C6126.3 (2)H10A—C10—H10B108.013
C5—C6—C7129.3 (2)C10—C11—H11A108.982
C1—C7—C6131.36 (19)C10—C11—H11B108.977
N1—C8—C9115.53 (15)C12—C11—H11A108.969
C8—C9—C10114.21 (15)C12—C11—H11B108.976
C9—C10—C11111.14 (15)H11A—C11—H11B107.774
C10—C11—C12113.03 (15)N2—C12—H12A108.749
N2—C12—C11114.03 (15)N2—C12—H12B108.747
O2—C13—C14116.19 (17)C11—C12—H12A108.742
O2—C13—C19117.29 (16)C11—C12—H12B108.747
C14—C13—C19126.52 (17)H12A—C12—H12B107.645
N2—C14—C13112.65 (15)C14—C15—H15A114.511
N2—C14—C15122.90 (16)C16—C15—H15A114.498
C13—C14—C15124.45 (17)C15—C16—H16A114.757
C14—C15—C16130.99 (18)C17—C16—H16A114.747
C15—C16—C17130.50 (19)C16—C17—H17A116.750
C16—C17—C18126.5 (2)C18—C17—H17A116.738
C17—C18—C19129.68 (19)C17—C18—H18A115.169
C13—C19—C18131.26 (18)C19—C18—H18A115.156
C2—C3—H3A114.617C13—C19—H19A114.372
C4—C3—H3A114.605C18—C19—H19A114.370
O1—Pd1—N1—C23.76 (9)O1—C1—C2—N11.2 (2)
O1—Pd1—N1—C8175.74 (10)O1—C1—C2—C3178.58 (14)
N1—Pd1—O1—C13.04 (9)O1—C1—C7—C6179.78 (17)
O1—Pd1—N2i—C12i0.33 (10)C2—C1—C7—C62.6 (4)
O1—Pd1—N2i—C14i176.74 (9)C7—C1—C2—N1176.06 (17)
N2i—Pd1—O1—C1178.96 (9)C7—C1—C2—C34.2 (3)
O2i—Pd1—N1—C2176.26 (9)N1—C2—C3—C4178.88 (16)
O2i—Pd1—N1—C84.24 (10)C1—C2—C3—C41.4 (3)
N1—Pd1—O2i—C13i173.62 (9)C2—C3—C4—C52.4 (4)
O2i—Pd1—N2i—C12i179.69 (10)C3—C4—C5—C62.2 (4)
O2i—Pd1—N2i—C14i3.27 (9)C4—C5—C6—C70.8 (4)
N2i—Pd1—O2i—C13i4.38 (9)C5—C6—C7—C10.9 (4)
Pd1—O1—C1—C21.94 (18)N1—C8—C9—C1031.2 (3)
Pd1—O1—C1—C7179.49 (10)C8—C9—C10—C11167.86 (14)
Pd1i—O2—C13—C144.77 (18)C9—C10—C11—C12163.59 (13)
Pd1i—O2—C13—C19174.48 (9)C10—C11—C12—N253.82 (19)
Pd1—N1—C2—C13.73 (17)O2—C13—C14—N22.0 (2)
Pd1—N1—C2—C3176.04 (10)O2—C13—C14—C15178.65 (14)
Pd1—N1—C8—C9104.82 (15)O2—C13—C19—C18178.75 (16)
C2—N1—C8—C975.7 (2)C14—C13—C19—C180.4 (3)
C8—N1—C2—C1175.76 (13)C19—C13—C14—N2177.13 (16)
C8—N1—C2—C34.5 (3)C19—C13—C14—C152.2 (3)
Pd1i—N2—C12—C11100.34 (13)N2—C14—C15—C16175.43 (16)
Pd1i—N2—C14—C131.72 (17)C13—C14—C15—C163.8 (3)
Pd1i—N2—C14—C15177.60 (10)C14—C15—C16—C171.7 (4)
C12—N2—C14—C13178.09 (13)C15—C16—C17—C181.5 (4)
C12—N2—C14—C151.2 (3)C16—C17—C18—C191.6 (4)
C14—N2—C12—C1183.48 (18)C17—C18—C19—C130.4 (4)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y+2, z1/2; (iii) x+1/2, y+3/2, z; (iv) x, y+2, z+1/2; (v) x+1, y+1, z; (vi) x, y+1, z1/2; (vii) x1/2, y+3/2, z; (viii) x, y+1, z+1/2; (ix) x+3/2, y+3/2, z+1/2; (x) x+1/2, y+1/2, z+1/2; (xi) x+3/2, y+1/2, z; (xii) x+1, y+2, z; (xiii) x+1, y+2, z+1; (xiv) x+1, y, z1/2; (xv) x+3/2, y1/2, z; (xvi) x+3/2, y+3/2, z1/2; (xvii) x1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Pd(C19H20N2O2)2]
Mr829.56
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)173
a, b, c (Å)16.282 (3), 17.740 (3), 11.608 (2)
V3)3352.9 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.12
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Rigaku, 1995)
Tmin, Tmax0.662, 0.799
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
64124, 3829, 3452
Rint0.033
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.056, 1.09
No. of reflections3829
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.34

Computer programs: RAPID-AUTO (Rigaku, 1999), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010) and ORTEPIII (Burnett & Johnson, 1996), CrystalStructure (Rigaku, 2010).

Selected geometric parameters (Å, º) top
Pd1—O11.9795 (13)C4—C51.398 (3)
Pd1—O2i1.9901 (13)C5—C61.367 (4)
Pd1—N11.9880 (15)C6—C71.395 (3)
Pd1—N2i1.9856 (15)C8—C91.540 (3)
O1—C11.309 (3)C9—C101.526 (3)
O2—C131.303 (3)C10—C111.525 (3)
N1—C21.326 (3)C11—C121.527 (3)
N1—C81.465 (3)C13—C141.473 (3)
N2—C121.461 (3)C13—C191.395 (3)
N2—C141.326 (3)C14—C151.424 (3)
C1—C21.472 (3)C15—C161.377 (3)
C1—C71.386 (3)C16—C171.393 (3)
C2—C31.430 (3)C17—C181.372 (3)
C3—C41.370 (3)C18—C191.396 (3)
O1—Pd1—O2i178.95 (6)C3—C4—C5131.2 (2)
O1—Pd1—N180.45 (6)C4—C5—C6126.3 (2)
O1—Pd1—N2i98.81 (6)C5—C6—C7129.3 (2)
O2i—Pd1—N1100.60 (6)C1—C7—C6131.36 (19)
O2i—Pd1—N2i80.14 (6)N1—C8—C9115.53 (15)
N1—Pd1—N2i177.90 (6)C8—C9—C10114.21 (15)
Pd1—O1—C1114.95 (12)C9—C10—C11111.14 (15)
Pd1i—O2—C13114.76 (12)C10—C11—C12113.03 (15)
Pd1—N1—C2115.54 (11)N2—C12—C11114.03 (15)
Pd1—N1—C8121.62 (13)O2—C13—C14116.19 (17)
C2—N1—C8122.84 (15)O2—C13—C19117.29 (16)
Pd1i—N2—C12121.35 (11)C14—C13—C19126.52 (17)
Pd1i—N2—C14116.04 (11)N2—C14—C13112.65 (15)
C12—N2—C14122.51 (14)N2—C14—C15122.90 (16)
O1—C1—C2115.85 (17)C13—C14—C15124.45 (17)
O1—C1—C7116.69 (16)C14—C15—C16130.99 (18)
C2—C1—C7127.41 (17)C15—C16—C17130.50 (19)
N1—C2—C1113.06 (15)C16—C17—C18126.5 (2)
N1—C2—C3123.40 (16)C17—C18—C19129.68 (19)
C1—C2—C3123.54 (17)C13—C19—C18131.26 (18)
C2—C3—C4130.78 (18)
Symmetry code: (i) x+1, y, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds