Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
High-pressure synchrotron X-ray powder diffraction studies of TiP2O7, ZrP2O7 and ZrV2O7 have been performed. The ZrV2O7 structure undergoes a reversible transition at 1.38–1.58 GPa from cubic α- to pseudo-tetragonal β-ZrV2O7 that displays an orthorhombic 2 × 3 × 3 supercell. At pressures above 4 GPa, ZrV2O7 becomes irreversibly X-ray amorphous. No such transformations are observed for TiP2O7 and ZrP2O7, which compress smoothly up to the highest investigated pressures (40.3 and 20.5 GPa, respectively). These differences in high-pressure properties are discussed in terms of the negative thermal expansion of ZrV2O7. The bulk moduli at ambient pressure (B0) for TiP2O7, ZrP2O7, α-ZrV2O7 and β-ZrV2O7 were estimated to be 42 (3), 39 (1), 17.0 (7) and 20.8 (10) GPa, respectively.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0021889800013856/os0059sup1.pdf
Supplementary material


Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds