Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A method for predicting the position of protein molecules in the unit cell is presented. This prediction is based on the structure-factor amplitudes of the very low order reflections and packing considerations. With very low resolution data, the calculated electron density is very blurred, such that a protein molecule may well be approximated as a sphere. A sphere with the same volume as the unknown protein was translated in small (2-3 Å) steps in the corresponding Cheshire cell until maximum overlap between the amplitudes calculated from the sphere and the true protein structure was found. A molecular packing can be calculated to restrain the allowable regions. This makes the positioning of the protein molecule even more reliable. Structure factors of the ten or so lowest resolution reflections were calculated with a sphere at the best position. These structure factors agreed closely with those of the true protein structure. The translation algorithm has been successfully tested for 16 proteins. For 12 out of 16 proteins tested, the position of the centre of the molecule was correctly predicted to within 5 Å. A qualitative deduction of deviations from the spherical model can be gained by comparing structure factors from the spherical model and the true protein. The very low resolution phasing obtained by this method may be used as powerful starting set for phase-extension methods such as maximum entropy.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds