Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The dicarboxyl­ate ligand in the title compound, [Cd(C9H6O5)(H2O)3]·1.5H2O, bridges triaqua­cadmium groups into a linear chain; the carboxylate arm that is directly connected to the aromatic ring behaves as a chelate, whereas the carboxylate arm of the oxyacetate portion binds in a monodentate mode. The octa­hedral environment of cadmium is distorted towards a penta­gonal bipyramid, owing to a long Cd...O inter­action of 2.721 (2) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680503850X/om6273sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680503850X/om6273Isup2.hkl
Contains datablock I

CCDC reference: 296628

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.004 Å
  • H-atom completeness 81%
  • Disorder in solvent or counterion
  • R factor = 0.028
  • wR factor = 0.067
  • Data-to-parameter ratio = 15.4

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT430_ALERT_2_A Short Inter D...A Contact O4W .. O5W .. 1.97 Ang.
Author Response: The O4w and O5w atoms are disordered. The O4w atom is 3 \%A from O5w^ii^ whereas the O4w' atom is 2.7 \%A from O5w (ii = 3 - x, 2 - y, 1 - z).

Alert level B PLAT430_ALERT_2_B Short Inter D...A Contact O1 .. O5W .. 2.81 Ang.
Author Response: The O4w and O5w atoms are disordered. The O4w atom is 3 \%A from O5w^ii^ whereas the O4w' atom is 2.7 \%A from O5w (ii = 3 - x, 2 - y, 1 - z).
PLAT430_ALERT_2_B Short Inter D...A Contact  O4W'   ..  O5W     ..       2.70 Ang.
Author Response: The O4w and O5w atoms are disordered. The O4w atom is 3 \%A from O5w^ii^ whereas the O4w' atom is 2.7 \%A from O5w (ii = 3 - x, 2 - y, 1 - z).
PLAT430_ALERT_2_B Short Inter D...A Contact  O4W'   ..  O5      ..       2.71 Ang.
Author Response: The O4w and O5w atoms are disordered. The O4w atom is 3 \%A from O5w^ii^ whereas the O4w' atom is 2.7 \%A from O5w (ii = 3 - x, 2 - y, 1 - z).

Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.460 0.753 Tmin(prime) and Tmax expected: 0.542 0.741 RR(prime) = 0.835 Please check that your absorption correction is appropriate. PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97 PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 0.50 Ratio PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ............. 0.82 PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.98 PLAT068_ALERT_1_C Reported F000 Differs from Calcd (or Missing)... ? PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.13 PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 50.00 Perc. PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 7
Alert level G FORMU01_ALERT_2_G There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C9 H15 Cd1 O9.5 Atom count from the _atom_site data: C9 H12 Cd1 O9.5 CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected. CELLZ01_ALERT_1_G WARNING: H atoms missing from atom site list. Is this intentional? From the CIF: _cell_formula_units_Z 2 From the CIF: _chemical_formula_sum C9 H15 Cd O9.50 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff C 18.00 18.00 0.00 H 30.00 24.00 6.00 Cd 2.00 2.00 0.00 O 19.00 19.00 0.00
1 ALERT level A = In general: serious problem 3 ALERT level B = Potentially serious problem 12 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 7 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

A recent study on the cadmium derivative of 4-carboxyphenoxyacetic acid describes the isolation of a triaqua compound whose seven-coordinate metal exists in a pentagonal bipyramidal environment. Both carboxyl –CO2 arms of the dicarboxylate function in the chelating mode, with the four Cd–O bond distances ranging from 2.356 (2) to 2.444 (2) Å (Gao et al., 2005). The corresponding 3-carboxyphenoxyacetic acid also affords a triaquacadmium compound. However, probably owing to the greater flexibility of the ligand, the packing is less efficient so that the compound crystallizes with one-and-a-half uncoordinated water molecules (Scheme, Fig. 1). The compound exists as a linear chain that propagates along the longest axis of the unit cell. Ofn the two carboxyl arms, that connected to the aromatic ring functions as a chelate whereas that belonging to the oxyacetate portion is only unidentate. However, a long-range interaction betweenCd1 and O5 is sufficiently close [2.721 (2) Å] to distort the octahedral geometry to a pentagonal bipyramid. The chains are linked by hydrogen bonds (Table 2) into a three-dimensional network.

Experimental top

Cadmium dinitrate tetrahydrate (0.62 g, 2 mmol) and 3-carboxyphenoxyacetic acid (0.39 g, 2 mmol) were dissolved in a small volume of water (30 ml); 0.2 M sodium hydroxide was added in drops to the solution until it showed a pH of 6. The solution was set aside for the formation of colorless prisms; crystallization took several weeks. C&H analysis. Calc. for C9H15O9.5Cd: C 27.89, H 3.90%. Found: C 27.16, H 4.03%.

Refinement top

The carbon-bound H atoms were positioned geometrically [C–H 0.93 or 0.97 Å] and were included in the refinement in the riding-model approximation, with U(H) = 1.2 times Ueq(C). The H atoms of the coordinated water molecules were similarly treated [O–H 0.85 Å, U(H) = 1.5Ueq(O)]; these were rotated to fit the electron density.

Of the two independent uncoordinated water molecules, one is disordered over two positions (O4w and O4w') while the other is disordered over an inversion site (O5w). A consideration of possible hydrogen-bonding interactions led to the assignment of half occupancies for these atoms. H atoms could not be placed in any chemically sensible positions owing to the disorder. O4w is 3 Å from O5wii while O4w' is 2.7 Å from O5w [symmetry code: (ii) = 3 − x, 2 − y, 1 − z].

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEPII plot of a portion of the chain structure of [(C9H6O5)(H2O)3Cd].1.5H2O; the disordered uncoordinated water molecules are not shown. Displacement ellipsoids are drawn at the 50% probability level, and H atoms are drawn as spheres of arbitrary radii. [Symmetry code: (i) = x, y, 1 + z.]
catena-Poly[(µ-3-carboxylatophenoxyacetato-κ3O,O':O")triaquacadmium(II) sesquihydrate] top
Crystal data top
[Cd(C9H6O5)(H2O)3]·1.5H2OZ = 2
Mr = 387.61F(000) = 386
Triclinic, P1Dx = 1.916 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.029 (1) ÅCell parameters from 5430 reflections
b = 8.829 (2) Åθ = 3.1–27.5°
c = 11.720 (2) ŵ = 1.67 mm1
α = 80.62 (3)°T = 295 K
β = 72.66 (3)°Block, colorless
γ = 76.52 (3)°0.36 × 0.25 × 0.18 mm
V = 671.7 (2) Å3
Data collection top
Rigaku RAXIS-RAPID IP
diffractometer
2969 independent reflections
Radiation source: fine-focus sealed tube2671 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.460, Tmax = 0.753k = 1111
5896 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0358P)2 + 0.544P]
where P = (Fo2 + 2Fc2)/3
2969 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
[Cd(C9H6O5)(H2O)3]·1.5H2Oγ = 76.52 (3)°
Mr = 387.61V = 671.7 (2) Å3
Triclinic, P1Z = 2
a = 7.029 (1) ÅMo Kα radiation
b = 8.829 (2) ŵ = 1.67 mm1
c = 11.720 (2) ÅT = 295 K
α = 80.62 (3)°0.36 × 0.25 × 0.18 mm
β = 72.66 (3)°
Data collection top
Rigaku RAXIS-RAPID IP
diffractometer
2969 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2671 reflections with I > 2σ(I)
Tmin = 0.460, Tmax = 0.753Rint = 0.021
5896 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.05Δρmax = 0.71 e Å3
2969 reflectionsΔρmin = 0.57 e Å3
193 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.72063 (3)0.71871 (2)0.93308 (2)0.0336 (1)
O10.6866 (4)0.6999 (3)0.7345 (2)0.048 (1)
O20.7597 (4)0.4883 (2)0.8533 (2)0.039 (1)
O30.7641 (3)0.4861 (2)0.3357 (2)0.034 (1)
O40.7316 (4)0.5846 (3)0.1154 (2)0.043 (1)
O50.6830 (4)0.8331 (3)0.1424 (2)0.052 (1)
O1w1.0684 (4)0.7203 (3)0.8760 (2)0.047 (1)
O2w0.6953 (4)0.9776 (2)0.8698 (2)0.042 (1)
O3w0.3567 (4)0.7618 (3)1.0025 (2)0.042 (1)
O4w1.325 (1)0.9316 (9)0.6996 (6)0.059 (2)0.50
O4w'1.231 (2)0.951 (1)0.7500 (8)0.095 (3)0.50
O5w1.570 (1)0.9375 (9)0.5640 (7)0.090 (2)0.50
C10.7313 (4)0.5544 (3)0.7528 (2)0.032 (1)
C20.7616 (4)0.4528 (3)0.6550 (2)0.027 (1)
C30.8204 (4)0.2920 (3)0.6745 (2)0.031 (1)
C40.8578 (5)0.1995 (3)0.5820 (3)0.036 (1)
C50.8373 (5)0.2685 (3)0.4697 (2)0.034 (1)
C60.7771 (4)0.4293 (3)0.4505 (2)0.027 (1)
C70.7375 (4)0.5233 (3)0.5426 (2)0.027 (1)
C80.7096 (4)0.6500 (3)0.3109 (2)0.029 (1)
C90.7095 (4)0.6906 (4)0.1799 (2)0.034 (1)
H1w11.09420.79100.81830.071*
H1w21.13480.63160.85370.071*
H2w10.70551.02580.92420.064*
H2w20.58091.01380.85510.064*
H3w10.32110.68491.05180.063*
H3w20.30790.77040.94310.063*
H30.83480.24590.74940.037*
H40.89650.09140.59510.044*
H50.86390.20660.40750.041*
H70.69580.63120.52980.033*
H8a0.80560.70050.32780.034*
H8b0.57560.68790.36210.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0548 (2)0.0268 (1)0.0226 (1)0.0072 (1)0.0169 (1)0.0011 (1)
O10.085 (2)0.035 (1)0.029 (1)0.013 (1)0.023 (1)0.005 (1)
O20.063 (1)0.041 (1)0.023 (1)0.017 (1)0.019 (1)0.002 (1)
O30.053 (1)0.031 (1)0.019 (1)0.003 (1)0.016 (1)0.003 (1)
O40.061 (1)0.046 (1)0.024 (1)0.004 (1)0.021 (1)0.004 (1)
O50.068 (2)0.042 (1)0.044 (1)0.009 (1)0.024 (1)0.012 (1)
O1w0.059 (1)0.039 (1)0.047 (1)0.002 (1)0.024 (1)0.010 (1)
O2w0.061 (1)0.029 (1)0.039 (1)0.007 (1)0.019 (1)0.001 (1)
O3w0.058 (1)0.040 (1)0.035 (1)0.013 (1)0.023 (1)0.001 (1)
O4w0.073 (5)0.056 (3)0.056 (4)0.018 (3)0.022 (3)0.010 (3)
O4w'0.120 (8)0.084 (6)0.088 (6)0.071 (6)0.006 (5)0.016 (5)
O5w0.093 (5)0.084 (5)0.088 (5)0.018 (4)0.025 (4)0.013 (4)
C10.038 (2)0.039 (2)0.025 (1)0.013 (1)0.010 (1)0.005 (1)
C20.029 (1)0.036 (1)0.019 (1)0.011 (1)0.007 (1)0.003 (1)
C30.037 (1)0.037 (1)0.020 (1)0.009 (1)0.011 (1)0.001 (1)
C40.050 (2)0.028 (1)0.031 (1)0.003 (1)0.014 (1)0.001 (11)
C50.046 (2)0.034 (1)0.025 (1)0.004 (1)0.013 (1)0.009 (1)
C60.030 (1)0.036 (1)0.017 (1)0.007 (1)0.008 (1)0.002 (1)
C70.032 (1)0.030 (1)0.021 (1)0.006 (1)0.010 (1)0.002 (1)
C80.035 (1)0.031 (1)0.022 (1)0.007 (1)0.012 (1)0.001 (1)
C90.036 (2)0.043 (2)0.023 (1)0.007 (1)0.013 (1)0.003 (1)
Geometric parameters (Å, º) top
Cd1—O12.445 (2)C4—C51.391 (4)
Cd1—O22.301 (2)C5—C61.385 (4)
Cd1—O4i2.281 (2)C6—C71.392 (4)
Cd1—O1w2.337 (3)C8—C91.519 (3)
Cd1—O2w2.268 (2)O1w—H1w10.85
Cd1—O3w2.399 (2)O1w—H1w20.85
O1—C11.248 (4)O2w—H2w10.85
O2—C11.277 (3)O2w—H2w20.85
O3—C61.379 (3)O3w—H3w10.85
O3—C81.413 (3)O3w—H3w20.85
O4—C91.250 (4)C3—H30.93
O5—C91.253 (4)C4—H40.93
C1—C21.504 (4)C5—H50.93
C2—C31.384 (4)C7—H70.93
C2—C71.403 (3)C8—H8a0.97
C3—C41.390 (4)C8—H8b0.97
O1—Cd1—O255.0 (1)O3—C6—C7124.0 (2)
O1—Cd1—O4i144.6 (1)C5—C6—C7120.6 (2)
O1—Cd1—O1w97.7 (1)C6—C7—C2119.0 (2)
O1—Cd1—O2w83.8 (1)O3—C8—C9109.8 (2)
O1—Cd1—O3w87.2 (1)O4—C9—O5123.0 (3)
O2—Cd1—O4i90.6 (1)O4—C9—C8120.3 (3)
O2—Cd1—O1w94.3 (1)O5—C9—C8116.7 (3)
O2—Cd1—O2w138.2 (1)Cd1—O1w—H1w1109.5
O2—Cd1—O3w95.7 (1)Cd1—O1w—H1w2109.5
O4i—Cd1—O1w92.8 (1)H1w1—O1w—H1w2109.5
O4i—Cd1—O2w131.2 (1)Cd1—O2w—H2w1109.5
O4i—Cd1—O3w88.2 (1)Cd1—O2w—H2w2109.5
O1w—Cd1—O2w83.1 (1)H2w1—O2w—H2w2109.5
O1w—Cd1—O3w169.9 (1)Cd1—O3w—H3w1109.5
O2w—Cd1—O3w88.7 (1)Cd1—O3w—H3w2109.5
C1—O1—Cd189.0 (2)H3w1—O3w—H3w2109.5
C1—O2—Cd194.9 (2)C2—C3—H3120.0
C6—O3—C8117.4 (2)C4—C3—H3120.0
C9—O4—Cd1ii103.3 (2)C3—C4—H4120.0
O1—C1—O2120.9 (3)C5—C4—H4120.0
O1—C1—C2120.7 (2)C6—C5—H5120.0
O2—C1—C2118.3 (3)C4—C5—H5120.0
C3—C2—C7120.5 (2)C6—C7—H7120.5
C3—C2—C1120.2 (2)C2—C7—H7120.5
C7—C2—C1119.3 (2)O3—C8—H8a109.7
C2—C3—C4119.9 (2)C9—C8—H8a109.7
C3—C4—C5120.0 (3)O3—C8—H8b109.7
C6—C5—C4120.0 (2)C9—C8—H8b109.7
O3—C6—C5115.4 (2)H8a—C8—H8b108.2
O2w—Cd1—O1—C1170.1 (2)C7—C2—C3—C40.6 (4)
O4i—Cd1—O1—C117.8 (3)C1—C2—C3—C4176.9 (3)
O2—Cd1—O1—C12.0 (2)C2—C3—C4—C50.3 (4)
O1w—Cd1—O1—C188.0 (2)C3—C4—C5—C60.8 (5)
O3w—Cd1—O1—C1100.9 (2)C8—O3—C6—C5178.0 (2)
O2w—Cd1—O2—C19.9 (2)C8—O3—C6—C70.8 (4)
O4i—Cd1—O2—C1172.8 (2)C4—C5—C6—O3179.1 (3)
O1w—Cd1—O2—C194.4 (2)C4—C5—C6—C70.3 (4)
O3w—Cd1—O2—C184.6 (2)O3—C6—C7—C2178.1 (2)
O1—Cd1—O2—C11.9 (2)C5—C6—C7—C20.7 (4)
Cd1—O1—C1—O23.4 (3)C3—C2—C7—C61.1 (4)
Cd1—O1—C1—C2174.0 (2)C1—C2—C7—C6176.4 (2)
Cd1—O2—C1—O13.6 (3)C6—O3—C8—C9178.3 (2)
Cd1—O2—C1—C2173.8 (2)Cd1ii—O4—C9—O51.8 (4)
O1—C1—C2—C3177.0 (3)Cd1ii—O4—C9—C8179.5 (2)
O2—C1—C2—C30.5 (4)O3—C8—C9—O47.9 (4)
O1—C1—C2—C70.5 (4)O3—C8—C9—O5173.3 (3)
O2—C1—C2—C7178.0 (2)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O4w0.852.273.015 (8)147
O1w—H1w1···O4w0.851.832.593 (8)148
O1w—H1w2···O4iii0.851.952.732 (3)153
O2w—H2w1···O3wiv0.852.092.841 (3)147
O2w—H2w2···O5v0.852.022.821 (4)157
O3w—H3w2···O1wvi0.852.212.959 (3)147
O3w—H3w1···O2vii0.851.842.684 (3)175
Symmetry codes: (iii) x+2, y+1, z+1; (iv) x+1, y+2, z+2; (v) x+1, y+2, z+1; (vi) x1, y, z; (vii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Cd(C9H6O5)(H2O)3]·1.5H2O
Mr387.61
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.029 (1), 8.829 (2), 11.720 (2)
α, β, γ (°)80.62 (3), 72.66 (3), 76.52 (3)
V3)671.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.67
Crystal size (mm)0.36 × 0.25 × 0.18
Data collection
DiffractometerRigaku RAXIS-RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.460, 0.753
No. of measured, independent and
observed [I > 2σ(I)] reflections
5896, 2969, 2671
Rint0.021
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.067, 1.05
No. of reflections2969
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.57

Computer programs: RAPID-AUTO (Rigaku, 1998), RAPID-AUTO, CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
Cd1—O12.445 (2)Cd1—O1w2.337 (3)
Cd1—O22.301 (2)Cd1—O2w2.268 (2)
Cd1—O4i2.281 (2)Cd1—O3w2.399 (2)
O1—Cd1—O255.0 (1)O2—Cd1—O3w95.7 (1)
O1—Cd1—O4i144.6 (1)O4i—Cd1—O1w92.8 (1)
O1—Cd1—O1w97.7 (1)O4i—Cd1—O2w131.2 (1)
O1—Cd1—O2w83.8 (1)O4i—Cd1—O3w88.2 (1)
O1—Cd1—O3w87.2 (1)O1w—Cd1—O2w83.1 (1)
O2—Cd1—O4i90.6 (1)O1w—Cd1—O3w169.9 (1)
O2—Cd1—O1w94.3 (1)O2w—Cd1—O3w88.7 (1)
O2—Cd1—O2w138.2 (1)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O4w0.852.273.015 (8)147
O1w—H1w1···O4w'0.851.832.593 (8)148
O1w—H1w2···O4ii0.851.952.732 (3)153
O2w—H2w1···O3wiii0.852.092.841 (3)147
O2w—H2w2···O5iv0.852.022.821 (4)157
O3w—H3w2···O1wv0.852.212.959 (3)147
O3w—H3w1···O2vi0.851.842.684 (3)175
Symmetry codes: (ii) x+2, y+1, z+1; (iii) x+1, y+2, z+2; (iv) x+1, y+2, z+1; (v) x1, y, z; (vi) x+1, y+1, z+2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds