Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The conformation of the title compound, C34H30N4O4S2, is strongly influenced by intramolecular N-H...N hydrogen-bond interactions and by the rigidity endowed by the presence of a phenyl group between the imine N atoms. The molecule is not planar, with very short distances between the imine N atoms [N...N 2.753 (3) Å] and the amine N atoms [N...N 5.148 (4) Å]. Consequently, important changes in its conformation will be required if it is to act as a tetradentate ligand via its four N atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100000809/os1099sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100000809/os1099Isup2.hkl
Contains datablock I

CCDC reference: 144653

Comment top

In recent years, chemists have been interested in obtaining new tetradentate Schiff bases, in particular dianionic N4 ligands, because they can act as ligands in bioinorganic chemistry processes. The emphasis on these species is undoubtedly related to the existence of naturally occurring metal complexes, such as metalloporphyrins, vitamin B12, etc., which act as effective catalysts in many biological processes (Zhang et al. 1990; Irie et al., 1990).

In our research into metal catalysts containing N4 tetradentate Schiff base ligands, our group has synthesized and reported some non planar N4 Schiff bases: N,N'-bis-(2-tosylaminobenzylidene)-1,3-propanediamine (PTS; Mahía, Maestro, Vázquez, Bermejo, Sanmartín & Maneiro, 1999) and N,N'-bis-(2-tosylaminobenzylidene)-1,2-ethanediamine (ETS; Mahía et al., 2000). We have now determined the crystal structure of the title compound, (I). We have used 1,2-diaminobenzene in an attempt to obtain a new N4 tetradentate Schiff base derived from 2-tosylaminobenzaldehyde (Chernova et al., 1971; Mahía, Maestro, Vázquez, Bermejo, González & Maneiro, 1999). This new Schiff base will result in a molecule with greater planarity and steric interference than in the other Schiff bases prepared by us. \scheme

In compound (I), the N2–C14 and N3–C21 distances of 1.283 (3) and 1.264 (3) Å, respectively, are consistent with CN double bonding. Similarly, the S1–O1, S1–O2, S2–O3 and S2–O4 distances [1.435 (2), 1.427 (2), 1.426 (2) and 1.430 (2) Å, respectively] are consistent with SO double bonding.

The conformation of (I) in the solid state is strongly influenced by two strong N—H···N interactions (Fig. 1 and Table 2). Due to these hydrogen bonds, the atoms H1A, N1, C8, C13, C14 and N2, and H4A, N4, C27, C22, C21 and N3 form two planar six-membered rings, with plane deviations of 0.0282 and 0.0432 Å, respectively. There are also two weak intermolecular C–H···O interactions in the compound (Table 2).

The presence of the two tosyl groups prevents the molecule from being planar. The angle between the least-squares planes of the C8—C13 and C22—C27 aromatic rings is 62.47 (9)° and the value of the torsion angles C21—N3—C20—C15 and C14—N2—C15—C20 are 112.0 (2)° and 135.6 (2)°, respectively. However, the C5—S1—N1 and C28—S2—N4 bond angles [107.4 (1)° and 106.9 (1)°, respectively] and the C8—N1—S1—C5 and C27—N4—S2—C28 torsion angles [-71.8 (3)° and -75.5 (2)°, respectively], indicate that both tosyl groups adopt a similar conformation in the molecule.

There are several structural differences between compound (I) and the other Schiff bases, ETS and PTS, obtained from 2-tosylaminobenzaldehyde and previously reported by our group. The rigidity introduced by the phenyl group between the imine N atoms forces the four N atoms in (I) into greater proximity than in both ETS and PTS. Thus, the distances between the imine N atoms N2···N3 [2.753 (3) in (I), 2.930 (4) in ETS and 4.413 (3) Å in PTS] and between the amine N atoms N1···N4 [5.148 (4) in (I), 5.865 (3) in ETS and 7.724 (3) Å in PTS] are shorter in (I) than in the other molecules. Consequently, the distance between the S atoms is shorter in (I) [6.544 (2) Å] than in the other derivatives [7.673 (1) in ETS and 9.007 (1) Å in PTS]. The extra rigidity introduced by the phenyl bridge in (I) also causes a change in the disposition of the tosyl groups with respect to that shown in the other molecules. In ETS and PTS, the tosyl groups appear in opposite positions, probably to minimize the steric hindrance, but this spatial disposition is not possible in (I) due to the greater proximity between the tosyl groups.

It is worthy to note that while the aromatic rings of the two tosyl groups are practically perpendicular to each other in PTS, forming an angle of 82.5 (1)°, these aromatic rings adopt a semi-parallel conformation in ETS [17.1 (2)°] and (I) [17.5 (2)°].

Experimental top

The title Schiff base was synthesized by condensation of 2-tosylaminobenzaldehyde (Chernova et al., 1971; Mahía, Maestro, Vázquez, Bermejo, González & Maneiro, 1999) and 1,2-diaminobenzene. To a solution of 2-tosylaminobenzaldehyde (5 g, 18.2 mmol) in chloroform (150 ml) was added 1,2-diaminobenzene (1 g, 9.1 mmol). The mixture was heated to 338 K and stirred for 3 h. The resultant yellow solution was filtered and concentrated. Yellow crystals of (I) were formed after one night of slow evaporation at room temperature (yield 4.2 g, 73%; m.p. 455 K). Elemental analysis for C34H30N4O4S2: calculated (found) C 65.6 (65.6), H 4.9 (4.9), N 9.0 (9.1), S 10.3 (10.4)%; mass spectroscopy (HL+): calculated (found) 622.8 (623.3, 100%); 1H NMR (CDCl3, p.p.m.): 13.15 (s, 2H), 8.61 (s, 2H), 7.81–6.78 (m, 20H), 2.17 (s, 6H); IR spectroscopy (KBr, cm-1): ν(N—H) 3387 m, ν(CN) 1614 s, ν(C—N) 1337 s, νas(SO2) 1291 s, νs(SO2) 1160 s.

Refinement top

The positions of all H atoms were calculated geometrically and a riding model was used in their refinement, except for those involved in the hydrogen bonds. H atoms involved in hydrogen bonds were found in an electronic density map and then freely refined.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids. H atoms (except for those involved in the intramolecular hydrogen bonds) are omitted for clarity.
N,N'-bis-(2-tosylaminobenzylidene)benzene-1,2-diamine top
Crystal data top
C34H30N4O4S2F(000) = 1304
Mr = 622.74Dx = 1.320 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.704 (2) ÅCell parameters from 80 reflections
b = 19.102 (4) Åθ = 3–27°
c = 17.407 (4) ŵ = 0.22 mm1
β = 103.85 (2)°T = 298 K
V = 3132.7 (12) Å3Block, yellow
Z = 40.45 × 0.30 × 0.15 mm
Data collection top
Siemens CCD area detector
diffractometer
7742 independent reflections
Radiation source: fine-focus sealed tube4794 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 28.3°, θmin = 1.6°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 1012
Tmin = 0.910, Tmax = 0.969k = 2125
17247 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0525P)2 + 1.2358P]
where P = (Fo2 + 2Fc2)/3
7742 reflections(Δ/σ)max = 0.001
415 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C34H30N4O4S2V = 3132.7 (12) Å3
Mr = 622.74Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.704 (2) ŵ = 0.22 mm1
b = 19.102 (4) ÅT = 298 K
c = 17.407 (4) Å0.45 × 0.30 × 0.15 mm
β = 103.85 (2)°
Data collection top
Siemens CCD area detector
diffractometer
7742 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
4794 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.969Rint = 0.037
17247 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.25 e Å3
7742 reflectionsΔρmin = 0.37 e Å3
415 parameters
Special details top

Experimental. Data was collected using a Bruker SMART CCD based diffractometer operating at room temperature. Data was measured using omega scans of 0.3 degrees per frame for 10 s. A total of 1420 frames were collected. The first 50 frames were recollected at the end of each set of frames.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.46898 (7)0.15540 (3)0.66027 (4)0.04861 (17)
S20.04164 (7)0.14800 (4)0.89953 (4)0.05465 (19)
O10.6010 (2)0.14443 (10)0.63862 (12)0.0677 (5)
O20.3496 (2)0.18277 (9)0.60383 (10)0.0655 (5)
O30.0158 (2)0.08079 (12)0.90943 (12)0.0783 (6)
O40.0004 (2)0.20782 (12)0.93776 (11)0.0727 (6)
N10.4122 (3)0.08149 (11)0.68654 (14)0.0555 (6)
H1A0.331 (3)0.0741 (13)0.6720 (15)0.047 (8)*
N20.18256 (19)0.00002 (9)0.66277 (11)0.0414 (4)
N30.0387 (2)0.08787 (10)0.67038 (11)0.0458 (5)
N40.0014 (2)0.16050 (12)0.80397 (12)0.0512 (5)
H4A0.006 (3)0.1185 (17)0.783 (2)0.091 (11)*
C10.5857 (4)0.35211 (19)0.94007 (19)0.0850 (10)
H1B0.50640.35190.96410.128*
H1C0.59860.39840.92140.128*
H1D0.66980.33810.97840.128*
C20.5580 (3)0.30168 (14)0.87149 (15)0.0542 (6)
C30.6671 (3)0.26761 (14)0.84885 (16)0.0554 (7)
H3A0.76000.27500.87740.066*
C40.6417 (2)0.22275 (13)0.78468 (16)0.0513 (6)
H4B0.71690.20120.76940.062*
C50.5037 (2)0.21034 (11)0.74350 (13)0.0404 (5)
C60.3924 (3)0.24359 (14)0.76554 (16)0.0545 (6)
H6A0.29930.23560.73760.065*
C70.4209 (3)0.28858 (16)0.82915 (17)0.0623 (7)
H7A0.34590.31070.84400.075*
C80.4866 (2)0.02876 (12)0.73523 (14)0.0440 (5)
C90.6301 (3)0.03434 (14)0.77285 (16)0.0568 (7)
H9A0.68110.07380.76480.068*
C100.6964 (3)0.01839 (14)0.82190 (17)0.0621 (7)
H10A0.79190.01380.84730.075*
C110.6241 (3)0.07780 (14)0.83416 (18)0.0643 (7)
H11A0.66990.11290.86770.077*
C120.4838 (3)0.08429 (13)0.79614 (16)0.0559 (6)
H12A0.43530.12460.80400.067*
C130.4113 (2)0.03225 (12)0.74600 (13)0.0421 (5)
C140.2637 (2)0.04485 (12)0.70643 (13)0.0442 (5)
H14A0.22550.08840.71320.053*
C150.0434 (2)0.01939 (11)0.62191 (12)0.0389 (5)
C160.0154 (3)0.07971 (12)0.57638 (13)0.0445 (5)
H16A0.08910.11030.57460.053*
C170.1206 (3)0.09485 (13)0.53375 (14)0.0505 (6)
H17A0.13810.13550.50360.061*
C180.2302 (3)0.04973 (14)0.53598 (15)0.0539 (6)
H18A0.32190.06000.50750.065*
C190.2041 (3)0.01099 (13)0.58053 (14)0.0516 (6)
H19A0.27840.04120.58210.062*
C200.0678 (2)0.02689 (12)0.62276 (12)0.0415 (5)
C210.0463 (2)0.14687 (13)0.63680 (14)0.0456 (6)
H21A0.07220.14760.58180.055*
C220.0176 (2)0.21369 (12)0.67757 (14)0.0432 (5)
C230.0124 (3)0.27336 (15)0.63183 (17)0.0579 (7)
H23A0.030 (3)0.2671 (15)0.5743 (18)0.081 (9)*
C240.0189 (3)0.33832 (15)0.66569 (19)0.0656 (8)
H24A0.02110.37750.63430.079*
C250.0466 (3)0.34425 (14)0.74645 (19)0.0606 (7)
H25A0.06950.38780.76980.073*
C260.0411 (3)0.28694 (14)0.79368 (16)0.0530 (6)
H26A0.05860.29240.84820.064*
C270.0099 (2)0.22105 (12)0.76043 (14)0.0417 (5)
C280.2274 (3)0.14163 (13)0.92781 (13)0.0458 (5)
C290.3062 (3)0.18993 (15)0.97795 (16)0.0564 (7)
H29A0.259 (3)0.2289 (16)0.9965 (18)0.082 (10)*
C300.4523 (3)0.18152 (15)1.00197 (17)0.0633 (7)
H30A0.50590.21451.03560.076*
C310.5200 (3)0.12544 (16)0.97712 (17)0.0616 (7)
C320.4384 (3)0.07776 (17)0.92692 (19)0.0742 (9)
H32A0.48210.03970.90920.089*
C330.2934 (3)0.08505 (16)0.90225 (18)0.0701 (8)
H33A0.24010.05210.86850.084*
C340.6788 (3)0.1162 (2)1.0039 (2)0.0951 (11)
H34A0.69980.07121.02840.143*
H34B0.71780.15221.04130.143*
H34C0.71990.11950.95910.143*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0543 (4)0.0430 (3)0.0464 (3)0.0089 (3)0.0079 (3)0.0011 (3)
S20.0414 (3)0.0818 (5)0.0403 (3)0.0038 (3)0.0089 (3)0.0021 (3)
O10.0762 (14)0.0666 (12)0.0705 (13)0.0103 (10)0.0378 (11)0.0114 (10)
O20.0795 (13)0.0501 (11)0.0533 (10)0.0088 (9)0.0112 (9)0.0096 (8)
O30.0648 (13)0.1021 (16)0.0658 (13)0.0305 (11)0.0112 (10)0.0164 (11)
O40.0552 (12)0.1155 (17)0.0487 (10)0.0200 (11)0.0148 (9)0.0173 (11)
N10.0421 (13)0.0424 (12)0.0719 (15)0.0095 (10)0.0060 (11)0.0099 (10)
N20.0391 (11)0.0377 (10)0.0441 (10)0.0027 (8)0.0035 (8)0.0014 (8)
N30.0446 (11)0.0444 (11)0.0446 (11)0.0044 (9)0.0028 (9)0.0069 (9)
N40.0543 (13)0.0549 (14)0.0415 (11)0.0013 (10)0.0057 (9)0.0036 (10)
C10.082 (2)0.107 (3)0.069 (2)0.0178 (19)0.0223 (18)0.0342 (18)
C20.0504 (15)0.0623 (17)0.0512 (14)0.0089 (12)0.0147 (12)0.0063 (12)
C30.0368 (13)0.0591 (17)0.0635 (16)0.0047 (11)0.0010 (12)0.0065 (13)
C40.0327 (13)0.0489 (15)0.0712 (17)0.0004 (10)0.0104 (11)0.0067 (12)
C50.0372 (12)0.0382 (12)0.0455 (12)0.0052 (9)0.0090 (10)0.0030 (9)
C60.0310 (13)0.0694 (17)0.0603 (16)0.0033 (11)0.0056 (11)0.0053 (13)
C70.0438 (15)0.081 (2)0.0662 (17)0.0008 (14)0.0215 (13)0.0147 (15)
C80.0435 (13)0.0369 (12)0.0492 (13)0.0010 (10)0.0068 (10)0.0014 (10)
C90.0426 (14)0.0483 (15)0.0743 (18)0.0043 (11)0.0036 (12)0.0013 (13)
C100.0384 (14)0.0580 (17)0.0800 (19)0.0077 (12)0.0055 (13)0.0033 (14)
C110.0524 (16)0.0523 (17)0.079 (2)0.0090 (13)0.0024 (14)0.0110 (14)
C120.0533 (16)0.0409 (14)0.0689 (17)0.0001 (12)0.0056 (13)0.0046 (12)
C130.0392 (12)0.0386 (12)0.0459 (12)0.0008 (10)0.0047 (10)0.0029 (10)
C140.0468 (14)0.0363 (12)0.0486 (13)0.0047 (10)0.0097 (11)0.0015 (10)
C150.0390 (12)0.0386 (12)0.0376 (11)0.0067 (9)0.0060 (9)0.0017 (9)
C160.0463 (14)0.0393 (13)0.0471 (13)0.0033 (10)0.0094 (11)0.0027 (10)
C170.0556 (16)0.0443 (14)0.0496 (14)0.0118 (12)0.0085 (12)0.0081 (11)
C180.0417 (14)0.0635 (16)0.0515 (14)0.0135 (12)0.0014 (11)0.0067 (12)
C190.0423 (14)0.0574 (16)0.0514 (14)0.0022 (11)0.0040 (11)0.0068 (12)
C200.0438 (13)0.0418 (13)0.0360 (11)0.0028 (10)0.0037 (10)0.0043 (9)
C210.0431 (13)0.0534 (15)0.0385 (12)0.0021 (11)0.0060 (10)0.0078 (10)
C220.0358 (12)0.0475 (14)0.0457 (13)0.0002 (10)0.0085 (10)0.0075 (10)
C230.0634 (18)0.0569 (17)0.0515 (16)0.0020 (13)0.0098 (13)0.0005 (13)
C240.0687 (19)0.0481 (16)0.080 (2)0.0043 (13)0.0170 (16)0.0019 (14)
C250.0492 (16)0.0489 (16)0.085 (2)0.0043 (12)0.0187 (14)0.0181 (14)
C260.0427 (14)0.0595 (16)0.0571 (15)0.0023 (12)0.0128 (11)0.0189 (13)
C270.0262 (11)0.0504 (14)0.0477 (13)0.0022 (9)0.0074 (9)0.0077 (10)
C280.0423 (13)0.0542 (15)0.0402 (12)0.0011 (11)0.0083 (10)0.0027 (10)
C290.0535 (16)0.0551 (17)0.0558 (16)0.0005 (13)0.0034 (13)0.0090 (13)
C300.0537 (17)0.0638 (18)0.0651 (17)0.0109 (14)0.0004 (13)0.0055 (14)
C310.0454 (15)0.077 (2)0.0608 (17)0.0019 (14)0.0102 (13)0.0062 (14)
C320.0581 (19)0.084 (2)0.080 (2)0.0156 (16)0.0159 (16)0.0197 (17)
C330.0582 (18)0.075 (2)0.0728 (19)0.0001 (15)0.0070 (15)0.0266 (15)
C340.0505 (19)0.124 (3)0.106 (3)0.0059 (19)0.0105 (18)0.012 (2)
Geometric parameters (Å, º) top
S1—O21.4267 (19)C9—C101.376 (4)
S1—O11.4349 (19)C10—C111.377 (4)
S1—N11.621 (2)C11—C121.370 (4)
S1—C51.755 (2)C12—C131.397 (3)
S1—S26.5443 (17)C13—C141.453 (3)
S2—O31.426 (2)C15—C161.388 (3)
S2—O41.430 (2)C15—C201.398 (3)
S2—N41.633 (2)C16—C171.381 (3)
S2—C281.755 (2)C17—C181.377 (4)
N1—C81.400 (3)C18—C191.384 (3)
N1—N45.148 (4)C19—C201.384 (3)
N2—C141.283 (3)C21—C221.454 (3)
N2—C151.417 (3)C22—C231.398 (4)
N2—N32.753 (3)C22—C271.410 (3)
N3—C211.264 (3)C23—C241.376 (4)
N3—C201.418 (3)C24—C251.371 (4)
N4—C271.401 (3)C25—C261.378 (4)
C1—C21.507 (4)C26—C271.388 (3)
C2—C31.378 (4)C28—C291.371 (3)
C2—C71.380 (4)C28—C331.383 (4)
C3—C41.382 (3)C29—C301.388 (4)
C4—C51.380 (3)C30—C311.379 (4)
C5—C61.384 (3)C31—C321.375 (4)
C6—C71.376 (4)C31—C341.509 (4)
C8—C91.394 (3)C32—C331.376 (4)
C8—C131.412 (3)
O2—S1—O1120.11 (13)C9—C8—N1122.8 (2)
O2—S1—N1103.81 (12)C9—C8—C13119.4 (2)
O1—S1—N1109.39 (12)N1—C8—C13117.8 (2)
O2—S1—C5108.26 (11)C10—C9—C8120.1 (2)
O1—S1—C5107.27 (11)C9—C10—C11121.3 (2)
N1—S1—C5107.40 (12)C12—C11—C10118.9 (2)
O2—S1—S284.98 (9)C11—C12—C13122.1 (2)
O1—S1—S2154.91 (9)C12—C13—C8118.1 (2)
N1—S1—S259.45 (9)C12—C13—C14118.1 (2)
C5—S1—S260.88 (7)C8—C13—C14123.8 (2)
O3—S2—O4119.99 (13)N2—C14—C13124.4 (2)
O3—S2—N4104.04 (12)C16—C15—C20119.0 (2)
O4—S2—N4108.98 (12)C16—C15—N2122.5 (2)
O3—S2—C28107.97 (13)C20—C15—N2118.33 (19)
O4—S2—C28108.23 (12)C17—C16—C15120.8 (2)
N4—S2—C28106.93 (11)C18—C17—C16119.9 (2)
O3—S2—S1114.95 (10)C17—C18—C19120.1 (2)
O4—S2—S1125.00 (9)C20—C19—C18120.3 (2)
N4—S2—S152.79 (8)C19—C20—C15119.8 (2)
C28—S2—S154.23 (8)C19—C20—N3121.5 (2)
C8—N1—S1129.54 (19)C15—C20—N3118.7 (2)
C8—N1—N4107.97 (15)N3—C21—C22125.0 (2)
S1—N1—N4101.93 (10)C23—C22—C27118.5 (2)
C14—N2—C15119.91 (19)C23—C22—C21117.8 (2)
C14—N2—N3138.93 (16)C27—C22—C21123.6 (2)
C15—N2—N361.51 (12)C24—C23—C22121.7 (3)
C21—N3—C20118.7 (2)C25—C24—C23118.9 (3)
C21—N3—N2118.74 (16)C24—C25—C26121.3 (3)
C20—N3—N261.30 (12)C25—C26—C27120.5 (2)
C27—N4—S2129.61 (18)C26—C27—N4124.1 (2)
C27—N4—N181.82 (13)C26—C27—C22119.1 (2)
S2—N4—N1109.14 (10)N4—C27—C22116.8 (2)
C3—C2—C7118.0 (2)C29—C28—C33120.0 (2)
C3—C2—C1121.6 (2)C29—C28—S2120.8 (2)
C7—C2—C1120.3 (2)C33—C28—S2119.2 (2)
C2—C3—C4121.6 (2)C28—C29—C30119.2 (3)
C5—C4—C3119.3 (2)C31—C30—C29121.6 (3)
C4—C5—C6120.1 (2)C32—C31—C30117.9 (3)
C4—C5—S1120.16 (18)C32—C31—C34120.7 (3)
C6—C5—S1119.65 (18)C30—C31—C34121.4 (3)
C7—C6—C5119.3 (2)C31—C32—C33121.5 (3)
C6—C7—C2121.7 (2)C32—C33—C28119.8 (3)
O2—S1—S2—O3101.08 (12)C11—C12—C13—C80.3 (4)
O1—S1—S2—O377.6 (2)C11—C12—C13—C14178.2 (2)
N1—S1—S2—O38.20 (13)C9—C8—C13—C121.6 (3)
C5—S1—S2—O3144.78 (13)N1—C8—C13—C12178.3 (2)
O2—S1—S2—O476.03 (12)C9—C8—C13—C14176.8 (2)
O1—S1—S2—O4105.3 (2)N1—C8—C13—C143.3 (3)
N1—S1—S2—O4174.69 (14)C15—N2—C14—C13175.1 (2)
C5—S1—S2—O438.11 (13)N3—N2—C14—C13105.1 (3)
O2—S1—S2—N412.07 (13)C12—C13—C14—N2175.6 (2)
O1—S1—S2—N4166.6 (2)C8—C13—C14—N26.0 (4)
N1—S1—S2—N497.21 (15)C14—N2—C15—C1649.4 (3)
C5—S1—S2—N4126.21 (14)N3—N2—C15—C16177.9 (2)
O2—S1—S2—C28164.10 (13)C14—N2—C15—C20135.6 (2)
O1—S1—S2—C2817.2 (2)N3—N2—C15—C203.00 (15)
N1—S1—S2—C2886.62 (14)C20—C15—C16—C171.4 (3)
C5—S1—S2—C2849.96 (13)N2—C15—C16—C17176.3 (2)
O2—S1—N1—C8173.6 (2)C15—C16—C17—C180.2 (4)
O1—S1—N1—C844.3 (3)C16—C17—C18—C190.4 (4)
C5—S1—N1—C871.8 (3)C17—C18—C19—C200.3 (4)
S2—S1—N1—C8110.8 (3)C18—C19—C20—C151.5 (4)
O2—S1—N1—N460.69 (11)C18—C19—C20—N3178.5 (2)
O1—S1—N1—N4169.95 (10)C16—C15—C20—C192.0 (3)
C5—S1—N1—N453.84 (11)N2—C15—C20—C19177.1 (2)
S2—S1—N1—N414.84 (3)C16—C15—C20—N3179.1 (2)
C14—N2—N3—C21144.1 (3)N2—C15—C20—N35.8 (3)
C15—N2—N3—C21111.9 (2)C21—N3—C20—C1971.0 (3)
C14—N2—N3—C20106.9 (3)N2—N3—C20—C19180.0 (3)
C15—N2—N3—C202.97 (15)C21—N3—C20—C15112.0 (2)
O3—S2—N4—C27170.4 (2)N2—N3—C20—C153.02 (15)
O4—S2—N4—C2741.3 (3)C20—N3—C21—C22179.1 (2)
C28—S2—N4—C2775.5 (2)N2—N3—C21—C22108.0 (2)
S1—S2—N4—C2778.7 (2)N3—C21—C22—C23171.8 (2)
O3—S2—N4—N194.32 (12)N3—C21—C22—C276.1 (4)
O4—S2—N4—N1136.57 (10)C27—C22—C23—C240.2 (4)
C28—S2—N4—N119.79 (13)C21—C22—C23—C24177.8 (2)
S1—S2—N4—N116.54 (3)C22—C23—C24—C250.5 (4)
C8—N1—N4—C27157.37 (19)C23—C24—C25—C261.2 (4)
S1—N1—N4—C2718.56 (15)C24—C25—C26—C271.3 (4)
C8—N1—N4—S228.18 (18)C25—C26—C27—N4178.2 (2)
S1—N1—N4—S2110.63 (13)C25—C26—C27—C220.6 (3)
C7—C2—C3—C41.4 (4)S2—N4—C27—C2610.9 (4)
C1—C2—C3—C4178.3 (3)N1—N4—C27—C26119.0 (2)
C2—C3—C4—C51.7 (4)S2—N4—C27—C22171.39 (18)
C3—C4—C5—C61.2 (4)N1—N4—C27—C2263.28 (18)
C3—C4—C5—S1178.33 (19)C23—C22—C27—C260.1 (3)
O2—S1—C5—C4144.0 (2)C21—C22—C27—C26177.7 (2)
O1—S1—C5—C413.0 (2)C23—C22—C27—N4177.7 (2)
N1—S1—C5—C4104.5 (2)C21—C22—C27—N44.5 (3)
S2—S1—C5—C4142.8 (2)O3—S2—C28—C29131.9 (2)
O2—S1—C5—C633.1 (2)O4—S2—C28—C290.6 (3)
O1—S1—C5—C6164.1 (2)N4—S2—C28—C29116.7 (2)
N1—S1—C5—C678.4 (2)S1—S2—C28—C29119.9 (2)
S2—S1—C5—C640.05 (17)O3—S2—C28—C3344.7 (3)
C4—C5—C6—C70.5 (4)O4—S2—C28—C33176.0 (2)
S1—C5—C6—C7177.7 (2)N4—S2—C28—C3366.7 (2)
C5—C6—C7—C20.3 (4)S1—S2—C28—C3363.5 (2)
C3—C2—C7—C60.7 (4)C33—C28—C29—C300.5 (4)
C1—C2—C7—C6179.0 (3)S2—C28—C29—C30177.1 (2)
S1—N1—C8—C92.5 (4)C28—C29—C30—C310.5 (4)
N4—N1—C8—C9120.9 (2)C29—C30—C31—C320.5 (4)
S1—N1—C8—C13177.56 (19)C29—C30—C31—C34179.5 (3)
N4—N1—C8—C1359.1 (2)C30—C31—C32—C330.4 (5)
N1—C8—C9—C10178.1 (3)C34—C31—C32—C33179.6 (3)
C13—C8—C9—C101.9 (4)C31—C32—C33—C280.4 (5)
C8—C9—C10—C110.9 (4)C29—C28—C33—C320.4 (4)
C9—C10—C11—C120.5 (4)S2—C28—C33—C32177.1 (2)
C10—C11—C12—C130.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N20.78 (3)2.00 (3)2.668 (3)144 (2)
N4—H4A···N30.88 (3)2.00 (3)2.657 (3)131 (3)
C23—H23A···O4i0.98 (3)2.51 (3)3.427 (3)156 (2)
C29—H29A···O2ii0.97 (3)2.51 (3)3.233 (3)131 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC34H30N4O4S2
Mr622.74
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.704 (2), 19.102 (4), 17.407 (4)
β (°) 103.85 (2)
V3)3132.7 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.45 × 0.30 × 0.15
Data collection
DiffractometerSiemens CCD area detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.910, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
17247, 7742, 4794
Rint0.037
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.143, 1.03
No. of reflections7742
No. of parameters415
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.37

Computer programs: SMART (Siemens, 1995), SMART, SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Selected geometric parameters (Å, º) top
S1—S26.5443 (17)N2—N32.753 (3)
N1—N45.148 (4)
N1—S1—C5107.40 (12)N4—S2—C28106.93 (11)
C5—S1—N1—C871.8 (3)C14—N2—C15—C20135.6 (2)
C28—S2—N4—C2775.5 (2)C21—N3—C20—C15112.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N20.78 (3)2.00 (3)2.668 (3)144 (2)
N4—H4A···N30.88 (3)2.00 (3)2.657 (3)131 (3)
C23—H23A···O4i0.98 (3)2.51 (3)3.427 (3)156 (2)
C29—H29A···O2ii0.97 (3)2.51 (3)3.233 (3)131 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds