Download citation
Download citation
link to html
Single crystals of dipotassium titanium trisilicate hydrate were synthesized and the crystal structure was refined using data from single-crystal X-ray diffraction. The structure is a three-dimensional mixed framework and contains channels formed by six- and eight-membered rings. K+ ions and water mol­ecules are located in the channels.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010000545X/os1103sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010000545X/os1103Isup2.hkl
Contains datablock I

Comment top

The synthesis and structure refinement of the title compound were undertaken as part of our on-going project aimed at preparing Ti–Si mixed framework compounds. There has recently been much interest in synthesizing open-framework titanium silicates because of their zeolite-like properties and potential applications as molecular sieves, ion-exchange materials and catalysts. Despite extensive worldwide synthetic efforts, only some titanium silicates analogous to minerals and a few titanium silicates with new structures have been reported, for example, Na2TiSi5O13.xH2O (Kuznicki, 1989; Anderson et al., 1995; Wang & Jacobson, 1999), Na4Ti2Si8O22.4H2O (Roberts et al., 1996), Na3(Na,H)Ti2O2[Si2O6]2.2H2O (Dadachov et al., 1997) and Na4[Ti4O4(SiO4)3.6H2O (Dadachov & Harrison, 1997). We have also synthesized a new titanium silicate, K2TiSi3O9.H2O, and the crystal structure was determined using X-ray powder data (Dadachov & LeBail, 1997). All non-H atoms were found and their positions were refined isotropically. The structure appeared to be isostructural with the alkaline Zr–silicate umbite K2ZrSi3O9.H2O (Ilyukhin et al., 1981) and K2(Zr0.86Ti0.14)Si3O9.H2O minerals (Ilyushin, 1993). Recently, we were able to grow crystals of K2TiSi3O9.H2O in sizes suitable for single-crystal structure determination. We report here the accurate crystal structure of K2TiSi3O9.H2O.

The structure is built up from [Si3O9]n wollastonite-type chains running parallel to the a axis. These chains are connected by isolated TiO6 octahedra forming a three-dimensional framework structure. Two types of channels are found along the a axis, i.e. eight-ring channels formed by alternating SiO4 tetrahedra and TiO6 octahedra, and six-ring channels formed by alternating SiO4 tetrahedral pairs and TiO6 octahedra. Two K+ ions are located inside the eight-ring channels and the other two K+ ions inside the six-ring channels. Two water molecules are also located inside the eight-ring channels, forming hydrogen bonds with the framework O atoms; O—H···O distances are 1.76 (2) (H1···O6), 1.92 (3) (H2···O8) and 2.57 (4) Å (H2···O9).

Experimental top

The synthesis of the title compound was carried out by hydrothermal reaction. KOH (10.240 g) and colloidal silica Ludox (2.531 g; HS-40, Aldrich) were added to distilled water (59.974 g). KF (0.968 g) and then TiCl3 (5.760 g) solution (15wt% TiCl3, 10wt% HCl, Aldrich) were added under continuous stirring. The TiCl3:SiO2:KF:KOH:H2O molar ratio was 1:3:3:32:600 H2O and the pH was 1.5. Excess KOH was added to increase the pH to 14.0. The solution was heated in a 23 ml Teflon-lined autoclave at 488 K for 100 h under autogeneous pressure. The colorless transparent crystals formed were filtered and washed, first with water, then with acetone and finally dried at 328 K.

Refinement top

The positions of the non-H atoms were refined anisotropically using the model obtained by X-ray powder diffraction (Dadachov & LeBail, 1997). Then H-atom positions were obtained from the difference Fourier map and were refined isotropically with Uiso equal to 1.5Ueq(O), and O—H and H—H distances restrained to 0.95 (2) and 1.50 (2) Å, respectively. The total number of measured reflections for determining the absolute structure was 2215, among which 913 were Friedel pairs. The Flack (1983) parameter of −0.01 (3) indicated that the crystal was not twinned.

Computing details top

Data collection: EXPOSE (Stoe & Cie, 1997); cell refinement: CELL (Stoe & Cie, 1997); data reduction: INTEGRATE (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Bergerhoff, 1996).

Figures top
[Figure 1] Fig. 1. A plot (DIAMOND; Bergerhoff, 1996) of the asymmetric unit with the atoms labelled and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Polyhedral representation of the structure of K2TiSi3O9.H2O viewed along the a axis. The dark polyhedra are TiO6 and the light polyhedra are SiO4. K+ ions are represented by filled large circles and the O and H atoms in the water molecules by filled and open small circles, respectively. Hydrogen bonds between the water molecules and framework O atoms are shown.
dipotassium titanium trisilicate hydrate top
Crystal data top
K2TiSi3O9·H2ODx = 2.686 Mg m3
Mr = 372.39Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 1183 reflections
a = 7.1543 (7) Åθ = 2.5–28.0°
b = 9.9408 (11) ŵ = 2.27 mm1
c = 12.946 (1) ÅT = 293 K
V = 920.71 (15) Å3Prism, colourless
Z = 40.10 × 0.06 × 0.04 mm
F(000) = 736
Data collection top
Stoe IPDS
diffractometer
2215 independent reflections
Radiation source: fine-focus sealed tube1983 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
Detector resolution: 6.0 pixels mm-1θmax = 28.0°, θmin = 2.6°
Area–detector scansh = 99
Absorption correction: numerical
(X-RED; Stoe & Cie, 1997)
k = 1313
Tmin = 0.850, Tmax = 0.921l = 1517
8937 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0376P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
2215 reflectionsΔρmax = 0.39 e Å3
151 parametersΔρmin = 0.59 e Å3
3 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (3)
Crystal data top
K2TiSi3O9·H2OV = 920.71 (15) Å3
Mr = 372.39Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.1543 (7) ŵ = 2.27 mm1
b = 9.9408 (11) ÅT = 293 K
c = 12.946 (1) Å0.10 × 0.06 × 0.04 mm
Data collection top
Stoe IPDS
diffractometer
2215 independent reflections
Absorption correction: numerical
(X-RED; Stoe & Cie, 1997)
1983 reflections with I > 2σ(I)
Tmin = 0.850, Tmax = 0.921Rint = 0.073
8937 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068Δρmax = 0.39 e Å3
S = 0.99Δρmin = 0.59 e Å3
2215 reflectionsAbsolute structure: Flack (1983)
151 parametersAbsolute structure parameter: 0.01 (3)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti10.24091 (8)0.45398 (5)0.71163 (4)0.00424 (12)
K10.20469 (12)0.93268 (9)0.92120 (7)0.02031 (19)
K20.15175 (16)0.79399 (10)0.63473 (7)0.0260 (2)
Si10.26869 (12)0.46207 (9)0.45344 (6)0.00406 (17)
Si20.49308 (13)0.17930 (9)0.67332 (7)0.00459 (18)
Si30.08136 (13)0.14281 (9)0.66836 (7)0.00465 (17)
O10.4507 (3)0.3365 (2)0.69111 (19)0.0081 (5)
O20.2992 (3)0.0959 (2)0.65008 (19)0.0109 (5)
O30.0723 (3)0.3020 (2)0.68961 (17)0.0080 (5)
O40.1235 (3)0.3372 (2)0.42936 (19)0.0105 (5)
O50.0109 (3)0.5599 (2)0.73828 (18)0.0086 (5)
O60.2553 (3)0.4247 (2)0.86425 (17)0.0076 (4)
O70.4799 (3)0.3989 (3)0.44128 (18)0.0091 (5)
O80.3975 (3)0.6140 (2)0.73005 (18)0.0091 (5)
O90.2292 (4)0.5138 (2)0.56809 (17)0.0074 (5)
O100.3756 (5)0.1830 (3)0.9343 (2)0.0281 (7)
H10.342 (7)0.270 (3)0.909 (4)0.042*
H20.474 (6)0.153 (5)0.897 (4)0.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.0040 (3)0.0049 (2)0.0038 (2)0.0010 (2)0.0002 (2)0.0005 (2)
K10.0211 (4)0.0207 (4)0.0191 (4)0.0011 (3)0.0085 (4)0.0028 (3)
K20.0395 (6)0.0222 (4)0.0163 (4)0.0103 (4)0.0074 (4)0.0078 (4)
Si10.0034 (4)0.0057 (4)0.0030 (3)0.0001 (4)0.0001 (3)0.0002 (3)
Si20.0029 (4)0.0059 (4)0.0050 (4)0.0018 (3)0.0002 (3)0.0004 (3)
Si30.0030 (4)0.0059 (4)0.0051 (4)0.0007 (3)0.0004 (3)0.0001 (3)
O10.0077 (11)0.0068 (11)0.0097 (12)0.0001 (9)0.0010 (9)0.0012 (9)
O20.0049 (11)0.0094 (11)0.0184 (13)0.0006 (9)0.0011 (9)0.0047 (10)
O30.0054 (10)0.0092 (11)0.0093 (12)0.0024 (9)0.0008 (9)0.0004 (9)
O40.0134 (12)0.0105 (11)0.0077 (11)0.0045 (10)0.0052 (9)0.0018 (9)
O50.0083 (10)0.0098 (11)0.0078 (11)0.0032 (10)0.0001 (9)0.0020 (9)
O60.0090 (11)0.0096 (10)0.0041 (9)0.0001 (11)0.0004 (9)0.0003 (8)
O70.0072 (11)0.0140 (11)0.0062 (12)0.0049 (10)0.0008 (9)0.0001 (9)
O80.0112 (12)0.0087 (11)0.0073 (11)0.0028 (9)0.0019 (9)0.0008 (9)
O90.0094 (12)0.0095 (10)0.0034 (10)0.0001 (9)0.0006 (9)0.0015 (8)
O100.043 (2)0.0221 (15)0.0195 (14)0.0142 (14)0.0137 (13)0.0073 (12)
Geometric parameters (Å, º) top
Ti1—O11.920 (2)Si1—K1i3.7668 (13)
Ti1—O91.953 (2)Si1—K2vii3.8333 (13)
Ti1—O31.954 (2)Si2—O11.609 (2)
Ti1—O81.961 (2)Si2—O8viii1.612 (2)
Ti1—O51.984 (2)Si2—O4ix1.632 (3)
Ti1—O62.000 (2)Si2—O21.644 (3)
Ti1—K23.5808 (11)Si2—K1viii3.5380 (13)
Ti1—K1i3.6283 (11)Si2—K1vi3.7275 (13)
Ti1—K2i3.7918 (12)Si2—K2viii3.7325 (14)
K1—O3ii2.770 (3)Si3—O5i1.605 (2)
K1—O10iii2.778 (4)Si3—O31.607 (2)
K1—O5ii2.871 (3)Si3—O21.644 (3)
K1—O7iv2.894 (2)Si3—O7x1.647 (3)
K1—O4v2.953 (3)Si3—K2i3.3968 (13)
K1—O2v2.977 (3)Si3—K2xi3.5309 (13)
K1—O1iv3.017 (3)Si3—K1vi3.6255 (13)
K1—O4ii3.187 (3)Si3—K1i3.7196 (12)
K1—O9ii3.210 (3)O1—K1viii3.017 (3)
K1—Si2iv3.5380 (13)O2—K1vi2.977 (3)
K1—Si3v3.6255 (13)O2—K2xi3.188 (3)
K1—Ti1ii3.6283 (11)O3—K1i2.770 (3)
K2—O10vi2.612 (3)O3—K2i2.784 (2)
K2—O3ii2.784 (2)O4—Si2x1.632 (2)
K2—O82.795 (3)O4—K1vi2.953 (3)
K2—O52.868 (3)O4—K1i3.187 (3)
K2—O92.968 (2)O5—Si3ii1.605 (2)
K2—O2iii3.188 (3)O5—K1i2.871 (3)
K2—O6ii3.189 (3)O5—K2i3.324 (3)
K2—O5ii3.324 (3)O6—Si1v1.622 (2)
K2—Si3ii3.3968 (13)O6—K2i3.189 (3)
K2—Si3iii3.5309 (13)O7—Si3ix1.647 (2)
K2—Si2iv3.7325 (14)O7—K1viii2.894 (2)
Si1—O91.596 (2)O8—Si2iv1.612 (2)
Si1—O6vi1.622 (2)O9—K1i3.210 (3)
Si1—O71.644 (3)O10—K2v2.612 (3)
Si1—O41.649 (2)O10—K1xi2.778 (4)
O1—Ti1—O995.00 (11)O8—K2—Si3iii131.58 (6)
O1—Ti1—O389.55 (10)O5—K2—Si3iii133.55 (6)
O9—Ti1—O394.04 (10)O9—K2—Si3iii169.76 (5)
O1—Ti1—O893.64 (11)O2iii—K2—Si3iii27.72 (5)
O9—Ti1—O883.86 (10)O6ii—K2—Si3iii57.93 (5)
O3—Ti1—O8176.32 (11)O5ii—K2—Si3iii26.86 (4)
O1—Ti1—O5174.42 (10)Si3ii—K2—Si3iii105.78 (3)
O9—Ti1—O588.18 (10)O10vi—K2—Ti1111.84 (7)
O3—Ti1—O585.64 (10)O3ii—K2—Ti184.40 (5)
O8—Ti1—O591.26 (10)O8—K2—Ti132.99 (5)
O1—Ti1—O690.46 (10)O5—K2—Ti133.58 (5)
O9—Ti1—O6170.63 (9)O9—K2—Ti133.05 (4)
O3—Ti1—O693.62 (9)O2iii—K2—Ti1144.35 (6)
O8—Ti1—O688.20 (10)O6ii—K2—Ti1123.10 (5)
O5—Ti1—O687.02 (10)O5ii—K2—Ti1132.51 (5)
O1—Ti1—K2132.43 (8)Si3ii—K2—Ti157.40 (2)
O9—Ti1—K255.96 (7)Si3iii—K2—Ti1156.65 (3)
O3—Ti1—K2125.41 (7)O10vi—K2—Si2iv137.65 (8)
O8—Ti1—K250.92 (8)O3ii—K2—Si2iv81.77 (6)
O5—Ti1—K253.09 (7)O8—K2—Si2iv23.43 (5)
O6—Ti1—K2114.91 (7)O5—K2—Si2iv71.35 (5)
O1—Ti1—K1i125.87 (7)O9—K2—Si2iv77.28 (5)
O9—Ti1—K1i61.91 (8)O2iii—K2—Si2iv91.20 (5)
O3—Ti1—K1i48.97 (7)O6ii—K2—Si2iv138.02 (5)
O8—Ti1—K1i127.38 (8)O5ii—K2—Si2iv98.74 (5)
O5—Ti1—K1i52.02 (7)Si3ii—K2—Si2iv72.51 (3)
O6—Ti1—K1i120.32 (7)Si3iii—K2—Si2iv108.36 (3)
K2—Ti1—K1i76.51 (3)Ti1—K2—Si2iv53.51 (2)
O1—Ti1—K2i113.38 (8)O9—Si1—O6vi114.81 (12)
O9—Ti1—K2i126.53 (8)O9—Si1—O7112.01 (13)
O3—Ti1—K2i45.17 (7)O6vi—Si1—O7107.10 (13)
O8—Ti1—K2i134.42 (7)O9—Si1—O4107.89 (13)
O5—Ti1—K2i61.11 (7)O6vi—Si1—O4108.75 (13)
O6—Ti1—K2i57.23 (7)O7—Si1—O4105.87 (14)
K2—Ti1—K2i114.19 (2)O9—Si1—K1i57.68 (10)
K1i—Ti1—K2i64.73 (2)O6vi—Si1—K1i105.40 (9)
O3ii—K1—O10iii140.06 (9)O7—Si1—K1i146.94 (9)
O3ii—K1—O5ii56.62 (7)O4—Si1—K1i57.08 (9)
O10iii—K1—O5ii83.43 (9)O9—Si1—K2vii101.50 (9)
O3ii—K1—O7iv145.29 (8)O6vi—Si1—K2vii54.86 (9)
O10iii—K1—O7iv73.93 (9)O7—Si1—K2vii63.64 (9)
O5ii—K1—O7iv155.85 (8)O4—Si1—K2vii150.53 (10)
O3ii—K1—O4v83.70 (7)K1i—Si1—K2vii145.10 (3)
O10iii—K1—O4v128.93 (9)O1—Si2—O8viii111.80 (14)
O5ii—K1—O4v130.52 (7)O1—Si2—O4ix108.76 (13)
O7iv—K1—O4v63.13 (7)O8viii—Si2—O4ix108.30 (13)
O3ii—K1—O2v117.64 (8)O1—Si2—O2110.92 (13)
O10iii—K1—O2v91.67 (8)O8viii—Si2—O2110.42 (14)
O5ii—K1—O2v138.85 (8)O4ix—Si2—O2106.43 (13)
O7iv—K1—O2v51.96 (7)O1—Si2—K1viii58.19 (9)
O4v—K1—O2v83.19 (7)O8viii—Si2—K1viii104.96 (10)
O3ii—K1—O1iv100.74 (7)O4ix—Si2—K1viii55.97 (9)
O10iii—K1—O1iv87.33 (8)O2—Si2—K1viii144.24 (10)
O5ii—K1—O1iv103.41 (7)O1—Si2—K1vi110.12 (10)
O7iv—K1—O1iv67.83 (7)O8viii—Si2—K1vi138.04 (10)
O4v—K1—O1iv52.36 (6)O4ix—Si2—K1vi58.26 (10)
O2v—K1—O1iv117.19 (7)O2—Si2—K1vi50.86 (9)
O3ii—K1—O4ii69.36 (7)K1viii—Si2—K1vi98.15 (3)
O10iii—K1—O4ii123.65 (8)O1—Si2—K2viii74.70 (9)
O5ii—K1—O4ii99.90 (7)O8viii—Si2—K2viii43.59 (9)
O7iv—K1—O4ii99.58 (7)O4ix—Si2—K2viii100.59 (10)
O4v—K1—O4ii90.82 (5)O2—Si2—K2viii148.26 (10)
O2v—K1—O4ii50.24 (7)K1viii—Si2—K2viii66.22 (3)
O1iv—K1—O4ii143.14 (7)K1vi—Si2—K2viii158.84 (3)
O3ii—K1—O9ii56.53 (7)O5i—Si3—O3111.10 (13)
O10iii—K1—O9ii101.42 (8)O5i—Si3—O2110.67 (14)
O5ii—K1—O9ii53.19 (6)O3—Si3—O2109.99 (14)
O7iv—K1—O9ii139.17 (7)O5i—Si3—O7x109.77 (13)
O4v—K1—O9ii129.00 (7)O3—Si3—O7x112.19 (13)
O2v—K1—O9ii88.40 (6)O2—Si3—O7x102.85 (13)
O1iv—K1—O9ii152.92 (7)O5i—Si3—K2i57.31 (9)
O4ii—K1—O9ii48.42 (6)O3—Si3—K2i54.29 (9)
O3ii—K1—Si2iv85.65 (6)O2—Si3—K2i134.34 (10)
O10iii—K1—Si2iv112.94 (7)O7x—Si3—K2i122.79 (10)
O5ii—K1—Si2iv113.16 (6)O5i—Si3—K2xi69.35 (9)
O7iv—K1—Si2iv69.73 (6)O3—Si3—K2xi173.52 (10)
O4v—K1—Si2iv27.27 (5)O2—Si3—K2xi64.45 (9)
O2v—K1—Si2iv106.37 (5)O7x—Si3—K2xi73.10 (9)
O1iv—K1—Si2iv26.94 (5)K2i—Si3—K2xi126.66 (3)
O4ii—K1—Si2iv116.62 (5)O5i—Si3—K1vi137.06 (10)
O9ii—K1—Si2iv141.70 (5)O3—Si3—K1vi111.83 (9)
O3ii—K1—Si3v131.45 (6)O2—Si3—K1vi54.12 (9)
O10iii—K1—Si3v86.89 (7)O7x—Si3—K1vi51.21 (9)
O5ii—K1—Si3v162.31 (6)K2i—Si3—K1vi163.99 (4)
O7iv—K1—Si3v26.34 (5)K2xi—Si3—K1vi68.14 (3)
O4v—K1—Si3v66.71 (5)O5i—Si3—K1i113.96 (10)
O2v—K1—Si3v26.57 (5)O3—Si3—K1i43.00 (9)
O1iv—K1—Si3v90.85 (5)O2—Si3—K1i134.13 (10)
O4ii—K1—Si3v73.36 (5)O7x—Si3—K1i71.58 (9)
O9ii—K1—Si3v114.97 (5)K2i—Si3—K1i67.73 (3)
Si2iv—K1—Si3v84.25 (3)K2xi—Si3—K1i143.21 (4)
O3ii—K1—Ti1ii32.15 (5)K1vi—Si3—K1i96.75 (3)
O10iii—K1—Ti1ii111.31 (8)Si2—O1—Ti1139.26 (14)
O5ii—K1—Ti1ii33.00 (5)Si2—O1—K1viii94.87 (10)
O7iv—K1—Ti1ii169.57 (6)Ti1—O1—K1viii120.85 (10)
O4v—K1—Ti1ii115.83 (5)Si3—O2—Si2129.12 (16)
O2v—K1—Ti1ii117.98 (5)Si3—O2—K1vi99.30 (11)
O1iv—K1—Ti1ii120.53 (5)Si2—O2—K1vi103.78 (11)
O4ii—K1—Ti1ii69.99 (5)Si3—O2—K2xi87.83 (10)
O9ii—K1—Ti1ii32.46 (4)Si2—O2—K2xi139.94 (13)
Si2iv—K1—Ti1ii114.50 (3)K1vi—O2—K2xi81.07 (6)
Si3v—K1—Ti1ii143.25 (3)Si3—O3—Ti1139.59 (15)
O10vi—K2—O3ii139.98 (10)Si3—O3—K1i113.70 (12)
O10vi—K2—O8122.79 (9)Ti1—O3—K1i98.88 (9)
O3ii—K2—O891.14 (7)Si3—O3—K2i97.76 (11)
O10vi—K2—O5120.59 (10)Ti1—O3—K2i104.97 (10)
O3ii—K2—O555.87 (7)K1i—O3—K2i91.40 (8)
O8—K2—O559.70 (7)Si2x—O4—Si1126.14 (15)
O10vi—K2—O978.89 (8)Si2x—O4—K1vi96.76 (11)
O3ii—K2—O9111.82 (7)Si1—O4—K1vi115.38 (12)
O8—K2—O953.87 (7)Si2x—O4—K1i95.92 (11)
O5—K2—O955.96 (7)Si1—O4—K1i97.18 (11)
O10vi—K2—O2iii90.25 (9)K1vi—O4—K1i126.80 (8)
O3ii—K2—O2iii96.48 (7)Si3ii—O5—Ti1138.14 (15)
O8—K2—O2iii111.53 (8)Si3ii—O5—K294.59 (11)
O5—K2—O2iii148.32 (7)Ti1—O5—K293.33 (9)
O9—K2—O2iii147.14 (8)Si3ii—O5—K1i123.14 (13)
O10vi—K2—O6ii84.26 (9)Ti1—O5—K1i94.97 (9)
O3ii—K2—O6ii57.25 (6)K2—O5—K1i102.12 (8)
O8—K2—O6ii146.44 (7)Si3ii—O5—K2i83.79 (10)
O5—K2—O6ii90.45 (7)Ti1—O5—K2i87.38 (8)
O9—K2—O6ii123.65 (7)K2—O5—K2i178.19 (9)
O2iii—K2—O6ii85.31 (6)K1i—O5—K2i79.46 (6)
O10vi—K2—O5ii113.30 (8)Si1v—O6—Ti1126.66 (13)
O3ii—K2—O5ii51.06 (7)Si1v—O6—K2i100.57 (10)
O8—K2—O5ii120.72 (7)Ti1—O6—K2i90.95 (8)
O5—K2—O5ii106.92 (3)Si1—O7—Si3ix125.72 (15)
O9—K2—O5ii162.87 (7)Si1—O7—K1viii127.85 (12)
O2iii—K2—O5ii48.40 (6)Si3ix—O7—K1viii102.45 (11)
O6ii—K2—O5ii49.76 (6)Si2iv—O8—Ti1134.31 (15)
O10vi—K2—Si3ii138.36 (9)Si2iv—O8—K2112.98 (12)
O3ii—K2—Si3ii27.96 (5)Ti1—O8—K296.09 (9)
O8—K2—Si3ii72.21 (6)Si1—O9—Ti1141.17 (14)
O5—K2—Si3ii28.10 (5)Si1—O9—K2127.29 (11)
O9—K2—Si3ii83.95 (5)Ti1—O9—K290.99 (8)
O2iii—K2—Si3ii122.16 (5)Si1—O9—K1i97.48 (11)
O6ii—K2—Si3ii74.26 (5)Ti1—O9—K1i85.63 (8)
O5ii—K2—Si3ii78.97 (5)K2—O9—K1i92.45 (7)
O10vi—K2—Si3iii91.49 (7)K2v—O10—K1xi96.08 (10)
O3ii—K2—Si3iii77.83 (6)
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y+1/2, z+3/2; (iii) x, y+1, z; (iv) x+1, y+1/2, z+3/2; (v) x+1/2, y+1, z+1/2; (vi) x+1/2, y+1, z1/2; (vii) x+1/2, y+3/2, z+1; (viii) x+1, y1/2, z+3/2; (ix) x+1/2, y+1/2, z+1; (x) x1/2, y+1/2, z+1; (xi) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H1···O60.95 (2)1.76 (2)2.708 (4)174 (5)
O10—H2···O8viii0.91 (2)1.92 (3)2.762 (4)154 (5)
O10—H2···O9viii0.91 (2)2.57 (4)3.290 (4)136 (4)
Symmetry code: (viii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaK2TiSi3O9·H2O
Mr372.39
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.1543 (7), 9.9408 (11), 12.946 (1)
V3)920.71 (15)
Z4
Radiation typeMo Kα
µ (mm1)2.27
Crystal size (mm)0.10 × 0.06 × 0.04
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionNumerical
(X-RED; Stoe & Cie, 1997)
Tmin, Tmax0.850, 0.921
No. of measured, independent and
observed [I > 2σ(I)] reflections
8937, 2215, 1983
Rint0.073
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.068, 0.99
No. of reflections2215
No. of parameters151
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.59
Absolute structureFlack (1983)
Absolute structure parameter0.01 (3)

Computer programs: EXPOSE (Stoe & Cie, 1997), CELL (Stoe & Cie, 1997), INTEGRATE (Stoe & Cie, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Bergerhoff, 1996).

Selected bond lengths (Å) top
Ti1—O11.920 (2)Si1—O41.649 (2)
Ti1—O91.953 (2)Si2—O11.609 (2)
Ti1—O31.954 (2)Si2—O8ii1.612 (2)
Ti1—O81.961 (2)Si2—O4iii1.632 (3)
Ti1—O51.984 (2)Si2—O21.644 (3)
Ti1—O62.000 (2)Si3—O5iv1.605 (2)
Si1—O91.596 (2)Si3—O31.607 (2)
Si1—O6i1.622 (2)Si3—O21.644 (3)
Si1—O71.644 (3)Si3—O7v1.647 (3)
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+1, y1/2, z+3/2; (iii) x+1/2, y+1/2, z+1; (iv) x, y1/2, z+3/2; (v) x1/2, y+1/2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds