Download citation
Download citation
link to html
The title compound, (C8H18N2)[CoCl4], crystallizes with two cations, one complete anion and two half-anions in the asymmetric unit, two anions having twofold rotation symmetry. The cation was obtained by methyl­ation of DABCO (1,4-diaza­bicyclo­[2.2.2]-octa­ne). The geometry of the [CoCl4]2− anion can be described as distorted tetra­hedral. C—H...Cl hydrogen-bond inter­actions link cations and anions in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680503045X/om6260sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680503045X/om6260Isup2.hkl
Contains datablock I

CCDC reference: 287691

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.035
  • wR factor = 0.088
  • Data-to-parameter ratio = 18.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N2 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Co2 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Co3
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Quaternary ammonium compounds (QAC), have been widely used in antimicrobial products, food production, health care and domestic environments as antiseptics, and as preservatives to eliminate bacterial infections and contaminations. Bis-QACs have stronger antibacterial and antifungal activities than the classical monomer type of QACs (Maeda et al., 1998; Nagamune et al., 2000). Quaternary ammonium compound also play an important role in cell systems as electrolytes. As reported previously, under acidic conditions in a mixture of methanol and chloroform, DABCO (1,4-diazabicyclo[2.2.2]octane) is methylated (Sun & Qu, 2005), We have now extended this work to include CoCl2 in place of CuCl2 in order to compare their antibacterial activities.

The title compound, (I), was obtained by the reaction of cobalt chloride with DABCO in a mixture of methanol and chloroform under pH < 1 and at 423 K. The cation is the methylation product of DABCO. The tetrachlorocobaltate(II) serves as a counter-ion to balance the positive charge on the quaternary ammonium centre.

The asymmetric unit of (I) comprises two dimethyl DABCO cations and one [CoCl4]2− anion and two half-[CoCl4]2− anions held together by C—H···Cl hydrogen bonds. The two cations are methylated at the atoms N1 and N2, and N3 and N4. Both cations are ordered, and have slightly different torsion angles. The N—C—C—N torsion angles range from −3.0 (4) to 8.7 (4)°. In contrast to the present case, a disordered conformation is frequently observed in DABCO salts, such as in DABCO–biphenol (1:1) (Ferguson et al., 1998), DABCO–perchloric acid (1:1) (Katrusiak, 2000), dimethyl–DABCO tetrachlorocuprate(II) (Sun & Qu, 2005), and DABCO–maleic acid (1:2) (Sun & Jin, 2002).

The [CoCl4]2− anions exhibit approximate D2d symmetry. The Co1, Co2 and Co3 centers are each coordinated by four Cl atoms, at average distances of 2.2831 (8), 2.2716 (9) and 2.2612 (9) Å, respectively. The Cl—Co—Cl angles range from 104.77 (4) to 115.82 (4)°. These values are close to those observed in similar complexes (Mahmoudkhani & Langer, 2002). The [CoCl4]2− anion is closer to regular tetrahedral geometry than the [CuCl4]2− anion in our previous report (Sun & Qu, 2005).

In the crystal structure, there are numerous C—H···Cl hydrogen-bond interactions between the cations and the anions (Fig. 2 and Table 2). As a result, the (C8H18N2)2+ cations and [CoCl4]2− anions are held together by hydrogen-bonding interactions to form an infinite three-dimensional network.

Experimental top

CoCl2·6H2O (1 mmol, 238 mg) and DABCO (1 mmol, 112 mg) were dissolved in a methanol and chloroform (2:1) solution with the pH adjusted to < 1 with HCl. The mixture was stirred for 20 min at room temperature, then the resulting clear yellow solution was kept at 423 K for 12 h. After cooling, yellow crystals of (I) were formed at the bottom of the vessel. The crystals were isolated and washed three times with ethanol and dried in a vacuum desiccator using anhydrous CaCl2 (yield = 42%). Large yellow crystals suitable for X-ray diffraction were obtained. Analysis calculated for C8H18CoCl4N2: C 28.01, H 5.29, N 8.17%; found: C 28.36, H 5.41, N 7.82%.

Refinement top

All H atoms were placed in calculated positions and allowed to ride on their parent atoms at distances of 0.96 or 0.97 Å, with Uiso(H) values set at 1.2Ueq of their parent atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular components of (I), showing the atom-labelling scheme. Displacement ellipsoids for the non-hydrogen atoms are drawn at the 30% probability level.
N,N'-Dimethyl-1,4-diazoniabicyclo[2.2.2]octane tetrachlorocobaltate(II) top
Crystal data top
(C8H18N2)[CoCl4]F(000) = 2800
Mr = 342.97Dx = 1.643 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 2000 reflections
a = 19.5053 (16) Åθ = 3.0–29.3°
b = 14.0326 (12) ŵ = 1.98 mm1
c = 20.2636 (17) ÅT = 295 K
V = 5546.4 (8) Å3Block, yellow
Z = 160.42 × 0.31 × 0.23 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4894 independent reflections
Radiation source: fine-focus sealed tube3928 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2319
Tmin = 0.486, Tmax = 0.644k = 1615
26656 measured reflectionsl = 2420
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0424P)2 + 2.3343P]
where P = (Fo2 + 2Fc2)/3
4894 reflections(Δ/σ)max = 0.002
272 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
(C8H18N2)[CoCl4]V = 5546.4 (8) Å3
Mr = 342.97Z = 16
Orthorhombic, PbcnMo Kα radiation
a = 19.5053 (16) ŵ = 1.98 mm1
b = 14.0326 (12) ÅT = 295 K
c = 20.2636 (17) Å0.42 × 0.31 × 0.23 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4894 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3928 reflections with I > 2σ(I)
Tmin = 0.486, Tmax = 0.644Rint = 0.042
26656 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.03Δρmax = 0.45 e Å3
4894 reflectionsΔρmin = 0.30 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.47973 (4)0.25000.03411 (15)
Co20.23595 (2)0.39377 (3)0.497806 (19)0.03822 (13)
Co30.50000.53735 (5)0.75000.04123 (16)
Cl10.32589 (4)0.40298 (6)0.56960 (4)0.0491 (2)
Cl20.26708 (5)0.46616 (7)0.40340 (4)0.0621 (3)
Cl30.13947 (4)0.45050 (7)0.54654 (4)0.0562 (2)
Cl40.22129 (5)0.23441 (6)0.47951 (5)0.0578 (2)
Cl50.48231 (5)0.44909 (7)0.65799 (4)0.0591 (2)
Cl60.40891 (5)0.63422 (8)0.76499 (5)0.0707 (3)
Cl70.01676 (4)0.38543 (6)0.34084 (4)0.0492 (2)
Cl80.09633 (4)0.56829 (6)0.23412 (4)0.0475 (2)
N10.51928 (12)0.31434 (18)0.46342 (12)0.0406 (6)
N20.43730 (13)0.18103 (18)0.43043 (12)0.0417 (6)
N30.22976 (12)0.66631 (18)0.68807 (12)0.0391 (6)
N40.17446 (13)0.78346 (18)0.76724 (13)0.0423 (6)
C10.4665 (2)0.1626 (3)0.49788 (16)0.0605 (10)
H1A0.49270.10380.49730.073*
H1B0.42950.15540.52950.073*
C20.51223 (19)0.2437 (2)0.51861 (16)0.0520 (9)
H2A0.49290.27490.55710.062*
H2B0.55710.21920.53050.062*
C30.49586 (17)0.1859 (3)0.38303 (16)0.0574 (10)
H3A0.47880.19950.33910.069*
H3B0.51930.12490.38180.069*
C40.54549 (16)0.2631 (3)0.40400 (16)0.0511 (9)
H4A0.58970.23480.41390.061*
H4B0.55170.30800.36810.061*
C50.40107 (16)0.2744 (2)0.43074 (19)0.0536 (9)
H5A0.36430.27280.46290.064*
H5B0.38100.28580.38770.064*
C60.45014 (15)0.3543 (2)0.44749 (18)0.0488 (8)
H6A0.45380.39760.41040.059*
H6B0.43280.38980.48500.059*
C70.3882 (2)0.1033 (3)0.41111 (18)0.0632 (10)
H7A0.36930.11700.36840.095*
H7B0.35180.09980.44290.095*
H7C0.41200.04350.40970.095*
C80.56728 (18)0.3927 (3)0.4835 (2)0.0620 (10)
H8A0.57150.43770.44800.093*
H8B0.61150.36620.49340.093*
H8C0.54950.42430.52190.093*
C90.22662 (16)0.6248 (2)0.75638 (14)0.0403 (7)
H9A0.27200.60460.77000.048*
H9B0.19680.56940.75650.048*
C100.19962 (18)0.6984 (2)0.80405 (16)0.0488 (8)
H10A0.16250.67130.82970.059*
H10B0.23580.71720.83420.059*
C110.23330 (17)0.8293 (3)0.73256 (19)0.0563 (9)
H11A0.26500.85530.76480.068*
H11B0.21670.88140.70550.068*
C120.15806 (15)0.6876 (3)0.66630 (16)0.0486 (8)
H12A0.13240.62870.66200.058*
H12B0.15890.71890.62360.058*
C130.26996 (15)0.7580 (2)0.68991 (16)0.0457 (8)
H13A0.31540.74620.70750.055*
H13B0.27480.78310.64560.055*
C140.12372 (16)0.7515 (3)0.71638 (17)0.0514 (9)
H14A0.10440.80670.69430.062*
H14B0.08660.71730.73770.062*
C150.1411 (2)0.8521 (3)0.8143 (2)0.0726 (11)
H15A0.17410.87280.84640.109*
H15B0.10360.82110.83620.109*
H15C0.12430.90620.79020.109*
C160.2632 (2)0.5959 (3)0.64207 (17)0.0624 (10)
H16A0.30910.58340.65670.094*
H16B0.26430.62180.59820.094*
H16C0.23740.53760.64200.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0327 (3)0.0363 (3)0.0334 (3)0.0000.0012 (2)0.000
Co20.0367 (2)0.0430 (3)0.0350 (2)0.00277 (18)0.00345 (17)0.00095 (18)
Co30.0304 (3)0.0488 (4)0.0445 (4)0.0000.0062 (2)0.000
Cl10.0410 (4)0.0615 (6)0.0448 (5)0.0019 (4)0.0042 (3)0.0039 (4)
Cl20.0918 (7)0.0535 (6)0.0410 (5)0.0130 (5)0.0166 (4)0.0013 (4)
Cl30.0425 (5)0.0629 (6)0.0631 (6)0.0014 (4)0.0143 (4)0.0014 (4)
Cl40.0642 (6)0.0433 (5)0.0658 (6)0.0112 (4)0.0066 (4)0.0052 (4)
Cl50.0673 (6)0.0588 (6)0.0512 (5)0.0155 (4)0.0170 (4)0.0009 (4)
Cl60.0484 (5)0.0954 (8)0.0683 (6)0.0312 (5)0.0029 (4)0.0070 (5)
Cl70.0500 (5)0.0550 (5)0.0426 (4)0.0005 (4)0.0045 (4)0.0123 (4)
Cl80.0374 (4)0.0556 (5)0.0496 (5)0.0084 (4)0.0002 (3)0.0031 (4)
N10.0380 (14)0.0397 (15)0.0439 (15)0.0031 (12)0.0085 (12)0.0072 (12)
N20.0481 (15)0.0431 (16)0.0339 (14)0.0029 (12)0.0047 (11)0.0017 (11)
N30.0391 (14)0.0421 (16)0.0361 (14)0.0026 (11)0.0018 (11)0.0018 (11)
N40.0382 (14)0.0408 (16)0.0480 (16)0.0028 (12)0.0035 (12)0.0037 (12)
C10.092 (3)0.048 (2)0.041 (2)0.016 (2)0.0044 (19)0.0092 (16)
C20.071 (2)0.048 (2)0.0377 (18)0.0050 (17)0.0007 (16)0.0090 (16)
C30.053 (2)0.080 (3)0.0398 (19)0.0182 (19)0.0096 (16)0.0090 (18)
C40.0437 (19)0.064 (2)0.0460 (19)0.0141 (17)0.0159 (15)0.0097 (17)
C50.0369 (18)0.044 (2)0.079 (3)0.0078 (15)0.0110 (17)0.0014 (18)
C60.0376 (18)0.0368 (19)0.072 (2)0.0088 (14)0.0136 (16)0.0057 (16)
C70.079 (3)0.049 (2)0.061 (2)0.010 (2)0.005 (2)0.0107 (18)
C80.052 (2)0.050 (2)0.084 (3)0.0065 (17)0.0034 (19)0.014 (2)
C90.0438 (18)0.0388 (18)0.0384 (17)0.0032 (14)0.0010 (14)0.0077 (14)
C100.055 (2)0.051 (2)0.0397 (18)0.0093 (16)0.0040 (15)0.0043 (15)
C110.051 (2)0.047 (2)0.071 (2)0.0137 (17)0.0022 (18)0.0014 (18)
C120.0413 (18)0.056 (2)0.048 (2)0.0110 (16)0.0150 (15)0.0063 (16)
C130.0346 (17)0.048 (2)0.054 (2)0.0072 (15)0.0033 (15)0.0147 (16)
C140.0347 (17)0.056 (2)0.063 (2)0.0014 (16)0.0135 (16)0.0041 (18)
C150.075 (3)0.065 (3)0.078 (3)0.021 (2)0.001 (2)0.018 (2)
C160.077 (3)0.065 (3)0.045 (2)0.007 (2)0.0058 (18)0.0097 (18)
Geometric parameters (Å, º) top
Co1—Cl8i2.2757 (8)C3—H3B0.9700
Co1—Cl82.2757 (8)C4—H4A0.9700
Co1—Cl7i2.2905 (8)C4—H4B0.9700
Co1—Cl72.2905 (8)C5—C61.513 (4)
Co2—Cl22.2496 (9)C5—H5A0.9700
Co2—Cl32.2693 (9)C5—H5B0.9700
Co2—Cl12.2828 (9)C6—H6A0.9700
Co2—Cl42.2847 (10)C6—H6B0.9700
Co3—Cl6ii2.2576 (10)C7—H7A0.9600
Co3—Cl62.2576 (10)C7—H7B0.9600
Co3—Cl5ii2.2648 (9)C7—H7C0.9600
Co3—Cl52.2648 (9)C8—H8A0.9600
N1—C41.493 (4)C8—H8B0.9600
N1—C61.496 (4)C8—H8C0.9600
N1—C81.500 (4)C9—C101.509 (4)
N1—C21.501 (4)C9—H9A0.9700
N2—C51.488 (4)C9—H9B0.9700
N2—C31.494 (4)C10—H10A0.9700
N2—C71.503 (4)C10—H10B0.9700
N2—C11.504 (4)C11—C131.503 (5)
N3—C121.497 (4)C11—H11A0.9700
N3—C91.503 (4)C11—H11B0.9700
N3—C161.507 (4)C12—C141.511 (5)
N3—C131.508 (4)C12—H12A0.9700
N4—C101.491 (4)C12—H12B0.9700
N4—C111.492 (4)C13—H13A0.9700
N4—C141.498 (4)C13—H13B0.9700
N4—C151.503 (4)C14—H14A0.9700
C1—C21.505 (5)C14—H14B0.9700
C1—H1A0.9700C15—H15A0.9600
C1—H1B0.9700C15—H15B0.9600
C2—H2A0.9700C15—H15C0.9600
C2—H2B0.9700C16—H16A0.9600
C3—C41.514 (5)C16—H16B0.9600
C3—H3A0.9700C16—H16C0.9600
Cl8i—Co1—Cl8113.80 (5)N2—C5—H5B109.5
Cl8i—Co1—Cl7i108.13 (3)C6—C5—H5B109.5
Cl8—Co1—Cl7i108.64 (3)H5A—C5—H5B108.1
Cl8i—Co1—Cl7108.64 (3)N1—C6—C5109.9 (3)
Cl8—Co1—Cl7108.13 (3)N1—C6—H6A109.7
Cl7i—Co1—Cl7109.42 (5)C5—C6—H6A109.7
Cl2—Co2—Cl3115.82 (4)N1—C6—H6B109.7
Cl2—Co2—Cl1107.99 (4)C5—C6—H6B109.7
Cl3—Co2—Cl1109.88 (4)H6A—C6—H6B108.2
Cl2—Co2—Cl4109.74 (4)N2—C7—H7A109.5
Cl3—Co2—Cl4108.07 (4)N2—C7—H7B109.5
Cl1—Co2—Cl4104.77 (4)H7A—C7—H7B109.5
Cl6ii—Co3—Cl6105.95 (7)N2—C7—H7C109.5
Cl6ii—Co3—Cl5ii108.67 (4)H7A—C7—H7C109.5
Cl6—Co3—Cl5ii109.78 (4)H7B—C7—H7C109.5
Cl6ii—Co3—Cl5109.78 (4)N1—C8—H8A109.5
Cl6—Co3—Cl5108.67 (4)N1—C8—H8B109.5
Cl5ii—Co3—Cl5113.69 (5)H8A—C8—H8B109.5
C4—N1—C6108.4 (2)N1—C8—H8C109.5
C4—N1—C8111.0 (3)H8A—C8—H8C109.5
C6—N1—C8110.3 (3)H8B—C8—H8C109.5
C4—N1—C2108.3 (2)N3—C9—C10109.8 (3)
C6—N1—C2109.0 (2)N3—C9—H9A109.7
C8—N1—C2109.9 (3)C10—C9—H9A109.7
C5—N2—C3109.0 (3)N3—C9—H9B109.7
C5—N2—C7109.7 (3)C10—C9—H9B109.7
C3—N2—C7110.7 (3)H9A—C9—H9B108.2
C5—N2—C1109.1 (3)N4—C10—C9110.0 (3)
C3—N2—C1107.6 (3)N4—C10—H10A109.7
C7—N2—C1110.7 (3)C9—C10—H10A109.7
C12—N3—C9108.1 (2)N4—C10—H10B109.7
C12—N3—C16110.7 (3)C9—C10—H10B109.7
C9—N3—C16109.5 (3)H10A—C10—H10B108.2
C12—N3—C13108.8 (2)N4—C11—C13110.5 (3)
C9—N3—C13109.2 (2)N4—C11—H11A109.6
C16—N3—C13110.5 (3)C13—C11—H11A109.6
C10—N4—C11109.1 (3)N4—C11—H11B109.6
C10—N4—C14108.8 (3)C13—C11—H11B109.6
C11—N4—C14108.3 (3)H11A—C11—H11B108.1
C10—N4—C15109.8 (3)N3—C12—C14109.6 (2)
C11—N4—C15110.8 (3)N3—C12—H12A109.8
C14—N4—C15110.0 (3)C14—C12—H12A109.8
N2—C1—C2110.4 (3)N3—C12—H12B109.8
N2—C1—H1A109.6C14—C12—H12B109.8
C2—C1—H1A109.6H12A—C12—H12B108.2
N2—C1—H1B109.6C11—C13—N3109.6 (2)
C2—C1—H1B109.6C11—C13—H13A109.8
H1A—C1—H1B108.1N3—C13—H13A109.8
N1—C2—C1110.2 (3)C11—C13—H13B109.8
N1—C2—H2A109.6N3—C13—H13B109.8
C1—C2—H2A109.6H13A—C13—H13B108.2
N1—C2—H2B109.6N4—C14—C12110.3 (2)
C1—C2—H2B109.6N4—C14—H14A109.6
H2A—C2—H2B108.1C12—C14—H14A109.6
N2—C3—C4109.9 (3)N4—C14—H14B109.6
N2—C3—H3A109.7C12—C14—H14B109.6
C4—C3—H3A109.7H14A—C14—H14B108.1
N2—C3—H3B109.7N4—C15—H15A109.5
C4—C3—H3B109.7N4—C15—H15B109.5
H3A—C3—H3B108.2H15A—C15—H15B109.5
N1—C4—C3110.6 (2)N4—C15—H15C109.5
N1—C4—H4A109.5H15A—C15—H15C109.5
C3—C4—H4A109.5H15B—C15—H15C109.5
N1—C4—H4B109.5N3—C16—H16A109.5
C3—C4—H4B109.5N3—C16—H16B109.5
H4A—C4—H4B108.1H16A—C16—H16B109.5
N2—C5—C6110.7 (3)N3—C16—H16C109.5
N2—C5—H5A109.5H16A—C16—H16C109.5
C6—C5—H5A109.5H16B—C16—H16C109.5
C5—N2—C1—C255.7 (4)C12—N3—C9—C1064.9 (3)
C3—N2—C1—C262.5 (4)C16—N3—C9—C10174.5 (3)
C7—N2—C1—C2176.5 (3)C13—N3—C9—C1053.4 (3)
C4—N1—C2—C156.2 (4)C11—N4—C10—C964.1 (3)
C6—N1—C2—C161.5 (4)C14—N4—C10—C953.8 (3)
C8—N1—C2—C1177.6 (3)C15—N4—C10—C9174.2 (3)
N2—C1—C2—N14.7 (4)N3—C9—C10—N48.7 (4)
C5—N2—C3—C460.4 (3)C10—N4—C11—C1354.3 (4)
C7—N2—C3—C4178.8 (3)C14—N4—C11—C1364.0 (3)
C1—N2—C3—C457.8 (4)C15—N4—C11—C13175.3 (3)
C6—N1—C4—C357.3 (3)C9—N3—C12—C1455.2 (3)
C8—N1—C4—C3178.5 (3)C16—N3—C12—C14175.1 (3)
C2—N1—C4—C360.8 (3)C13—N3—C12—C1463.3 (3)
N2—C3—C4—N13.0 (4)N4—C11—C13—N38.0 (4)
C3—N2—C5—C656.5 (4)C12—N3—C13—C1154.6 (3)
C7—N2—C5—C6177.8 (3)C9—N3—C13—C1163.2 (3)
C1—N2—C5—C660.7 (4)C16—N3—C13—C11176.3 (3)
C4—N1—C6—C561.3 (3)C10—N4—C14—C1263.5 (3)
C8—N1—C6—C5177.1 (3)C11—N4—C14—C1255.1 (4)
C2—N1—C6—C556.4 (4)C15—N4—C14—C12176.3 (3)
N2—C5—C6—N14.0 (4)N3—C12—C14—N47.2 (4)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···Cl10.972.713.530 (3)143
C9—H9A···Cl60.972.703.562 (3)148
C13—H13A···Cl60.972.673.561 (3)152
C14—H14A···Cl5iii0.972.723.656 (3)162
C15—H15A···Cl2iv0.962.793.602 (4)143
C5—H5B···Cl6v0.972.783.599 (4)142
C8—H8B···Cl4vi0.962.623.573 (4)170
C9—H9B···Cl8vii0.972.793.742 (3)167
C12—H12B···Cl1iii0.972.823.615 (4)140
Symmetry codes: (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+3/2, z+1/2; (v) x, y+1, z1/2; (vi) x+1/2, y+1/2, z+1; (vii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula(C8H18N2)[CoCl4]
Mr342.97
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)295
a, b, c (Å)19.5053 (16), 14.0326 (12), 20.2636 (17)
V3)5546.4 (8)
Z16
Radiation typeMo Kα
µ (mm1)1.98
Crystal size (mm)0.42 × 0.31 × 0.23
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.486, 0.644
No. of measured, independent and
observed [I > 2σ(I)] reflections
26656, 4894, 3928
Rint0.042
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.088, 1.03
No. of reflections4894
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.30

Computer programs: SMART (Siemens, 1996), SMART, SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Selected geometric parameters (Å, º) top
Co1—Cl82.2757 (8)Co2—Cl12.2828 (9)
Co1—Cl72.2905 (8)Co2—Cl42.2847 (10)
Co2—Cl22.2496 (9)Co3—Cl62.2576 (10)
Co2—Cl32.2693 (9)Co3—Cl52.2648 (9)
Cl8i—Co1—Cl8113.80 (5)Cl2—Co2—Cl4109.74 (4)
Cl8i—Co1—Cl7i108.13 (3)Cl3—Co2—Cl4108.07 (4)
Cl8—Co1—Cl7i108.64 (3)Cl1—Co2—Cl4104.77 (4)
Cl8i—Co1—Cl7108.64 (3)Cl6ii—Co3—Cl6105.95 (7)
Cl8—Co1—Cl7108.13 (3)Cl6ii—Co3—Cl5ii108.67 (4)
Cl7i—Co1—Cl7109.42 (5)Cl6—Co3—Cl5ii109.78 (4)
Cl2—Co2—Cl3115.82 (4)Cl6ii—Co3—Cl5109.78 (4)
Cl2—Co2—Cl1107.99 (4)Cl6—Co3—Cl5108.67 (4)
Cl3—Co2—Cl1109.88 (4)Cl5ii—Co3—Cl5113.69 (5)
N2—C1—C2—N14.7 (4)N3—C9—C10—N48.7 (4)
N2—C3—C4—N13.0 (4)N4—C11—C13—N38.0 (4)
N2—C5—C6—N14.0 (4)N3—C12—C14—N47.2 (4)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···Cl10.972.713.530 (3)143
C9—H9A···Cl60.972.703.562 (3)148
C13—H13A···Cl60.972.673.561 (3)152
C14—H14A···Cl5iii0.972.723.656 (3)162
C15—H15A···Cl2iv0.962.793.602 (4)143
C5—H5B···Cl6v0.972.783.599 (4)142
C8—H8B···Cl4vi0.962.623.573 (4)170
C9—H9B···Cl8vii0.972.793.742 (3)167
C12—H12B···Cl1iii0.972.823.615 (4)140
Symmetry codes: (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+3/2, z+1/2; (v) x, y+1, z1/2; (vi) x+1/2, y+1/2, z+1; (vii) x, y+1, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds