Download citation
Download citation
link to html
Bis­(pyridine-2,6-di­methanol-N,O,O')­cobalt(II) disaccharinate dihydrate, [Co(C7H9NO2)2](C7H4NO3S)2·2H2O, (I), and bis­(pyridine-2,6-di­methanol-N,O,O')copper(II) disaccharinate dihydrate, [Cu(C7H9NO2)2](C7H4NO3S)2·2H2O, (II), collectively [M(dmpy)2](sac)2·2H2O (where M is CoII or CuII, sac is the saccharinate anion and dmpy is pyridine-2,6-di­methanol), are isostructural. The [M(dmpy)2]2+ cations exhibit distorted octahedral geometry in which the two neutral dmpy species act as tripodal N,O,O'-tridentate ligands. The crystal packing is determined by hydrogen bonding, as well as by weak pyridine-saccharinate [pi]-[pi]-stacking interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101018807/os1148sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101018807/os1148Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101018807/os1148IIsup3.hkl
Contains datablock II

CCDC references: 180130; 180131

Comment top

The artificial sweetener saccharin (also known as 1,2-benzisothiazol-3(2H)-one 1,1-dioxide or o-benzosulfimide) is readily deprotonated to form the corresponding saccharinate anion (sac). The coordination behaviour of sac to metal ions depends on the presence of other co-ligands. Bulky ligands such as 1,10-phenathroline (phen; Deng et al., 2000, 2001; Williams et al., 2000; Yilmaz et al., 2001) and triethanolamine (tea; Topcu et al., 2001; Andac et al., 2001) prevent the coordination of sac to metal ions and so sac is present as a counter-ion in such complexes. The present study is part of our continuing research into the preparation and characterization of a series of mixed-ligand complexes of sac with N and O donor ligands and here we report the crystal structures of the pyridine-2,6-dimethanol (dmpy) complexes with cobalt and copper saccharinates, [Co(dmpy)2](sac)2·2H2O, (I), and [Cu(dmpy)2](sac)2·2H2O, (II). \sch

The structures of (I) and (II) are shown in Figs. 1 and 2, respectively. Tables 1–4 list selected geometrical data. These isostructural phases consist of a complex cation, two sac ions and two lattice water molecules. In the complex cations, the CoII or CuII ions are octahedrally coordinated by a pair of neutral dmpy ligands with no sac in the primary coordination sphere. Each dmpy ligand behaves as a tridentate ligand using all donor atoms, the amino N atom and both hydroxyl O atoms, and forms two five-membered metallocyclic chelate rings. The M—N bond lengths of the CoII complex, (I), are noticeably longer than those of the CuII complex, (II), while the M—O bond distances of (I) are somewhat shorter than those of (II).

The M—N bond distances in (II) are somewhat longer than those found in [Cu(dmpy)2](nif)2, where nif is the niflumate anion (Koman & Melnik, 1997), and similar to the corresponding distances in [Cu(pydca)(dmpy)], where pydca is pyridine-2,6-dicarboxylate (Koman et al., 2000), while the M—O bond distances are comparable with those observed in [Cu(dmpy)2](nif)2 and shorter than those found in [Cu(pydca)(dmpy)]. The larger deviations from regular octahedral geometry for the Cu phase are characteristic of the Jahn-Teller effect. The four M—O bonds forming the plane of the MO4N2 core are longer than the two M—N bonds occupying the axial positions, resulting in a `compressed' distorted octahedron around the metal ions.

Both dmpy ligands are essentially planar, with an average r.m.s. deviation of 0.057 Å in (I) and 0.065 Å in (II). Both hydroxyl O atoms deviate slightly from the dmpy planes. The planes of the two dmpy ligands are nearly perpendicular to each other, and the dihedral angles between the corresponding planes are 83.73 (3)° for both (I) and (II). The sac anions are also planar, with average r.m.s. deviations of 0.029 and 0.031 Å for (I) and (II), respectively.

In both complexes, the sac ions adopt a parallel alignment with each other and the dihedral angles between the corresponding planes are 16.02 (5) and 13.95 (6)° for (I) and (II), respectively. One of the pyridine rings (ring A = N2/C8—C12) is located between the phenyl rings (ring B = C16—C21 and ring C = C23—C28) of the two sac ions. The planes of rings A, B and C also adopt a parallel alignment and the dihedral angles between A and B, and A and C are 6.92 (12) and 11.39 (11)°, respectively, for (I), and 6.59 (14) and 9.36 (13)°, respectively, for (II). Additionally, the angle of the line passing through the centres of C—A—B to the plane of A is 159.86° for the both complexes. As a result, the phenyl rings of the sac ions and pyridine rings are connected by weak ππ interactions: A···B 3.6349 (11) and A···C 3.6093 (11) Å for (I), and A···B 3.6299 (13) and A···C 3.5844 (12) Å for (II).

The crystals exhibit a number of hydrogen bonds (Fig. 3). The packing and hydrogen-bonding schemes of compounds (I) and (II) are very similar. The H atoms of the hydroxyl groups of the dmpy ligands are involved in intermolecular hydrogen bonding with the water molecules and the carbonyl O atoms of the neighbouring sac ions, while the H atoms of the two water molecules form bifurcated hydrogen bonds with the negatively charged amine N atom and carbonyl and sulfonyl O atoms of the sac ions. Additionally, there are weak C—H···O interactions between phenyl H atoms and hydroxyl and sulfonyl O atoms. The crystal structures are stabilized by an infinite three-dimensional network of extensive hydrogen bonds and other intermolecular interactions.

Experimental top

Previously prepared tetraaquabis(saccharinato)cobalt(II) and copper(II) dihydrates, [M(H2O)4(sac)2]·2H2O (1 mmol), were dissolved in a mixture of methanol-2-propanol (1:1 v:v; 30 ml) and mixed with the dmpy ligand (2 mmol) dissolved in methanol (15 ml) at room temperature. The resulting solutions were left to stand at room temperature and allowed to evaporate slowly over a few days for crystallization. Crystals of (I) and (II), suitable for X-ray diffraction analysis, were collected by suction filtration, washed with acetone and dried in air.

Refinement top

Hydroxyl and water H atoms were found in difference maps and were positionally refined with geometric restraints (O—H = 0.82 Å for both hydroxyl and water H atoms, and H···H = 1.30 Å for the water H atoms) and with Uiso(H) = 1.5Ueq of the parent atom. The remaining H atoms were placed in calculated positions 0.93 Å from their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

For both compounds, data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2000); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) with the atom-numbering scheme and 40% displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the molecular structure of (II) with the atom-numbering scheme and 40% displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. A packing diagram for (II).
(I) Bis(pyridine-2,6-dimethanol)cobalt(II) disaccharinate dihydrate top
Crystal data top
[Co(C7H9NO2)2]·2C7H4O3S·2H2OZ = 2
Mr = 737.61F(000) = 762
Triclinic, P1Dx = 1.559 Mg m3
a = 8.1365 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.5177 (6) ÅCell parameters from 4198 reflections
c = 15.7558 (8) Åθ = 2.7–29.9°
α = 93.054 (1)°µ = 0.75 mm1
β = 97.494 (1)°T = 298 K
γ = 98.030 (1)°Block, pale purple
V = 1571.24 (13) Å30.46 × 0.42 × 0.21 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
9108 independent reflections
Radiation source: fine-focus sealed tube6843 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 30.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1110
Tmin = 0.716, Tmax = 0.854k = 1717
19456 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: mixed
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0533P)2]
where P = (Fo2 + 2Fc2)/3
9108 reflections(Δ/σ)max = 0.001
448 parametersΔρmax = 0.30 e Å3
10 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Co(C7H9NO2)2]·2C7H4O3S·2H2Oγ = 98.030 (1)°
Mr = 737.61V = 1571.24 (13) Å3
Triclinic, P1Z = 2
a = 8.1365 (4) ÅMo Kα radiation
b = 12.5177 (6) ŵ = 0.75 mm1
c = 15.7558 (8) ÅT = 298 K
α = 93.054 (1)°0.46 × 0.42 × 0.21 mm
β = 97.494 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
9108 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
6843 reflections with I > 2σ(I)
Tmin = 0.716, Tmax = 0.854Rint = 0.020
19456 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03510 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.30 e Å3
9108 reflectionsΔρmin = 0.41 e Å3
448 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.26131 (3)0.312977 (16)0.669785 (13)0.03018 (6)
O10.13859 (16)0.45647 (9)0.74000 (8)0.0440 (3)
H10.055 (2)0.4479 (18)0.7757 (13)0.066*
O20.39229 (16)0.22318 (9)0.55628 (8)0.0453 (3)
H20.473 (2)0.1752 (16)0.5595 (15)0.068*
O30.03683 (17)0.25103 (11)0.65113 (9)0.0476 (3)
H30.034 (3)0.2138 (18)0.6080 (12)0.071*
O40.48982 (16)0.31145 (11)0.72428 (8)0.0479 (3)
H40.493 (3)0.3712 (14)0.7463 (15)0.072*
O1W1.0330 (2)0.14679 (13)0.51538 (10)0.0589 (4)
H1W10.973 (3)0.109 (2)0.4788 (15)0.088*
H2W11.118 (3)0.119 (2)0.5258 (17)0.088*
O2W0.42923 (19)0.49401 (12)0.78286 (9)0.0548 (3)
H1W20.496 (3)0.530 (2)0.8191 (14)0.082*
H2W20.350 (2)0.482 (2)0.8080 (15)0.082*
N10.25932 (17)0.42389 (10)0.57963 (8)0.0359 (3)
N20.23706 (17)0.20888 (10)0.76391 (8)0.0336 (3)
C10.1776 (2)0.52398 (13)0.60092 (11)0.0444 (4)
C20.1637 (3)0.59950 (16)0.54034 (14)0.0647 (6)
H2A0.10760.66920.55550.078*
C30.2351 (3)0.56873 (18)0.45678 (14)0.0725 (7)
H3A0.22630.61800.41490.087*
C40.3194 (3)0.46575 (17)0.43494 (12)0.0614 (6)
H4A0.36830.44460.37880.074*
C50.3292 (2)0.39471 (13)0.49877 (10)0.0416 (4)
C60.1028 (3)0.54806 (15)0.69364 (13)0.0621 (6)
H6A0.01760.56830.69770.075*
H6B0.14860.60830.71810.075*
C70.4141 (3)0.28008 (15)0.48207 (12)0.0578 (6)
H7A0.53280.27920.46370.069*
H7B0.36790.24470.43630.069*
C80.0933 (2)0.16691 (13)0.77976 (11)0.0427 (4)
C90.0680 (3)0.09946 (17)0.84518 (14)0.0655 (6)
H90.03250.07200.85640.079*
C100.1961 (4)0.07378 (18)0.89356 (15)0.0774 (8)
H100.18220.02830.93790.093*
C110.3427 (3)0.11469 (17)0.87659 (13)0.0655 (6)
H110.42970.09630.90840.079*
C120.3606 (2)0.18428 (13)0.81102 (11)0.0423 (4)
C130.0338 (2)0.19815 (16)0.72152 (13)0.0505 (5)
H13A0.12840.24600.75340.061*
H13B0.07440.13390.70030.061*
C140.5151 (2)0.23407 (16)0.78673 (13)0.0513 (5)
H14A0.60690.17780.76360.062*
H14B0.54550.26940.83750.062*
S10.23536 (5)0.28997 (4)1.03158 (3)0.04249 (11)
O50.12446 (15)0.43468 (10)0.84277 (7)0.0432 (3)
O60.2541 (2)0.17818 (12)1.02295 (11)0.0700 (4)
O70.33430 (17)0.35034 (12)1.10592 (9)0.0580 (4)
N30.26807 (17)0.34909 (13)0.94508 (9)0.0428 (3)
C150.13097 (19)0.38640 (12)0.91082 (10)0.0333 (3)
C160.01603 (18)0.36521 (12)0.95909 (9)0.0314 (3)
C170.1731 (2)0.39595 (14)0.94256 (11)0.0394 (4)
H170.20110.43530.89570.047*
C180.2881 (2)0.36609 (17)0.99832 (13)0.0521 (5)
H180.39450.38610.98890.063*
C190.2463 (3)0.30749 (19)1.06696 (14)0.0615 (6)
H190.32620.28741.10260.074*
C200.0892 (2)0.27735 (17)1.08474 (12)0.0537 (5)
H200.06100.23821.13170.064*
C210.0242 (2)0.30835 (13)1.02924 (11)0.0379 (3)
S20.77230 (5)0.12073 (3)0.71436 (3)0.03969 (10)
O80.65563 (14)0.07947 (9)0.56422 (7)0.0415 (3)
O90.86006 (17)0.22643 (11)0.68565 (11)0.0652 (4)
O100.8028 (2)0.07784 (13)0.79610 (10)0.0655 (4)
N40.80667 (16)0.03621 (11)0.64162 (9)0.0395 (3)
C220.66303 (18)0.00737 (11)0.61621 (10)0.0305 (3)
C230.51292 (17)0.04062 (11)0.65306 (9)0.0283 (3)
C240.35072 (19)0.02258 (13)0.63412 (11)0.0376 (3)
H240.31980.02770.59560.045*
C250.2355 (2)0.08199 (16)0.67445 (12)0.0480 (4)
H250.12560.07130.66260.058*
C260.2808 (2)0.15674 (17)0.73191 (13)0.0526 (5)
H260.20080.19540.75780.063*
C270.4424 (2)0.17522 (15)0.75165 (11)0.0439 (4)
H270.47310.22500.79060.053*
C280.55623 (19)0.11605 (12)0.71061 (10)0.0317 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02952 (11)0.02995 (10)0.03102 (11)0.00422 (8)0.00297 (8)0.00550 (8)
O10.0479 (7)0.0396 (6)0.0379 (6)0.0022 (5)0.0096 (5)0.0050 (5)
O20.0502 (8)0.0369 (6)0.0419 (6)0.0099 (5)0.0029 (6)0.0069 (5)
O30.0421 (7)0.0530 (8)0.0523 (8)0.0160 (6)0.0141 (6)0.0043 (6)
O40.0374 (7)0.0644 (8)0.0452 (7)0.0156 (6)0.0089 (5)0.0042 (6)
O1W0.0588 (10)0.0696 (10)0.0503 (8)0.0310 (8)0.0040 (7)0.0038 (7)
O2W0.0490 (8)0.0627 (9)0.0547 (8)0.0052 (7)0.0178 (7)0.0046 (7)
N10.0406 (8)0.0309 (6)0.0337 (7)0.0006 (5)0.0005 (6)0.0056 (5)
N20.0382 (7)0.0280 (6)0.0332 (6)0.0038 (5)0.0021 (5)0.0006 (5)
C10.0521 (10)0.0317 (8)0.0436 (9)0.0033 (7)0.0069 (8)0.0095 (7)
C20.0805 (16)0.0386 (10)0.0643 (13)0.0138 (9)0.0119 (11)0.0202 (9)
C30.0963 (18)0.0580 (12)0.0551 (12)0.0138 (12)0.0038 (12)0.0322 (10)
C40.0795 (15)0.0600 (12)0.0373 (10)0.0092 (11)0.0038 (10)0.0184 (9)
C50.0502 (10)0.0394 (8)0.0317 (8)0.0033 (7)0.0026 (7)0.0053 (7)
C60.0868 (16)0.0329 (9)0.0531 (11)0.0098 (9)0.0226 (11)0.0074 (8)
C70.0833 (15)0.0448 (10)0.0344 (9)0.0168 (10)0.0042 (9)0.0037 (8)
C80.0529 (11)0.0336 (8)0.0394 (9)0.0143 (7)0.0082 (8)0.0037 (7)
C90.0967 (18)0.0503 (11)0.0500 (11)0.0345 (12)0.0137 (12)0.0034 (9)
C100.134 (2)0.0467 (11)0.0541 (13)0.0251 (13)0.0025 (14)0.0199 (10)
C110.1007 (19)0.0483 (11)0.0462 (11)0.0067 (11)0.0206 (12)0.0114 (9)
C120.0538 (11)0.0335 (8)0.0370 (8)0.0057 (7)0.0100 (8)0.0006 (7)
C130.0380 (10)0.0590 (11)0.0541 (11)0.0228 (8)0.0062 (8)0.0113 (9)
C140.0434 (10)0.0562 (11)0.0534 (11)0.0056 (8)0.0191 (9)0.0010 (9)
S10.0353 (2)0.0483 (2)0.0445 (2)0.01009 (17)0.00064 (17)0.01368 (19)
O50.0363 (6)0.0557 (7)0.0371 (6)0.0026 (5)0.0033 (5)0.0144 (5)
O60.0735 (11)0.0510 (8)0.0906 (12)0.0266 (7)0.0059 (9)0.0185 (8)
O70.0466 (8)0.0735 (9)0.0481 (7)0.0033 (7)0.0124 (6)0.0131 (7)
N30.0290 (7)0.0575 (9)0.0445 (8)0.0098 (6)0.0071 (6)0.0125 (7)
C150.0283 (7)0.0381 (8)0.0321 (7)0.0019 (6)0.0027 (6)0.0018 (6)
C160.0265 (7)0.0348 (7)0.0309 (7)0.0008 (6)0.0025 (6)0.0012 (6)
C170.0307 (8)0.0459 (9)0.0397 (8)0.0056 (7)0.0003 (7)0.0024 (7)
C180.0304 (9)0.0692 (12)0.0549 (11)0.0042 (8)0.0085 (8)0.0098 (10)
C190.0441 (11)0.0879 (16)0.0532 (12)0.0034 (10)0.0230 (9)0.0064 (11)
C200.0477 (11)0.0692 (13)0.0449 (10)0.0002 (9)0.0128 (8)0.0177 (9)
C210.0329 (8)0.0423 (8)0.0375 (8)0.0021 (6)0.0032 (6)0.0062 (7)
S20.02830 (19)0.0427 (2)0.0519 (2)0.00645 (15)0.01251 (17)0.01875 (18)
O80.0358 (6)0.0416 (6)0.0470 (7)0.0018 (5)0.0033 (5)0.0182 (5)
O90.0427 (8)0.0483 (7)0.1003 (12)0.0110 (6)0.0042 (8)0.0254 (8)
O100.0685 (10)0.0848 (10)0.0587 (9)0.0316 (8)0.0367 (8)0.0240 (8)
N40.0253 (6)0.0438 (7)0.0518 (8)0.0067 (5)0.0061 (6)0.0186 (6)
C220.0262 (7)0.0306 (7)0.0337 (7)0.0020 (5)0.0018 (6)0.0037 (6)
C230.0229 (7)0.0303 (7)0.0303 (7)0.0026 (5)0.0015 (5)0.0007 (5)
C240.0268 (7)0.0436 (8)0.0414 (9)0.0001 (6)0.0077 (6)0.0002 (7)
C250.0252 (8)0.0634 (11)0.0553 (11)0.0097 (7)0.0049 (7)0.0022 (9)
C260.0374 (10)0.0647 (12)0.0577 (11)0.0248 (9)0.0054 (8)0.0067 (9)
C270.0417 (9)0.0496 (9)0.0431 (9)0.0153 (8)0.0027 (7)0.0131 (8)
C280.0275 (7)0.0348 (7)0.0331 (7)0.0056 (6)0.0038 (6)0.0029 (6)
Geometric parameters (Å, º) top
Co1—N22.0341 (12)C11—C121.393 (3)
Co1—N12.0385 (12)C11—H110.9300
Co1—O12.1086 (12)C12—C141.494 (3)
Co1—O32.1295 (13)C13—H13A0.9700
Co1—O22.1334 (12)C13—H13B0.9700
Co1—O42.1455 (13)C14—H14A0.9700
O1—C61.409 (2)C14—H14B0.9700
O1—H10.846 (16)S1—O61.4300 (15)
O2—C71.406 (2)S1—O71.4425 (15)
O2—H20.835 (15)S1—N31.6196 (14)
O3—C131.420 (2)S1—C211.7606 (17)
O3—H30.808 (16)O5—C151.2573 (18)
O4—C141.431 (2)N3—C151.330 (2)
O4—H40.812 (16)C15—C161.500 (2)
O1W—H1W10.793 (16)C16—C211.375 (2)
O1W—H2W10.821 (16)C16—C171.383 (2)
O2W—H1W20.805 (16)C17—C181.392 (2)
O2W—H2W20.802 (16)C17—H170.9300
N1—C51.335 (2)C18—C191.372 (3)
N1—C11.337 (2)C18—H180.9300
N2—C121.338 (2)C19—C201.381 (3)
N2—C81.348 (2)C19—H190.9300
C1—C21.383 (2)C20—C211.383 (2)
C1—C61.505 (3)C20—H200.9300
C2—C31.380 (3)S2—O91.4329 (14)
C2—H2A0.9300S2—O101.4336 (15)
C3—C41.376 (3)S2—N41.6247 (13)
C3—H3A0.9300S2—C281.7597 (15)
C4—C51.380 (2)O8—C221.2511 (17)
C4—H4A0.9300N4—C221.3383 (19)
C5—C71.497 (2)C22—C231.499 (2)
C6—H6A0.9700C23—C241.381 (2)
C6—H6B0.9700C23—C281.3855 (19)
C7—H7A0.9700C24—C251.388 (2)
C7—H7B0.9700C24—H240.9300
C8—C91.380 (2)C25—C261.383 (3)
C8—C131.496 (3)C25—H250.9300
C9—C101.382 (4)C26—C271.381 (3)
C9—H90.9300C26—H260.9300
C10—C111.363 (4)C27—C281.383 (2)
C10—H100.9300C27—H270.9300
N2—Co1—N1173.86 (5)C12—C11—H11120.4
N2—Co1—O198.82 (5)N2—C12—C11120.49 (19)
N1—Co1—O176.85 (5)N2—C12—C14115.53 (14)
N2—Co1—O376.87 (5)C11—C12—C14123.96 (18)
N1—Co1—O399.01 (5)O3—C13—C8110.81 (14)
O1—Co1—O395.06 (5)O3—C13—H13A109.5
N2—Co1—O2108.04 (5)C8—C13—H13A109.5
N1—Co1—O276.36 (5)O3—C13—H13B109.5
O1—Co1—O2153.14 (4)C8—C13—H13B109.5
O3—Co1—O291.06 (5)H13A—C13—H13B108.1
N2—Co1—O476.86 (5)O4—C14—C12111.27 (14)
N1—Co1—O4107.66 (5)O4—C14—H14A109.4
O1—Co1—O495.02 (5)C12—C14—H14A109.4
O3—Co1—O4152.99 (5)O4—C14—H14B109.4
O2—Co1—O491.15 (5)C12—C14—H14B109.4
C6—O1—Co1117.35 (10)H14A—C14—H14B108.0
C6—O1—H1111.5 (16)O6—S1—O7114.91 (9)
Co1—O1—H1114.2 (16)O6—S1—N3111.20 (9)
C7—O2—Co1116.80 (10)O7—S1—N3110.62 (8)
C7—O2—H2113.0 (16)O6—S1—C21112.19 (9)
Co1—O2—H2120.0 (16)O7—S1—C21109.40 (9)
C13—O3—Co1114.65 (11)N3—S1—C2197.12 (7)
C13—O3—H3107.3 (18)C15—N3—S1110.60 (11)
Co1—O3—H3119.7 (18)O5—C15—N3122.65 (14)
C14—O4—Co1115.06 (11)O5—C15—C16122.56 (14)
C14—O4—H4108.5 (17)N3—C15—C16114.79 (13)
Co1—O4—H4109.4 (18)C21—C16—C17120.42 (15)
H1W1—O1W—H2W1106 (2)C21—C16—C15110.29 (13)
H1W2—O2W—H2W2101 (2)C17—C16—C15129.28 (14)
C5—N1—C1120.36 (13)C16—C17—C18117.83 (16)
C5—N1—Co1120.18 (10)C16—C17—H17121.1
C1—N1—Co1119.30 (11)C18—C17—H17121.1
C12—N2—C8120.24 (14)C19—C18—C17120.75 (18)
C12—N2—Co1120.49 (11)C19—C18—H18119.6
C8—N2—Co1119.24 (11)C17—C18—H18119.6
N1—C1—C2121.13 (16)C18—C19—C20121.98 (17)
N1—C1—C6115.98 (14)C18—C19—H19119.0
C2—C1—C6122.88 (16)C20—C19—H19119.0
C3—C2—C1118.27 (17)C19—C20—C21116.63 (17)
C3—C2—H2A120.9C19—C20—H20121.7
C1—C2—H2A120.9C21—C20—H20121.7
C4—C3—C2120.55 (17)C16—C21—C20122.37 (16)
C4—C3—H3A119.7C16—C21—S1107.17 (11)
C2—C3—H3A119.7C20—C21—S1130.45 (14)
C3—C4—C5118.09 (18)O9—S2—O10115.95 (10)
C3—C4—H4A121.0O9—S2—N4110.27 (8)
C5—C4—H4A121.0O10—S2—N4110.37 (8)
N1—C5—C4121.58 (16)O9—S2—C28110.42 (8)
N1—C5—C7115.67 (14)O10—S2—C28111.16 (9)
C4—C5—C7122.73 (16)N4—S2—C2897.07 (7)
O1—C6—C1110.11 (14)C22—N4—S2110.85 (10)
O1—C6—H6A109.6O8—C22—N4122.91 (14)
C1—C6—H6A109.6O8—C22—C23122.99 (13)
O1—C6—H6B109.6N4—C22—C23114.06 (12)
C1—C6—H6B109.6C24—C23—C28120.08 (14)
H6A—C6—H6B108.2C24—C23—C22129.11 (13)
O2—C7—C5110.86 (14)C28—C23—C22110.73 (12)
O2—C7—H7A109.5C23—C24—C25117.83 (15)
C5—C7—H7A109.5C23—C24—H24121.1
O2—C7—H7B109.5C25—C24—H24121.1
C5—C7—H7B109.5C26—C25—C24121.31 (16)
H7A—C7—H7B108.1C26—C25—H25119.3
N2—C8—C9121.47 (19)C24—C25—H25119.3
N2—C8—C13115.33 (14)C27—C26—C25121.42 (16)
C9—C8—C13123.20 (18)C27—C26—H26119.3
C8—C9—C10118.2 (2)C25—C26—H26119.3
C8—C9—H9120.9C26—C27—C28116.70 (15)
C10—C9—H9120.9C26—C27—H27121.6
C11—C10—C9120.36 (19)C28—C27—H27121.6
C11—C10—H10119.8C27—C28—C23122.65 (15)
C9—C10—H10119.8C27—C28—S2130.37 (12)
C10—C11—C12119.2 (2)C23—C28—S2106.94 (11)
C10—C11—H11120.4
N2—Co1—O1—C6169.81 (15)C8—N2—C12—C110.4 (2)
N1—Co1—O1—C65.75 (15)Co1—N2—C12—C11178.72 (14)
O3—Co1—O1—C692.35 (15)C8—N2—C12—C14179.04 (15)
O2—Co1—O1—C610.1 (2)Co1—N2—C12—C142.6 (2)
O4—Co1—O1—C6112.74 (15)C10—C11—C12—N21.5 (3)
N2—Co1—O2—C7176.76 (14)C10—C11—C12—C14179.9 (2)
N1—Co1—O2—C71.21 (15)Co1—O3—C13—C818.54 (19)
O1—Co1—O2—C73.2 (2)N2—C8—C13—O310.5 (2)
O3—Co1—O2—C7100.23 (15)C9—C8—C13—O3169.15 (17)
O4—Co1—O2—C7106.69 (15)Co1—O4—C14—C129.89 (19)
N2—Co1—O3—C1315.86 (12)N2—C12—C14—O48.2 (2)
N1—Co1—O3—C13159.49 (12)C11—C12—C14—O4173.17 (17)
O1—Co1—O3—C1382.04 (13)O6—S1—N3—C15118.12 (14)
O2—Co1—O3—C13124.14 (13)O7—S1—N3—C15112.92 (13)
O4—Co1—O3—C1329.5 (2)C21—S1—N3—C150.95 (14)
N2—Co1—O4—C146.86 (12)S1—N3—C15—O5179.33 (13)
N1—Co1—O4—C14177.46 (12)S1—N3—C15—C160.05 (18)
O1—Co1—O4—C14104.76 (12)O5—C15—C16—C21178.09 (15)
O3—Co1—O4—C146.80 (19)N3—C15—C16—C211.2 (2)
O2—Co1—O4—C14101.41 (12)O5—C15—C16—C173.1 (3)
O1—Co1—N1—C5179.19 (15)N3—C15—C16—C17177.64 (16)
O3—Co1—N1—C587.68 (14)C21—C16—C17—C180.9 (2)
O2—Co1—N1—C51.22 (13)C15—C16—C17—C18179.63 (16)
O4—Co1—N1—C588.04 (14)C16—C17—C18—C190.4 (3)
O1—Co1—N1—C15.35 (14)C17—C18—C19—C201.2 (3)
O3—Co1—N1—C187.78 (15)C18—C19—C20—C210.6 (3)
O2—Co1—N1—C1176.69 (15)C17—C16—C21—C201.5 (3)
O4—Co1—N1—C196.50 (15)C15—C16—C21—C20179.55 (17)
O1—Co1—N2—C1295.39 (12)C17—C16—C21—S1177.24 (13)
O3—Co1—N2—C12171.43 (13)C15—C16—C21—S11.72 (16)
O2—Co1—N2—C1284.64 (13)C19—C20—C21—C160.7 (3)
O4—Co1—N2—C122.25 (12)C19—C20—C21—S1177.68 (16)
O1—Co1—N2—C882.99 (12)O6—S1—C21—C16118.01 (13)
O3—Co1—N2—C810.19 (12)O7—S1—C21—C16113.24 (12)
O2—Co1—N2—C896.98 (12)N3—S1—C21—C161.61 (13)
O4—Co1—N2—C8176.13 (13)O6—S1—C21—C2063.4 (2)
C5—N1—C1—C20.2 (3)O7—S1—C21—C2065.4 (2)
Co1—N1—C1—C2175.66 (17)N3—S1—C21—C20179.79 (19)
C5—N1—C1—C6179.65 (18)O9—S2—N4—C22120.44 (13)
Co1—N1—C1—C64.2 (2)O10—S2—N4—C22110.15 (14)
N1—C1—C2—C30.6 (4)C28—S2—N4—C225.57 (13)
C6—C1—C2—C3179.2 (2)S2—N4—C22—O8175.79 (13)
C1—C2—C3—C40.7 (4)S2—N4—C22—C236.30 (18)
C2—C3—C4—C50.3 (4)O8—C22—C23—C244.9 (3)
C1—N1—C5—C40.2 (3)N4—C22—C23—C24172.98 (16)
Co1—N1—C5—C4175.25 (17)O8—C22—C23—C28178.18 (14)
C1—N1—C5—C7178.71 (18)N4—C22—C23—C283.91 (19)
Co1—N1—C5—C73.3 (2)C28—C23—C24—C250.0 (2)
C3—C4—C5—N10.1 (4)C22—C23—C24—C25176.68 (16)
C3—C4—C5—C7178.5 (2)C23—C24—C25—C260.1 (3)
Co1—O1—C6—C15.2 (2)C24—C25—C26—C270.1 (3)
N1—C1—C6—O10.8 (3)C25—C26—C27—C280.5 (3)
C2—C1—C6—O1179.4 (2)C26—C27—C28—C230.7 (3)
Co1—O2—C7—C53.1 (2)C26—C27—C28—S2176.60 (15)
N1—C5—C7—O24.0 (3)C24—C23—C28—C270.5 (2)
C4—C5—C7—O2174.5 (2)C22—C23—C28—C27177.70 (15)
C12—N2—C8—C91.1 (3)C24—C23—C28—S2177.38 (12)
Co1—N2—C8—C9177.32 (14)C22—C23—C28—S20.17 (15)
C12—N2—C8—C13178.57 (15)O9—S2—C28—C2759.69 (19)
Co1—N2—C8—C133.05 (19)O10—S2—C28—C2770.47 (19)
N2—C8—C9—C101.3 (3)N4—S2—C28—C27174.44 (17)
C13—C8—C9—C10178.3 (2)O9—S2—C28—C23117.96 (12)
C8—C9—C10—C110.1 (3)O10—S2—C28—C23111.89 (12)
C9—C10—C11—C121.2 (4)N4—S2—C28—C233.21 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O50.85 (2)1.72 (2)2.5658 (17)175 (2)
O2—H2···O80.84 (2)1.79 (2)2.6192 (16)176 (2)
O3—H3···O1Wi0.81 (2)1.83 (2)2.613 (2)164 (3)
O4—H4···O2Wi0.81 (2)1.84 (2)2.620 (2)162 (3)
O1W—H2W1···O8ii0.82 (2)2.00 (2)2.8064 (18)168 (3)
O1W—H1W1···N4iii0.79 (2)2.25 (2)3.027 (2)166 (3)
O2W—H2W2···O50.80 (2)2.00 (2)2.7861 (18)166 (3)
O2W—H1W2···O7iv0.81 (2)2.09 (2)2.877 (2)168 (3)
C17—H17···O10.932.593.357 (2)140
C20—H20···O10v0.932.553.294 (2)137
C27—H27···O7vi0.932.583.341 (2)139
Symmetry codes: (i) x1, y, z; (ii) x+2, y, z; (iii) x, y, z+1; (iv) x+1, y+1, z+2; (v) x1, y, z+2; (vi) x, y, z+2.
(II) Bis(pyridine-2,6-dimethanol)copper(II) disaccharinate dihydrate top
Crystal data top
[Cu(C7H9NO2)2]·2C7H4O3S·2H2OZ = 2
Mr = 742.22F(000) = 766
Triclinic, P1Dx = 1.570 Mg m3
a = 8.1544 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.4805 (5) ÅCell parameters from 5581 reflections
c = 15.7510 (7) Åθ = 2.2–29.3°
α = 93.195 (1)°µ = 0.90 mm1
β = 97.501 (1)°T = 298 K
γ = 97.877 (1)°Rod, blue
V = 1569.85 (12) Å30.52 × 0.30 × 0.19 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
8915 independent reflections
Radiation source: fine-focus sealed tube6477 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 811
Tmin = 0.731, Tmax = 0.843k = 1716
13441 measured reflectionsl = 2214
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: mixed
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0497P)2]
where P = (Fo2 + 2Fc2)/3
8915 reflections(Δ/σ)max = 0.001
448 parametersΔρmax = 0.36 e Å3
10 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Cu(C7H9NO2)2]·2C7H4O3S·2H2Oγ = 97.877 (1)°
Mr = 742.22V = 1569.85 (12) Å3
Triclinic, P1Z = 2
a = 8.1544 (4) ÅMo Kα radiation
b = 12.4805 (5) ŵ = 0.90 mm1
c = 15.7510 (7) ÅT = 298 K
α = 93.195 (1)°0.52 × 0.30 × 0.19 mm
β = 97.501 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
8915 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
6477 reflections with I > 2σ(I)
Tmin = 0.731, Tmax = 0.843Rint = 0.016
13441 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03510 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.36 e Å3
8915 reflectionsΔρmin = 0.30 e Å3
448 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.25895 (2)0.318117 (16)0.668457 (13)0.02893 (6)
O10.13777 (17)0.46034 (11)0.74270 (9)0.0428 (3)
H10.054 (2)0.454 (2)0.7753 (14)0.064*
O20.38258 (17)0.21909 (11)0.55525 (9)0.0433 (3)
H20.461 (3)0.1733 (17)0.5609 (16)0.065*
O30.02534 (18)0.25759 (12)0.65292 (11)0.0493 (4)
H30.019 (3)0.223 (2)0.6096 (13)0.074*
O40.49689 (19)0.32511 (14)0.71615 (10)0.0513 (4)
H40.496 (4)0.3828 (16)0.7394 (17)0.077*
O1W1.0341 (2)0.14736 (15)0.51569 (11)0.0611 (4)
H1W11.117 (3)0.121 (2)0.525 (2)0.092*
H2W10.969 (3)0.106 (2)0.4825 (17)0.092*
O2W0.4287 (2)0.50642 (14)0.78407 (11)0.0567 (4)
H1W20.348 (3)0.487 (2)0.8082 (17)0.085*
H2W20.492 (3)0.537 (2)0.8243 (15)0.085*
N10.25646 (18)0.42281 (11)0.58145 (9)0.0331 (3)
N20.24859 (18)0.21529 (11)0.75653 (9)0.0332 (3)
C10.1757 (3)0.52393 (14)0.60190 (13)0.0431 (5)
C20.1626 (3)0.59844 (17)0.54111 (16)0.0610 (7)
H2A0.10570.66810.55590.073*
C30.2355 (3)0.5677 (2)0.45776 (16)0.0649 (7)
H3A0.22890.61700.41570.078*
C40.3184 (3)0.46383 (18)0.43682 (14)0.0547 (6)
H4A0.36760.44210.38080.066*
C50.3269 (2)0.39301 (15)0.50049 (12)0.0385 (4)
C60.0989 (3)0.54927 (17)0.69462 (15)0.0654 (7)
H6A0.02150.56680.69800.079*
H6B0.14080.61190.71830.079*
C70.4134 (3)0.27830 (17)0.48323 (14)0.0585 (6)
H7A0.53280.27820.46900.070*
H7B0.37380.24410.43450.070*
C80.1087 (3)0.16958 (15)0.77560 (13)0.0458 (5)
C90.0944 (4)0.1005 (2)0.84053 (17)0.0729 (8)
H90.00390.07120.85400.087*
C100.2253 (5)0.0754 (2)0.88473 (18)0.0869 (10)
H100.21760.02800.92810.104*
C110.3677 (4)0.1199 (2)0.86536 (16)0.0751 (9)
H110.45800.10250.89500.090*
C120.3773 (3)0.19193 (16)0.80049 (13)0.0454 (5)
C130.0276 (3)0.19918 (19)0.72276 (15)0.0551 (6)
H13A0.12170.24270.75860.066*
H13B0.06500.13360.70140.066*
C140.5285 (3)0.24455 (19)0.77488 (16)0.0568 (6)
H14A0.61970.18970.74850.068*
H14B0.56250.27770.82570.068*
S10.23480 (6)0.28538 (4)1.02792 (3)0.04502 (12)
O50.12665 (16)0.43827 (11)0.84374 (9)0.0442 (3)
O60.2531 (2)0.17314 (14)1.01633 (13)0.0751 (5)
O70.33249 (19)0.34340 (14)1.10364 (10)0.0621 (4)
N30.26849 (19)0.34809 (15)0.94349 (11)0.0441 (4)
C150.1320 (2)0.38717 (14)0.91010 (12)0.0342 (4)
C160.0148 (2)0.36355 (14)0.95781 (11)0.0319 (4)
C170.1718 (2)0.39502 (16)0.94205 (13)0.0396 (4)
H170.19910.43680.89660.047*
C180.2869 (3)0.3621 (2)0.99638 (15)0.0529 (5)
H180.39290.38260.98750.064*
C190.2466 (3)0.2996 (2)1.06335 (16)0.0654 (7)
H190.32700.27701.09790.079*
C200.0896 (3)0.2698 (2)1.08022 (14)0.0560 (6)
H200.06140.22871.12590.067*
C210.0238 (2)0.30393 (15)1.02609 (12)0.0385 (4)
S20.77522 (6)0.11871 (4)0.71413 (3)0.04053 (12)
O80.65194 (16)0.08107 (11)0.56522 (9)0.0420 (3)
O90.86538 (19)0.22355 (13)0.68494 (13)0.0669 (5)
O100.8053 (2)0.07535 (15)0.79606 (11)0.0673 (5)
N40.80581 (17)0.03337 (13)0.64174 (11)0.0398 (4)
C220.6623 (2)0.00806 (13)0.61650 (11)0.0304 (3)
C230.51412 (19)0.04219 (13)0.65345 (11)0.0280 (3)
C240.3528 (2)0.02618 (15)0.63426 (12)0.0365 (4)
H240.32050.02390.59590.044*
C250.2401 (2)0.08810 (18)0.67469 (14)0.0473 (5)
H250.13060.07940.66260.057*
C260.2872 (2)0.16185 (18)0.73207 (15)0.0505 (5)
H260.20890.20170.75810.061*
C270.4484 (2)0.17771 (16)0.75161 (13)0.0438 (5)
H270.48060.22720.79050.053*
C280.5600 (2)0.11663 (14)0.71068 (11)0.0311 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02817 (11)0.02750 (10)0.03069 (11)0.00306 (7)0.00258 (8)0.00444 (8)
O10.0463 (8)0.0368 (7)0.0398 (8)0.0007 (6)0.0089 (6)0.0051 (6)
O20.0460 (8)0.0348 (7)0.0448 (8)0.0074 (6)0.0006 (6)0.0099 (6)
O30.0413 (8)0.0466 (8)0.0622 (10)0.0097 (6)0.0138 (7)0.0009 (7)
O40.0403 (8)0.0667 (10)0.0482 (9)0.0151 (7)0.0064 (6)0.0030 (7)
O1W0.0609 (11)0.0703 (11)0.0547 (10)0.0318 (9)0.0041 (8)0.0005 (8)
O2W0.0512 (9)0.0635 (10)0.0561 (10)0.0026 (8)0.0165 (8)0.0035 (8)
N10.0365 (8)0.0277 (7)0.0332 (8)0.0014 (6)0.0004 (6)0.0046 (6)
N20.0400 (8)0.0271 (7)0.0305 (8)0.0021 (6)0.0018 (6)0.0001 (6)
C10.0505 (11)0.0284 (9)0.0454 (11)0.0017 (8)0.0059 (9)0.0085 (8)
C20.0742 (16)0.0353 (10)0.0644 (15)0.0108 (10)0.0107 (12)0.0179 (10)
C30.0799 (17)0.0532 (13)0.0563 (15)0.0106 (12)0.0003 (12)0.0304 (11)
C40.0717 (15)0.0542 (13)0.0332 (11)0.0039 (11)0.0026 (10)0.0139 (9)
C50.0448 (10)0.0363 (9)0.0318 (9)0.0014 (8)0.0021 (8)0.0044 (7)
C60.0938 (19)0.0315 (10)0.0560 (14)0.0112 (11)0.0260 (13)0.0081 (10)
C70.0889 (17)0.0410 (11)0.0348 (11)0.0163 (11)0.0054 (11)0.0048 (9)
C80.0619 (13)0.0332 (9)0.0392 (11)0.0164 (9)0.0109 (9)0.0047 (8)
C90.120 (2)0.0489 (14)0.0489 (14)0.0346 (14)0.0175 (15)0.0053 (11)
C100.161 (3)0.0493 (15)0.0500 (16)0.0199 (18)0.0040 (19)0.0180 (12)
C110.124 (3)0.0504 (14)0.0475 (14)0.0185 (15)0.0301 (15)0.0059 (11)
C120.0609 (13)0.0344 (10)0.0380 (11)0.0087 (9)0.0148 (9)0.0031 (8)
C130.0417 (11)0.0622 (14)0.0596 (14)0.0256 (10)0.0101 (10)0.0149 (11)
C140.0451 (12)0.0599 (14)0.0628 (15)0.0126 (10)0.0247 (11)0.0093 (11)
S10.0386 (3)0.0511 (3)0.0461 (3)0.0110 (2)0.0006 (2)0.0155 (2)
O50.0368 (7)0.0566 (8)0.0384 (7)0.0012 (6)0.0033 (6)0.0159 (6)
O60.0818 (13)0.0533 (10)0.0959 (15)0.0295 (9)0.0067 (11)0.0208 (10)
O70.0503 (9)0.0800 (11)0.0498 (9)0.0034 (8)0.0146 (7)0.0179 (8)
N30.0295 (8)0.0612 (11)0.0443 (10)0.0103 (7)0.0074 (7)0.0140 (8)
C150.0294 (8)0.0383 (9)0.0334 (9)0.0013 (7)0.0032 (7)0.0023 (7)
C160.0284 (8)0.0346 (9)0.0308 (9)0.0004 (7)0.0033 (7)0.0010 (7)
C170.0316 (9)0.0462 (10)0.0393 (10)0.0058 (8)0.0012 (8)0.0022 (8)
C180.0321 (10)0.0717 (15)0.0540 (13)0.0057 (10)0.0089 (9)0.0067 (11)
C190.0488 (13)0.0915 (19)0.0560 (15)0.0062 (13)0.0244 (11)0.0060 (13)
C200.0530 (13)0.0725 (15)0.0421 (12)0.0024 (11)0.0118 (10)0.0177 (11)
C210.0347 (9)0.0420 (10)0.0370 (10)0.0005 (7)0.0037 (7)0.0057 (8)
S20.0297 (2)0.0421 (3)0.0535 (3)0.00588 (18)0.0123 (2)0.0196 (2)
O80.0383 (7)0.0417 (7)0.0463 (8)0.0033 (6)0.0035 (6)0.0194 (6)
O90.0431 (8)0.0493 (9)0.1040 (14)0.0104 (7)0.0030 (9)0.0273 (9)
O100.0701 (11)0.0868 (12)0.0616 (11)0.0334 (9)0.0382 (9)0.0282 (9)
N40.0250 (7)0.0444 (9)0.0520 (10)0.0068 (6)0.0042 (7)0.0192 (7)
C220.0278 (8)0.0300 (8)0.0323 (9)0.0028 (6)0.0014 (6)0.0030 (7)
C230.0250 (7)0.0278 (8)0.0299 (8)0.0028 (6)0.0015 (6)0.0004 (6)
C240.0289 (8)0.0406 (10)0.0393 (10)0.0016 (7)0.0063 (7)0.0005 (8)
C250.0275 (9)0.0588 (13)0.0561 (13)0.0114 (8)0.0042 (8)0.0006 (10)
C260.0396 (11)0.0588 (13)0.0556 (13)0.0247 (9)0.0035 (9)0.0066 (10)
C270.0450 (11)0.0438 (11)0.0449 (11)0.0149 (8)0.0017 (9)0.0135 (9)
C280.0282 (8)0.0318 (8)0.0334 (9)0.0052 (6)0.0031 (7)0.0037 (7)
Geometric parameters (Å, º) top
Cu1—N11.9455 (14)C11—C121.400 (3)
Cu1—N21.9432 (15)C11—H110.9300
Cu1—O12.1168 (13)C12—C141.495 (3)
Cu1—O22.1603 (14)C13—H13A0.9700
Cu1—O32.1806 (14)C13—H13B0.9700
Cu1—O42.1809 (15)C14—H14A0.9700
O1—C61.402 (2)C14—H14B0.9700
O1—H10.819 (16)S1—O61.4331 (17)
O2—C71.402 (2)S1—O71.4418 (17)
O2—H20.812 (16)S1—N31.6153 (17)
O3—C131.407 (3)S1—C211.7638 (19)
O3—H30.797 (16)O5—C151.253 (2)
O4—C141.424 (3)N3—C151.333 (2)
O4—H40.788 (16)C15—C161.499 (2)
O1W—H1W10.796 (16)C16—C211.369 (2)
O1W—H2W10.801 (17)C16—C171.386 (2)
O2W—H1W20.818 (17)C17—C181.388 (3)
O2W—H2W20.809 (17)C17—H170.9300
N1—C51.338 (2)C18—C191.379 (3)
N1—C11.342 (2)C18—H180.9300
N2—C121.339 (3)C19—C201.379 (3)
N2—C81.351 (2)C19—H190.9300
C1—C21.375 (3)C20—C211.379 (3)
C1—C61.510 (3)C20—H200.9300
C2—C31.379 (3)S2—O91.4300 (16)
C2—H2A0.9300S2—O101.4349 (17)
C3—C41.378 (3)S2—N41.6219 (15)
C3—H3A0.9300S2—C281.7595 (17)
C4—C51.376 (3)O8—C221.252 (2)
C4—H4A0.9300N4—C221.332 (2)
C5—C71.500 (3)C22—C231.502 (2)
C6—H6A0.9700C23—C241.378 (2)
C6—H6B0.9700C23—C281.379 (2)
C7—H7A0.9700C24—C251.395 (3)
C7—H7B0.9700C24—H240.9300
C8—C91.378 (3)C25—C261.378 (3)
C8—C131.492 (3)C25—H250.9300
C9—C101.360 (4)C26—C271.379 (3)
C9—H90.9300C26—H260.9300
C10—C111.360 (4)C27—C281.385 (2)
C10—H100.9300C27—H270.9300
N2—Cu1—N1176.96 (6)C12—C11—H11120.2
N2—Cu1—O199.30 (6)N2—C12—C11120.3 (2)
N1—Cu1—O179.10 (6)N2—C12—C14116.48 (18)
N2—Cu1—O2103.30 (5)C11—C12—C14123.2 (2)
N1—Cu1—O278.30 (5)O3—C13—C8111.98 (16)
O1—Cu1—O2157.40 (5)O3—C13—H13A109.2
N2—Cu1—O378.66 (6)C8—C13—H13A109.2
N1—Cu1—O398.82 (6)O3—C13—H13B109.2
O1—Cu1—O393.62 (6)C8—C13—H13B109.2
O2—Cu1—O390.16 (6)H13A—C13—H13B107.9
N2—Cu1—O478.92 (6)O4—C14—C12111.57 (17)
N1—Cu1—O4103.70 (6)O4—C14—H14A109.3
O1—Cu1—O493.78 (6)C12—C14—H14A109.3
O2—Cu1—O491.22 (6)O4—C14—H14B109.3
O3—Cu1—O4157.25 (6)C12—C14—H14B109.3
C6—O1—Cu1114.32 (12)H14A—C14—H14B108.0
C6—O1—H1107.8 (18)O6—S1—O7115.18 (10)
Cu1—O1—H1116.2 (18)O6—S1—N3111.26 (11)
C7—O2—Cu1113.55 (11)O7—S1—N3110.51 (10)
C7—O2—H2113.2 (18)O6—S1—C21112.10 (10)
Cu1—O2—H2117.7 (18)O7—S1—C21109.17 (10)
C13—O3—Cu1111.30 (12)N3—S1—C2197.19 (8)
C13—O3—H3109 (2)C15—N3—S1110.69 (13)
Cu1—O3—H3119 (2)O5—C15—N3122.64 (17)
C14—O4—Cu1111.55 (12)O5—C15—C16122.93 (15)
C14—O4—H4109 (2)N3—C15—C16114.42 (16)
Cu1—O4—H4109 (2)C21—C16—C17120.20 (17)
H1W1—O1W—H2W1108 (3)C21—C16—C15110.73 (15)
H1W2—O2W—H2W2100 (2)C17—C16—C15129.06 (17)
C5—N1—C1119.88 (16)C16—C17—C18117.73 (19)
C5—N1—Cu1120.43 (12)C16—C17—H17121.1
C1—N1—Cu1119.59 (12)C18—C17—H17121.1
C12—N2—C8119.64 (18)C19—C18—C17121.0 (2)
C12—N2—Cu1120.45 (13)C19—C18—H18119.5
C8—N2—Cu1119.88 (14)C17—C18—H18119.5
N1—C1—C2121.39 (19)C20—C19—C18121.4 (2)
N1—C1—C6115.88 (16)C20—C19—H19119.3
C2—C1—C6122.72 (18)C18—C19—H19119.3
C1—C2—C3118.7 (2)C19—C20—C21116.8 (2)
C1—C2—H2A120.7C19—C20—H20121.6
C3—C2—H2A120.7C21—C20—H20121.6
C4—C3—C2119.9 (2)C16—C21—C20122.76 (19)
C4—C3—H3A120.0C16—C21—S1106.93 (13)
C2—C3—H3A120.0C20—C21—S1130.30 (17)
C5—C4—C3118.7 (2)O9—S2—O10115.82 (12)
C5—C4—H4A120.7O9—S2—N4110.27 (10)
C3—C4—H4A120.7O10—S2—N4110.54 (10)
N1—C5—C4121.50 (17)O9—S2—C28110.59 (9)
N1—C5—C7116.32 (16)O10—S2—C28111.20 (10)
C4—C5—C7122.17 (18)N4—S2—C2896.82 (8)
O1—C6—C1110.48 (16)C22—N4—S2111.07 (11)
O1—C6—H6A109.6O8—C22—N4123.08 (15)
C1—C6—H6A109.6O8—C22—C23122.82 (15)
O1—C6—H6B109.6N4—C22—C23114.09 (15)
C1—C6—H6B109.6C24—C23—C28120.61 (15)
H6A—C6—H6B108.1C24—C23—C22128.85 (16)
O2—C7—C5110.67 (16)C28—C23—C22110.47 (14)
O2—C7—H7A109.5C23—C24—C25117.36 (18)
C5—C7—H7A109.5C23—C24—H24121.3
O2—C7—H7B109.5C25—C24—H24121.3
C5—C7—H7B109.5C26—C25—C24121.48 (18)
H7A—C7—H7B108.1C26—C25—H25119.3
N2—C8—C9121.3 (2)C24—C25—H25119.3
N2—C8—C13116.00 (18)C25—C26—C27121.26 (17)
C9—C8—C13122.7 (2)C25—C26—H26119.4
C10—C9—C8119.4 (3)C27—C26—H26119.4
C10—C9—H9120.3C26—C27—C28116.94 (19)
C8—C9—H9120.3C26—C27—H27121.5
C9—C10—C11119.9 (2)C28—C27—H27121.5
C9—C10—H10120.1C23—C28—C27122.35 (17)
C11—C10—H10120.1C23—C28—S2107.22 (12)
C10—C11—C12119.6 (3)C27—C28—S2130.37 (15)
C10—C11—H11120.2
N2—Cu1—O1—C6170.01 (16)C8—N2—C12—C110.5 (3)
N1—Cu1—O1—C67.37 (16)Cu1—N2—C12—C11178.41 (15)
O2—Cu1—O1—C68.2 (2)C8—N2—C12—C14179.23 (17)
O3—Cu1—O1—C690.92 (16)Cu1—N2—C12—C142.9 (2)
O4—Cu1—O1—C6110.61 (16)C10—C11—C12—N21.4 (3)
N2—Cu1—O2—C7176.33 (15)C10—C11—C12—C14180.0 (2)
N1—Cu1—O2—C76.32 (15)Cu1—O3—C13—C815.1 (2)
O1—Cu1—O2—C75.5 (2)N2—C8—C13—O39.1 (3)
O3—Cu1—O2—C7105.29 (15)C9—C8—C13—O3171.28 (19)
O4—Cu1—O2—C797.42 (16)Cu1—O4—C14—C1210.9 (2)
N2—Cu1—O3—C1313.15 (13)N2—C12—C14—O49.5 (3)
N1—Cu1—O3—C13165.13 (13)C11—C12—C14—O4171.8 (2)
O1—Cu1—O3—C1385.61 (13)O6—S1—N3—C15118.08 (16)
O2—Cu1—O3—C13116.69 (13)O7—S1—N3—C15112.65 (15)
O4—Cu1—O3—C1323.2 (2)C21—S1—N3—C150.96 (16)
N2—Cu1—O4—C147.69 (13)S1—N3—C15—O5179.35 (15)
N1—Cu1—O4—C14173.88 (13)S1—N3—C15—C160.1 (2)
O1—Cu1—O4—C14106.44 (13)O5—C15—C16—C21178.15 (17)
O2—Cu1—O4—C1495.62 (14)N3—C15—C16—C211.0 (2)
O3—Cu1—O4—C142.3 (2)O5—C15—C16—C173.1 (3)
O1—Cu1—N1—C5178.06 (15)N3—C15—C16—C17177.74 (18)
O2—Cu1—N1—C51.60 (14)C21—C16—C17—C181.3 (3)
O3—Cu1—N1—C589.92 (15)C15—C16—C17—C18179.99 (18)
O4—Cu1—N1—C586.79 (15)C16—C17—C18—C190.5 (3)
O1—Cu1—N1—C15.55 (15)C17—C18—C19—C201.7 (4)
O2—Cu1—N1—C1174.79 (16)C18—C19—C20—C211.1 (4)
O3—Cu1—N1—C186.47 (15)C17—C16—C21—C201.9 (3)
O4—Cu1—N1—C196.82 (15)C15—C16—C21—C20179.15 (19)
O1—Cu1—N2—C1294.68 (14)C17—C16—C21—S1177.32 (14)
O2—Cu1—N2—C1286.02 (14)C15—C16—C21—S11.59 (18)
O3—Cu1—N2—C12173.46 (15)C19—C20—C21—C160.7 (3)
O4—Cu1—N2—C122.61 (13)C19—C20—C21—S1178.37 (18)
O1—Cu1—N2—C883.19 (14)O6—S1—C21—C16118.01 (15)
O2—Cu1—N2—C896.12 (14)O7—S1—C21—C16113.15 (14)
O3—Cu1—N2—C88.68 (13)N3—S1—C21—C161.54 (15)
O4—Cu1—N2—C8175.25 (14)O6—S1—C21—C2062.8 (2)
C5—N1—C1—C20.3 (3)O7—S1—C21—C2066.0 (2)
Cu1—N1—C1—C2176.13 (18)N3—S1—C21—C20179.3 (2)
C5—N1—C1—C6179.33 (19)O9—S2—N4—C22120.21 (15)
Cu1—N1—C1—C62.9 (3)O10—S2—N4—C22110.44 (15)
N1—C1—C2—C30.4 (4)C28—S2—N4—C225.26 (15)
C6—C1—C2—C3179.4 (2)S2—N4—C22—O8175.19 (15)
C1—C2—C3—C40.5 (4)S2—N4—C22—C236.1 (2)
C2—C3—C4—C50.3 (4)O8—C22—C23—C245.8 (3)
C1—N1—C5—C40.1 (3)N4—C22—C23—C24172.93 (17)
Cu1—N1—C5—C4176.23 (16)O8—C22—C23—C28177.35 (16)
C1—N1—C5—C7179.55 (19)N4—C22—C23—C283.9 (2)
Cu1—N1—C5—C73.2 (2)C28—C23—C24—C250.2 (3)
C3—C4—C5—N10.2 (3)C22—C23—C24—C25176.42 (17)
C3—C4—C5—C7179.5 (2)C23—C24—C25—C260.5 (3)
Cu1—O1—C6—C17.7 (3)C24—C25—C26—C270.3 (3)
N1—C1—C6—O13.5 (3)C25—C26—C27—C280.3 (3)
C2—C1—C6—O1177.5 (2)C24—C23—C28—C270.4 (3)
Cu1—O2—C7—C59.2 (2)C22—C23—C28—C27177.56 (17)
N1—C5—C7—O28.3 (3)C24—C23—C28—S2177.10 (13)
C4—C5—C7—O2171.1 (2)C22—C23—C28—S20.06 (17)
C12—N2—C8—C91.1 (3)C26—C27—C28—C230.6 (3)
Cu1—N2—C8—C9176.81 (16)C26—C27—C28—S2176.25 (16)
C12—N2—C8—C13179.33 (17)O9—S2—C28—C23117.57 (14)
Cu1—N2—C8—C132.8 (2)O10—S2—C28—C23112.29 (14)
N2—C8—C9—C101.8 (3)N4—S2—C28—C232.88 (14)
C13—C8—C9—C10178.6 (2)O9—S2—C28—C2759.7 (2)
C8—C9—C10—C110.9 (4)O10—S2—C28—C2770.5 (2)
C9—C10—C11—C120.6 (4)N4—S2—C28—C27174.34 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O50.82 (2)1.75 (2)2.5639 (18)179 (3)
O2—H2···O80.81 (2)1.82 (2)2.6267 (18)173 (3)
O3—H3···O1Wi0.80 (2)1.84 (2)2.631 (2)171 (3)
O4—H4···O2Wi0.79 (2)1.87 (2)2.629 (2)160 (3)
O1W—H1W1···O8ii0.80 (2)2.04 (2)2.825 (2)168 (3)
O1W—H2W1···N4iii0.80 (2)2.28 (2)3.052 (2)161 (3)
O2W—H1W2···O50.82 (2)1.99 (2)2.791 (2)169 (3)
O2W—H2W2···O7iv0.81 (2)2.08 (2)2.858 (2)160 (3)
C17—H17···O10.932.563.324 (2)139
C20—H20···O10v0.932.533.289 (3)139
C27—H27···O7vi0.932.563.296 (2)136
Symmetry codes: (i) x1, y, z; (ii) x+2, y, z; (iii) x, y, z+1; (iv) x+1, y+1, z+2; (v) x1, y, z+2; (vi) x, y, z+2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Co(C7H9NO2)2]·2C7H4O3S·2H2O[Cu(C7H9NO2)2]·2C7H4O3S·2H2O
Mr737.61742.22
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)298298
a, b, c (Å)8.1365 (4), 12.5177 (6), 15.7558 (8)8.1544 (4), 12.4805 (5), 15.7510 (7)
α, β, γ (°)93.054 (1), 97.494 (1), 98.030 (1)93.195 (1), 97.501 (1), 97.877 (1)
V3)1571.24 (13)1569.85 (12)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.750.90
Crystal size (mm)0.46 × 0.42 × 0.210.52 × 0.30 × 0.19
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Bruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Multi-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.716, 0.8540.731, 0.843
No. of measured, independent and
observed [I > 2σ(I)] reflections
19456, 9108, 6843 13441, 8915, 6477
Rint0.0200.016
(sin θ/λ)max1)0.7040.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.094, 1.00 0.035, 0.090, 0.94
No. of reflections91088915
No. of parameters448448
No. of restraints1010
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.410.36, 0.30

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2000), SHELXL97.

Selected geometric parameters (Å, º) for (I) top
Co1—N22.0341 (12)Co1—O32.1295 (13)
Co1—N12.0385 (12)Co1—O22.1334 (12)
Co1—O12.1086 (12)Co1—O42.1455 (13)
N2—Co1—N1173.86 (5)O1—Co1—O2153.14 (4)
N2—Co1—O198.82 (5)O3—Co1—O291.06 (5)
N1—Co1—O176.85 (5)N2—Co1—O476.86 (5)
N2—Co1—O376.87 (5)N1—Co1—O4107.66 (5)
N1—Co1—O399.01 (5)O1—Co1—O495.02 (5)
O1—Co1—O395.06 (5)O3—Co1—O4152.99 (5)
N2—Co1—O2108.04 (5)O2—Co1—O491.15 (5)
N1—Co1—O276.36 (5)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O50.846 (16)1.722 (16)2.5658 (17)175 (2)
O2—H2···O80.835 (15)1.786 (16)2.6192 (16)176 (2)
O3—H3···O1Wi0.808 (16)1.826 (17)2.613 (2)164 (3)
O4—H4···O2Wi0.812 (16)1.835 (17)2.620 (2)162 (3)
O1W—H2W1···O8ii0.821 (16)1.997 (17)2.8064 (18)168 (3)
O1W—H1W1···N4iii0.793 (16)2.250 (17)3.027 (2)166 (3)
O2W—H2W2···O50.802 (16)2.002 (16)2.7861 (18)166 (3)
O2W—H1W2···O7iv0.805 (16)2.086 (17)2.877 (2)168 (3)
C17—H17···O10.932.593.357 (2)140
C20—H20···O10v0.932.553.294 (2)137
C27—H27···O7vi0.932.583.341 (2)139
Symmetry codes: (i) x1, y, z; (ii) x+2, y, z; (iii) x, y, z+1; (iv) x+1, y+1, z+2; (v) x1, y, z+2; (vi) x, y, z+2.
Selected geometric parameters (Å, º) for (II) top
Cu1—N11.9455 (14)Cu1—O22.1603 (14)
Cu1—N21.9432 (15)Cu1—O32.1806 (14)
Cu1—O12.1168 (13)Cu1—O42.1809 (15)
N2—Cu1—N1176.96 (6)O1—Cu1—O393.62 (6)
N2—Cu1—O199.30 (6)O2—Cu1—O390.16 (6)
N1—Cu1—O179.10 (6)N2—Cu1—O478.92 (6)
N2—Cu1—O2103.30 (5)N1—Cu1—O4103.70 (6)
N1—Cu1—O278.30 (5)O1—Cu1—O493.78 (6)
O1—Cu1—O2157.40 (5)O2—Cu1—O491.22 (6)
N2—Cu1—O378.66 (6)O3—Cu1—O4157.25 (6)
N1—Cu1—O398.82 (6)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O50.819 (16)1.745 (16)2.5639 (18)179 (3)
O2—H2···O80.812 (16)1.820 (16)2.6267 (18)173 (3)
O3—H3···O1Wi0.797 (16)1.842 (17)2.631 (2)171 (3)
O4—H4···O2Wi0.788 (16)1.873 (18)2.629 (2)160 (3)
O1W—H1W1···O8ii0.796 (16)2.041 (17)2.825 (2)168 (3)
O1W—H2W1···N4iii0.801 (17)2.284 (19)3.052 (2)161 (3)
O2W—H1W2···O50.818 (17)1.985 (17)2.791 (2)169 (3)
O2W—H2W2···O7iv0.809 (17)2.084 (18)2.858 (2)160 (3)
C17—H17···O10.932.563.324 (2)139
C20—H20···O10v0.932.533.289 (3)139
C27—H27···O7vi0.932.563.296 (2)136
Symmetry codes: (i) x1, y, z; (ii) x+2, y, z; (iii) x, y, z+1; (iv) x+1, y+1, z+2; (v) x1, y, z+2; (vi) x, y, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds