Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Scanning photoemission microscopy (SPEM) has been applied to the investigation of homogeneous and heterogeneous metal sulfide mineral surfaces. Three mineral samples were investigated: homogeneous chalcopyrite, heterogeneous chalcopyrite with bornite, and heterogeneous chalcopyrite with pyrite. Sulfur, copper and iron SPEM images, i.e. surface-selective elemental maps with high spatial resolution acquired using the signal from the S 2p and Cu and Fe 3p photoemission peaks, were obtained for the surfaces after exposure to different oxidation conditions (either exposed to air or oxidized in pH 9 solution), in addition to high-resolution photoemission spectra from individual pixel areas of the images. Investigation of the homogeneous chalcopyrite sample allowed for the identification of step edges using the topography SPEM image, and high-resolution S 2p spectra acquired from the different parts of the sample image revealed a similar rate of surface oxidation from solution exposure for both step edge and a nearby terrace site. SPEM was able to successfully distinguish between chalcopyrite and bornite on the heterogeneous sample containing both minerals, based upon sulfur imaging. The high-resolution S 2p spectra acquired from the two regions highlighted the faster air oxidation of the bornite relative to the chalcopyrite. Differentiation between chalcopyrite and pyrite based upon contrast in SPEM images was not successful, owing to either the poor photoionization cross section of the Cu and Fe 3p electrons or issues with rough fracture of the composite surface. In spite of this, high-resolution S 2p spectra from each mineral phase were successfully obtained using a step-scan approach.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds