Download citation
Download citation
link to html
The title compound, C19H13N3S, is folded, with the central ring in a boat conformation. The folding angle between the two quinoline rings is 150.2 (1)°. The 14-methyl substituent is in a quasi-axial orientation with respect to the thia­zine ring. The S...N-Cmethyl angle is 120.1 (1)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199015759/os1091sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199015759/os1091Isup2.hkl
Contains datablock I

CCDC reference: 143266

Comment top

Quinolines condensed with certain heterocycles have recently become important compounds because of their affinity to the benzodiazepine receptors (Moreau et al., 1988; Anzini et al., 1990). On the other hand, tricyclic phenothiazines and azaphenothiazines constitute a major class of pharmaceutical agents with beneficial antipsychotic, CNR depressant and antihistaminic properties (Byck, 1975; Reynolds, 1989; Horn, 1990). These compounds are of interest in determining the constitution (synthesis with or without the Smiles rearrangement stage) and the effects of the nature and position of the substituents on the conformation and configuration (a rigid orientation of the 10-substituent) of the tricyclic ring system, and on the pharmaceutical activity (Sainsbury, 1978; Andreetti et al., 1980; de Meester et al., 1985; Baranski et al., 1990). The purpose of this study of 14-methyl-1,4-thiazino[2,3 - c;6,5 - c']diquinoline, (I), is to determine the effect of two additional benzene rings on the configuration and conformation of pentacyclic dibenzoazaphenothiazine and to compare the results with the structures of the related tricyclic phenothiazines, (II)-(IV). \scheme

The configuration of the molecule of (I) and the atom-numbering scheme are shown in the ORTEPII (Johnson, 1976) drawing in Fig. 1. The molecule as a whole is not planar and the butterfly angle between two quinoline planes is 150.2 (1)°. The central thiazine ring has a boat conformation, with N3 and S1 0.352 (1) and 0.519 (1) Å, respectively, out of the basal plane formed by C3, C4, C13 and C14. The dihedral angle between the planes determined by the atoms of the two halves of the thiazine ring (i.e. S1/C3/C4/N3 and S1/C13/C14/N3) is 142.8 (7)°.

The thiazine nitrogen atom N3 shows pyramidality. It is worth noting that the quinoline rings are non-planar, with dihedral angles between the pyridine and benzene rings of 3.5 (1) and 3.7 (1)°, respectively.

Selected bond lengths and angles are given in Table 1. Whereas the N3—C4 and N3—C14 bond lengths are very similar to those found in other N-methylphenothiazine and N-methylazaphenothiazines, (II)-(IV), the N3—CH3 bond lengths are different regardless of the type of aromatic ring or the C—N—C and dihedral angles [1.474 (2) versus 1.455 in (II), 1.490 in (III) and 1.385 Å in (IV)]. The C3—S1—C13 and C4—N3—C14 bond angles do not differ from the values found in the tricyclic N-methylarenothiazines (II)-(IV) (Andreetti et al., 1974, 1980; Chu & van der Helm, 1974).

The most unexpected molecular feature of (I) is the orientation of the methyl substituent. In contrast to all known N-substituted phenothiazines and azaphenothiazines, the methyl substituent is in a quasi-axial orientation with the respect to the thiazine ring, with torsion angles C3—C4—N3—C21 and C13—C14—N3—C21 of -114.1 (2) and 113.2 (2)°, respectively. The S···N—CH3 angle is 120.1 (1)°, which is significantly smaller than values found in N-methylarenothiazines (153.7–168.1°; Andreetti et al., 1974, 1980; Chu & van der Helm, 1974).

There are very close contacts between the methyl group and the H6 and H16 atoms. The C21···H6 and C21···H16 distances are 2.76 Å, which is less than the sum the van der Waals radii of the CH3 and H atoms (3.20 Å; Pauling, 1960). These steric interactions cause deshielding of the H6, H16 and CH3 protons, as shown in the 1H NMR spectrum by values of 0.26–0.38 p.p.m., in comparison with the analogous protons in the 4-methylaminoquinoline derivatives (Maślankiewicz & Skrzypek, 1994; Skrzypek 1997).

Experimental top

Compound (I) was synthesized and purified as previously reported by Pluta (1997). Single crystals suitable for X-ray data collection were obtained on slow evaporation from an N,N-dimethylformamide solution.

Refinement top

Please provide details of H-atom refinement

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: SDP-Plus (Frenz, 1985); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL93.

Figures top
[Figure 1] Fig. 1. An ORTEPII (Johnson, 1976) view of the molecule of compound (I) with 50% probability displacement ellipsoids. H atoms are drawn as small spheres of arbitrary radii.
4-methyl-1,4-thiazino[2,3 - c;6,5 - c']diquinoline top
Crystal data top
C19H13N3SF(000) = 656
Mr = 315.38Dx = 1.379 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.848 (3) ÅCell parameters from 25 reflections
b = 11.015 (4) Åθ = 6–14°
c = 12.313 (4) ŵ = 0.22 mm1
β = 109.01 (3)°T = 293 K
V = 1519.3 (8) Å3Prism, yellow
Z = 40.82 × 0.28 × 0.21 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.021
Radiation source: fine-focus sealed tubeθmax = 30.0°, θmin = 2.6°
Graphite monochromatorh = 1615
ω/2θ scansk = 015
4597 measured reflectionsl = 017
4409 independent reflections3 standard reflections every 60 min
3052 reflections with I > 2σ(I) intensity decay: 0.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.109Calculated w = 1/[σ2(Fo2) + (0.0681P)2 + 0.0125P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.017
4315 reflectionsΔρmax = 0.21 e Å3
210 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL93 (Sheldrick, 1993), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0118 (18)
Crystal data top
C19H13N3SV = 1519.3 (8) Å3
Mr = 315.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.848 (3) ŵ = 0.22 mm1
b = 11.015 (4) ÅT = 293 K
c = 12.313 (4) Å0.82 × 0.28 × 0.21 mm
β = 109.01 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.021
4597 measured reflections3 standard reflections every 60 min
4409 independent reflections intensity decay: 0.5%
3052 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
4315 reflectionsΔρmin = 0.21 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles. Correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 94 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.54501 (3)0.05215 (4)0.33123 (3)0.05108 (13)
N10.80594 (13)0.01535 (14)0.62556 (10)0.0587 (4)
C20.7106 (2)0.0264 (2)0.54601 (13)0.0551 (4)
H20.6582 (2)0.0749 (2)0.56896 (13)0.066*
C30.68292 (13)0.00164 (13)0.42723 (11)0.0439 (3)
C40.76053 (12)0.06552 (11)0.39000 (11)0.0387 (3)
C50.86893 (12)0.10646 (12)0.47304 (11)0.0418 (3)
C60.96006 (13)0.16755 (13)0.44433 (13)0.0492 (3)
H60.95199 (13)0.18062 (13)0.36754 (13)0.059*
C71.06057 (14)0.2079 (2)0.5286 (2)0.0624 (4)
H71.11993 (14)0.2482 (2)0.5086 (2)0.075*
C81.0739 (2)0.1886 (2)0.6443 (2)0.0686 (5)
H81.1408 (2)0.2189 (2)0.7009 (2)0.082*
C90.9903 (2)0.1261 (2)0.67531 (13)0.0639 (5)
H91.0018 (2)0.1120 (2)0.75266 (13)0.077*
C100.88491 (14)0.08180 (14)0.59058 (12)0.0498 (4)
N20.55081 (11)0.17115 (12)0.02745 (11)0.0536 (3)
C120.53170 (13)0.15748 (14)0.12578 (13)0.0506 (3)
H120.47616 (13)0.20822 (14)0.14139 (13)0.061*
C130.59009 (12)0.07067 (12)0.20937 (11)0.0409 (3)
C140.67742 (11)0.00166 (11)0.19243 (10)0.0367 (3)
C150.70708 (12)0.01556 (12)0.09039 (10)0.0389 (3)
C160.80041 (14)0.04751 (13)0.06605 (12)0.0474 (3)
H160.84925 (14)0.10003 (13)0.12039 (12)0.057*
C170.8190 (2)0.03136 (15)0.03730 (14)0.0557 (4)
H170.8807 (2)0.07268 (15)0.05242 (14)0.067*
C180.7454 (2)0.04720 (15)0.12061 (13)0.0570 (4)
H180.7562 (2)0.05427 (15)0.19184 (13)0.068*
C190.6586 (2)0.11280 (15)0.09785 (12)0.0538 (4)
H190.6126 (2)0.16659 (15)0.15269 (12)0.065*
C200.63747 (13)0.10032 (13)0.00836 (11)0.0434 (3)
N30.73816 (11)0.09129 (10)0.27242 (9)0.0411 (3)
C210.71678 (14)0.21884 (13)0.23508 (13)0.0499 (3)
H21A0.7034 (10)0.2663 (2)0.2952 (4)0.075*
H21B0.7851 (4)0.2498 (3)0.2184 (9)0.075*
H21C0.6479 (6)0.2235 (2)0.1673 (6)0.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0445 (2)0.0682 (3)0.0445 (2)0.0081 (2)0.01990 (15)0.0018 (2)
N10.0678 (9)0.0762 (9)0.0328 (6)0.0099 (7)0.0176 (6)0.0008 (6)
C20.0627 (9)0.0697 (10)0.0390 (7)0.0037 (8)0.0248 (7)0.0031 (7)
C30.0473 (7)0.0510 (8)0.0356 (6)0.0023 (6)0.0166 (5)0.0002 (6)
C40.0450 (7)0.0389 (6)0.0316 (6)0.0034 (5)0.0116 (5)0.0025 (5)
C50.0475 (7)0.0393 (6)0.0363 (6)0.0054 (6)0.0103 (5)0.0065 (5)
C60.0489 (7)0.0446 (7)0.0495 (8)0.0006 (6)0.0095 (6)0.0067 (6)
C70.0484 (8)0.0542 (9)0.0745 (11)0.0035 (7)0.0061 (8)0.0110 (8)
C80.0549 (9)0.0650 (10)0.0662 (11)0.0041 (8)0.0073 (8)0.0225 (9)
C90.0691 (10)0.0683 (11)0.0408 (8)0.0165 (9)0.0006 (7)0.0147 (7)
C100.0573 (8)0.0527 (8)0.0354 (7)0.0133 (7)0.0097 (6)0.0082 (6)
N20.0530 (7)0.0556 (7)0.0490 (7)0.0076 (6)0.0123 (6)0.0139 (6)
C120.0485 (8)0.0509 (8)0.0515 (8)0.0109 (6)0.0150 (6)0.0064 (7)
C130.0403 (6)0.0448 (7)0.0365 (6)0.0005 (5)0.0109 (5)0.0003 (5)
C140.0402 (6)0.0362 (6)0.0307 (6)0.0012 (5)0.0076 (5)0.0024 (5)
C150.0460 (7)0.0381 (6)0.0305 (6)0.0046 (5)0.0095 (5)0.0047 (5)
C160.0563 (8)0.0462 (8)0.0417 (7)0.0014 (6)0.0187 (6)0.0047 (6)
C170.0680 (10)0.0572 (9)0.0501 (8)0.0076 (7)0.0306 (8)0.0141 (7)
C180.0766 (11)0.0616 (9)0.0359 (7)0.0187 (8)0.0228 (7)0.0072 (7)
C190.0672 (9)0.0554 (9)0.0340 (7)0.0122 (7)0.0099 (6)0.0034 (6)
C200.0478 (7)0.0427 (7)0.0353 (6)0.0082 (6)0.0074 (5)0.0010 (5)
N30.0518 (6)0.0377 (5)0.0317 (5)0.0042 (5)0.0104 (5)0.0012 (4)
C210.0625 (9)0.0387 (7)0.0474 (8)0.0034 (6)0.0166 (7)0.0033 (6)
Geometric parameters (Å, º) top
S1—C131.7608 (15)N2—C121.311 (2)
S1—C31.766 (2)N2—C201.369 (2)
N1—C21.314 (2)C12—C131.410 (2)
N1—C101.364 (2)C13—C141.375 (2)
C2—C31.417 (2)C14—N31.415 (2)
C3—C41.370 (2)C14—C151.423 (2)
C4—N31.413 (2)C15—C161.418 (2)
C4—C51.429 (2)C15—C201.425 (2)
C5—C61.412 (2)C16—C171.372 (2)
C5—C101.423 (2)C17—C181.407 (2)
C6—C71.374 (2)C18—C191.358 (2)
C7—C81.398 (3)C19—C201.416 (2)
C8—C91.360 (3)N3—C211.474 (2)
C9—C101.427 (2)
C13—S1—C397.79 (7)N2—C12—C13124.11 (14)
C2—N1—C10117.66 (13)C14—C13—C12119.79 (13)
N1—C2—C3123.8 (2)C14—C13—S1120.96 (10)
C4—C3—C2119.63 (14)C12—C13—S1119.19 (11)
C4—C3—S1121.44 (10)C13—C14—N3122.43 (12)
C2—C3—S1118.86 (12)C13—C14—C15118.12 (12)
C3—C4—N3121.93 (12)N3—C14—C15119.45 (12)
C3—C4—C5118.39 (12)C16—C15—C14123.72 (12)
N3—C4—C5119.64 (12)C16—C15—C20118.84 (12)
C6—C5—C10119.11 (13)C14—C15—C20117.44 (13)
C6—C5—C4123.61 (12)C17—C16—C15120.28 (15)
C10—C5—C4117.27 (14)C16—C17—C18120.5 (2)
C7—C6—C5120.7 (2)C19—C18—C17120.52 (14)
C6—C7—C8120.2 (2)C18—C19—C20120.82 (15)
C9—C8—C7120.81 (15)N2—C20—C19118.12 (13)
C8—C9—C10120.8 (2)N2—C20—C15123.03 (13)
N1—C10—C5123.09 (14)C19—C20—C15118.85 (14)
N1—C10—C9118.65 (14)C4—N3—C14117.15 (11)
C5—C10—C9118.2 (2)C4—N3—C21117.82 (11)
C12—N2—C20117.24 (12)C14—N3—C21116.82 (11)
C10—N1—C2—C32.9 (3)C3—S1—C13—C12151.91 (12)
N1—C2—C3—C42.6 (2)C12—C13—C14—N3179.23 (12)
N1—C2—C3—S1174.30 (13)S1—C13—C14—N32.1 (2)
C13—S1—C3—C432.09 (13)C12—C13—C14—C150.9 (2)
C13—S1—C3—C2151.06 (13)S1—C13—C14—C15178.10 (10)
C2—C3—C4—N3179.04 (13)C13—C14—C15—C16175.85 (12)
S1—C3—C4—N34.1 (2)N3—C14—C15—C164.0 (2)
C2—C3—C4—C51.3 (2)C13—C14—C15—C204.8 (2)
S1—C3—C4—C5178.12 (10)N3—C14—C15—C20175.35 (11)
C3—C4—C5—C6174.63 (13)C14—C15—C16—C17176.05 (14)
N3—C4—C5—C63.2 (2)C20—C15—C16—C173.3 (2)
C3—C4—C5—C104.4 (2)C15—C16—C17—C180.4 (2)
N3—C4—C5—C10177.79 (12)C16—C17—C18—C193.3 (2)
C10—C5—C6—C73.0 (2)C17—C18—C19—C202.3 (2)
C4—C5—C6—C7177.95 (14)C12—N2—C20—C19179.35 (14)
C5—C6—C7—C80.1 (2)C12—N2—C20—C150.9 (2)
C6—C7—C8—C92.4 (3)C18—C19—C20—N2178.38 (14)
C7—C8—C9—C101.9 (3)C18—C19—C20—C151.4 (2)
C2—N1—C10—C50.6 (2)C16—C15—C20—N2175.61 (13)
C2—N1—C10—C9178.83 (15)C14—C15—C20—N25.0 (2)
C6—C5—C10—N1174.85 (14)C16—C15—C20—C194.1 (2)
C4—C5—C10—N14.2 (2)C14—C15—C20—C19175.24 (12)
C6—C5—C10—C93.4 (2)C3—C4—N3—C1433.5 (2)
C4—C5—C10—C9177.51 (13)C5—C4—N3—C14144.23 (12)
C8—C9—C10—N1177.4 (2)C3—C4—N3—C21114.07 (15)
C8—C9—C10—C51.0 (2)C5—C4—N3—C2168.2 (2)
C20—N2—C12—C133.5 (2)C13—C14—N3—C434.7 (2)
N2—C12—C13—C143.5 (2)C15—C14—N3—C4145.10 (12)
N2—C12—C13—S1173.71 (13)C13—C14—N3—C21113.16 (15)
C3—S1—C13—C1430.91 (12)C15—C14—N3—C2167.0 (2)

Experimental details

Crystal data
Chemical formulaC19H13N3S
Mr315.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.848 (3), 11.015 (4), 12.313 (4)
β (°) 109.01 (3)
V3)1519.3 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.82 × 0.28 × 0.21
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4597, 4409, 3052
Rint0.021
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.109, 1.03
No. of reflections4315
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.21

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, SDP-Plus (Frenz, 1985), SHELXS86 (Sheldrick, 1990), SHELXL93 (Sheldrick, 1993), ORTEPII (Johnson, 1976), SHELXL93.

Selected geometric parameters (Å, º) top
S1—C131.7608 (15)N2—C121.311 (2)
S1—C31.766 (2)N2—C201.369 (2)
N1—C21.314 (2)C14—N31.415 (2)
N1—C101.364 (2)N3—C211.474 (2)
C4—N31.413 (2)
C13—S1—C397.79 (7)N2—C12—C13124.11 (14)
C2—N1—C10117.66 (13)C14—C13—S1120.96 (10)
N1—C2—C3123.8 (2)C12—C13—S1119.19 (11)
C4—C3—S1121.44 (10)C13—C14—N3122.43 (12)
C2—C3—S1118.86 (12)N3—C14—C15119.45 (12)
C3—C4—N3121.93 (12)N2—C20—C19118.12 (13)
N3—C4—C5119.64 (12)N2—C20—C15123.03 (13)
N1—C10—C5123.09 (14)C4—N3—C14117.15 (11)
N1—C10—C9118.65 (14)C4—N3—C21117.82 (11)
C12—N2—C20117.24 (12)C14—N3—C21116.82 (11)
C13—S1—C3—C432.09 (13)C3—C4—N3—C21114.07 (15)
S1—C3—C4—N34.1 (2)C5—C4—N3—C2168.2 (2)
C3—S1—C13—C1430.91 (12)C13—C14—N3—C434.7 (2)
S1—C13—C14—N32.1 (2)C13—C14—N3—C21113.16 (15)
C3—C4—N3—C1433.5 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds