Download citation
Download citation
link to html
A one-dimensional chiral cobalt(II) coordination polymer, namely, catena-poly[[[(S)-2-amino-3-hy­droxy­propano­ato-κ2N,O1]cobalt(II)]-μ-(S)-2-amino-3-hy­droxy­propano­ato-κ4O1,O3:N,O1′], [Co(C3H6NO3)2]n or Δ-[Co(L-Ser-κ2N,O)2]n (L-Ser = L-serine) (1), has been synthesized and characterized using elemental and thermal analyses, IR spectroscopy and single-crystal and powder X-ray diffraction techniques. The asymmetric unit of 1 consists of two serine anions which are coordinated to a Co2+ ion to give three chelate rings. These extend the structure into a helical chain with pendant chelate rings which participate in inter­chain hydro­gen bonding. The ability of 1 to undergo transmetallation was evaluated. Among a range of divalent metal ions, only copper(II) partially replaced cobalt(II).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229621011347/op3014sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621011347/op3014Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229621011347/op3014sup3.pdf
ICP-AES results

CCDC reference: 2051249

Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker 2017); program(s) used to solve structure: SHELXS2017 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: X-SEED (Barbour, 2020); software used to prepare material for publication: SHELXL2017 (Sheldrick, 2015).

catena-Poly[[[(S)-2-amino-3-hydroxypropanoato-κ2N,O1]cobalt(II)]-µ-(S)-2-amino-3-hydroxypropanoato-κ4O1,O3:N,O1'] top
Crystal data top
[Co(C3H6NO3)2]F(000) = 274
Mr = 267.11Dx = 1.891 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 5.5666 (4) ÅCell parameters from 11159 reflections
b = 8.7105 (6) Åθ = 2.1–28.4°
c = 9.8314 (7) ŵ = 1.84 mm1
β = 100.311 (1)°T = 173 K
V = 469.01 (6) Å3Block, red purple
Z = 20.24 × 0.24 × 0.22 mm
Data collection top
Bruker Kappa DUO APEXII
diffractometer
2293 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
1.2°φ scans and ω scansθmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 77
k = 1111
11159 measured reflectionsl = 1313
2353 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.0277P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.048(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.23 e Å3
2353 reflectionsΔρmin = 0.20 e Å3
140 parametersAbsolute structure: Flack x determined using 1028 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.001 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. For single-crystal structure refinement, data collections were performed on a Bruker KAPPA APEXII Duo diffractometer using Mo <i.Kα (λ = 0.71069 Å). Unit-cell refinement and data reduction were performed using the program SAINT (Bruker, 2017). Data were corrected for Lorentz polarisation effects and for absorption using the program SADABS (Krause et al., 2015). The structure was solved by direct methods and refined by full-matrix least squares on F2 in the SHELX (Sheldrick, 2008) suite of programs within the X-SEED (Barbour, 2020) interface. All non-H atoms were refined with anisotropic displacement parameters

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.48448 (5)0.83382 (4)0.19408 (3)0.01158 (9)
O1B0.2501 (3)0.9135 (2)0.32539 (18)0.0174 (4)
N1A0.2297 (4)0.6561 (2)0.1290 (2)0.0128 (4)
H1A10.2155270.5957080.2026300.015*
H1A20.0808140.6981070.0964820.015*
O2A0.6827 (3)0.4777 (2)0.03844 (19)0.0173 (4)
O2B0.1688 (4)0.9107 (3)0.5386 (2)0.0252 (4)
C2B0.5014 (5)0.7575 (3)0.4964 (3)0.0164 (5)
H2B0.4257860.6541640.5027400.020*
C1B0.2929 (5)0.8712 (3)0.4518 (3)0.0155 (5)
C2A0.3049 (4)0.5612 (3)0.0202 (3)0.0128 (5)
H2A0.2614720.4515470.0335100.015*
O3B0.7553 (4)0.9428 (2)0.6409 (2)0.0254 (5)
H3B0.8803030.9375810.6041970.030*
N1B0.6587 (4)0.7465 (3)0.3906 (2)0.0162 (5)
H1B10.6997170.6464710.3808660.019*
H1B20.7988570.7999910.4197870.019*
C3B0.6445 (5)0.7949 (3)0.6386 (3)0.0214 (6)
H3B10.5337390.7921530.7069070.026*
H3B20.7726850.7163000.6654580.026*
O1A0.6898 (3)0.6873 (2)0.09082 (19)0.0168 (4)
C1A0.5799 (5)0.5750 (3)0.0258 (3)0.0122 (5)
O3A0.2204 (4)0.5083 (2)0.22685 (19)0.0166 (4)
H3A20.099 (7)0.477 (4)0.251 (3)0.020*
C3A0.1783 (5)0.6157 (3)0.1223 (3)0.0150 (5)
H10.0006910.6255280.1237750.018*
H20.2420320.7179240.1419510.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01072 (14)0.01198 (13)0.01185 (15)0.00105 (14)0.00152 (10)0.00012 (15)
O1B0.0164 (9)0.0197 (9)0.0156 (9)0.0055 (7)0.0016 (7)0.0012 (7)
N1A0.0112 (10)0.0148 (9)0.0128 (11)0.0003 (8)0.0031 (8)0.0003 (8)
O2A0.0114 (8)0.0196 (9)0.0204 (9)0.0009 (7)0.0018 (7)0.0081 (8)
O2B0.0215 (10)0.0339 (11)0.0222 (10)0.0010 (9)0.0097 (8)0.0048 (9)
C2B0.0192 (12)0.0157 (12)0.0152 (12)0.0013 (10)0.0048 (10)0.0001 (10)
C1B0.0150 (11)0.0150 (13)0.0167 (12)0.0023 (8)0.0032 (9)0.0031 (9)
C2A0.0103 (11)0.0147 (11)0.0133 (12)0.0006 (9)0.0022 (9)0.0001 (9)
O3B0.0195 (10)0.0284 (11)0.0287 (11)0.0030 (8)0.0057 (9)0.0141 (9)
N1B0.0175 (10)0.0173 (11)0.0137 (11)0.0037 (9)0.0024 (8)0.0008 (8)
C3B0.0247 (14)0.0257 (16)0.0132 (13)0.0015 (10)0.0016 (10)0.0016 (10)
O1A0.0100 (8)0.0183 (8)0.0220 (10)0.0009 (7)0.0020 (7)0.0074 (7)
C1A0.0103 (11)0.0148 (11)0.0113 (12)0.0016 (9)0.0015 (9)0.0004 (9)
O3A0.0133 (9)0.0198 (9)0.0160 (9)0.0003 (8)0.0006 (7)0.0048 (7)
C3A0.0133 (12)0.0163 (12)0.0148 (13)0.0023 (9)0.0008 (10)0.0013 (10)
Geometric parameters (Å, º) top
Co1—O1A2.0930 (19)O2B—C1B1.239 (3)
Co1—O1B2.1102 (19)C2B—N1B1.478 (4)
Co1—O2Ai2.0658 (18)C2B—C3B1.515 (4)
Co1—O3Ai2.2183 (19)C2B—C1B1.530 (4)
Co1—N1A2.119 (2)C2A—C3A1.527 (3)
Co1—N1B2.140 (2)C2A—C1A1.527 (4)
O1B—C1B1.277 (3)O3B—C3B1.427 (3)
N1A—C2A1.470 (3)O1A—C1A1.265 (3)
O2A—C1A1.255 (3)O3A—C3A1.440 (3)
O1A—Co1—N1A78.60 (8)N1B—C2B—C3B112.5 (2)
O1B—Co1—N1B78.14 (8)N1B—C2B—C1B110.8 (2)
O2Ai—Co1—O3Ai85.17 (7)C3B—C2B—C1B111.8 (2)
O1A—Co1—O1B161.50 (7)O2B—C1B—O1B124.1 (2)
N1A—Co1—O3Ai169.15 (8)O2B—C1B—C2B118.0 (2)
O2Ai—Co1—N1B162.83 (8)O1B—C1B—C2B117.8 (2)
O2Ai—Co1—O1A102.90 (7)N1A—C2A—C3A110.4 (2)
O2Ai—Co1—O1B90.45 (7)N1A—C2A—C1A110.1 (2)
O2Ai—Co1—N1A91.77 (8)C3A—C2A—C1A107.7 (2)
O1B—Co1—N1A88.37 (8)C2B—N1B—Co1112.50 (16)
O1A—Co1—N1B91.29 (8)O3B—C3B—C2B111.3 (2)
N1A—Co1—N1B100.58 (8)C1A—O1A—Co1117.37 (17)
O1A—Co1—O3Ai91.92 (7)O2A—C1A—O1A123.7 (2)
O1B—Co1—O3Ai102.04 (7)O2A—C1A—C2A118.2 (2)
N1B—Co1—O3Ai84.73 (8)O1A—C1A—C2A118.1 (2)
C1B—O1B—Co1118.21 (16)C3A—O3A—Co1ii123.54 (15)
C2A—N1A—Co1111.59 (15)O3A—C3A—C2A110.21 (19)
C1A—O2A—Co1ii126.67 (16)
Symmetry codes: (i) x+1, y+1/2, z; (ii) x+1, y1/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds