Download citation
Download citation
link to html
The structure of the potassium salt of the dianion of 1,3,4,6-tetra­nitro-2,5-di­aza­pentalene is reported, viz. 2 K+·C6N6O82-. Only three atoms of the central 2,5-di­aza­pentalene skeleton are unique, as the anion possesses 2/m symmetry. The potassium cation is nine-coordinate, forming K-O and K-N bonds to five different 1,3,4,6-tetra­nitro-2,5-di­aza­pentalene anions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803015095/om6154sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803015095/om6154Isup2.hkl
Contains datablock I

CCDC reference: 221626

Key indicators

  • Single-crystal X-ray study
  • T = 93 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.024
  • wR factor = 0.063
  • Data-to-parameter ratio = 12.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
ABSTM_02 Alert C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.684 0.928 Tmin' and Tmax expected: 0.788 0.954 RR' = 0.893 Please check that your absorption correction is appropriate. CHEMS_02 Please check that you have entered the correct _publ_requested_category classification of your compound; FI or CI or EI for inorganic; FM or CM or EM for metal-organic; FO or CO or EO for organic. From the CIF: _publ_requested_category EO From the CIF: _chemical_formula_sum :C6 K2 N6 O8
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

potassium 1,3,4,6-tetranitro-2,5-diazapentalene top
Crystal data top
2K+·C6N6O82F(000) = 360
Mr = 362.32Dx = 2.229 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
a = 11.7540 (15) ÅCell parameters from 2017 reflections
b = 9.6390 (13) Åθ = 5.7–58.2°
c = 5.1732 (7) ŵ = 0.94 mm1
β = 112.946 (2)°T = 93 K
V = 539.73 (12) Å3Plate, orange
Z = 20.25 × 0.10 × 0.05 mm
Data collection top
Bruker CCD area-detector
diffractometer
699 independent reflections
Radiation source: fine-focus sealed tube665 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 28.2°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1515
Tmin = 0.684, Tmax = 0.928k = 1112
2152 measured reflectionsl = 66
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.024Secondary atom site location: difference Fourier map
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0318P)2 + 0.526P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
699 reflectionsΔρmax = 0.36 e Å3
54 parametersΔρmin = 0.27 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K0.16915 (3)0.00000.37750 (8)0.01397 (14)
O10.31020 (8)0.24843 (10)0.31886 (19)0.0150 (2)
O20.44268 (9)0.34715 (10)0.1807 (2)0.0174 (2)
N10.37116 (13)0.00000.2118 (3)0.0110 (3)
N20.38900 (9)0.24236 (11)0.2134 (2)0.0115 (2)
C10.50000.07395 (18)0.00000.0107 (3)
C20.41908 (11)0.11087 (13)0.1351 (2)0.0106 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K0.0155 (2)0.0111 (2)0.0185 (2)0.0000.01012 (15)0.000
O10.0168 (4)0.0152 (5)0.0174 (5)0.0012 (3)0.0114 (4)0.0022 (3)
O20.0225 (5)0.0098 (5)0.0231 (5)0.0033 (4)0.0123 (4)0.0018 (4)
N10.0121 (7)0.0089 (7)0.0128 (7)0.0000.0057 (5)0.000
N20.0130 (5)0.0103 (5)0.0116 (5)0.0003 (4)0.0051 (4)0.0008 (4)
C10.0112 (7)0.0097 (8)0.0114 (7)0.0000.0046 (6)0.000
C20.0119 (5)0.0093 (6)0.0118 (5)0.0010 (4)0.0058 (4)0.0001 (4)
Geometric parameters (Å, º) top
K—N12.8214 (15)O1—N21.2461 (14)
K—O1i2.8477 (10)O1—Ki2.8477 (10)
K—O1ii2.8477 (10)O2—N21.2371 (15)
K—O2iii2.8600 (11)O2—Kix2.8600 (11)
K—O2iv2.8600 (11)O2—Kvii3.0458 (11)
K—O12.9945 (10)O2—Ki3.3860 (10)
K—O1v2.9945 (10)N1—C21.3384 (15)
K—O2vi3.0458 (11)N1—C2v1.3384 (15)
K—O2vii3.0458 (11)N2—C21.4169 (15)
K—O2ii3.3860 (10)C1—C1x1.426 (3)
K—O2i3.3860 (10)C1—C21.4274 (12)
K—Kviii4.3539 (9)C1—C2xi1.4274 (12)
N1—K—O1i105.47 (2)O2vii—K—O2ii135.46 (4)
N1—K—O1ii105.47 (2)N1—K—O2i143.06 (3)
O1i—K—O1ii116.76 (4)O1i—K—O2i39.57 (2)
N1—K—O2iii131.96 (3)O1ii—K—O2i88.29 (3)
O1i—K—O2iii120.16 (3)O2iii—K—O2i84.96 (3)
O1ii—K—O2iii67.98 (3)O2iv—K—O2i57.58 (3)
N1—K—O2iv131.96 (3)O1—K—O2i95.53 (3)
O1i—K—O2iv67.98 (3)O1v—K—O2i142.40 (3)
O1ii—K—O2iv120.16 (3)O2vi—K—O2i135.46 (4)
O2iii—K—O2iv62.01 (4)O2vii—K—O2i106.97 (3)
N1—K—O153.446 (19)O2ii—K—O2i51.58 (3)
O1i—K—O156.18 (3)N1—K—Kviii108.05 (3)
O1ii—K—O1143.642 (16)O1i—K—Kviii110.27 (2)
O2iii—K—O1148.33 (3)O1ii—K—Kviii110.27 (2)
O2iv—K—O191.56 (3)O2iii—K—Kviii44.18 (2)
N1—K—O1v53.446 (19)O2iv—K—Kviii44.18 (2)
O1i—K—O1v143.642 (16)O1—K—Kviii104.90 (2)
O1ii—K—O1v56.18 (3)O1v—K—Kviii104.90 (2)
O2iii—K—O1v91.56 (3)O2vi—K—Kviii40.877 (19)
O2iv—K—O1v148.33 (3)O2vii—K—Kviii40.877 (19)
O1—K—O1v106.19 (4)O2ii—K—Kviii98.42 (2)
N1—K—O2vi79.35 (3)O2i—K—Kviii98.42 (2)
O1i—K—O2vi147.92 (3)N2—O1—Ki111.31 (7)
O1ii—K—O2vi91.35 (3)N2—O1—K122.83 (7)
O2iii—K—O2vi54.24 (3)Ki—O1—K123.82 (3)
O2iv—K—O2vi85.06 (3)N2—O2—Kix145.63 (8)
O1—K—O2vi110.01 (3)N2—O2—Kvii118.04 (7)
O1v—K—O2vi64.44 (3)Kix—O2—Kvii94.94 (3)
N1—K—O2vii79.35 (3)N2—O2—Ki84.83 (7)
O1i—K—O2vii91.35 (3)Kix—O2—Ki95.04 (3)
O1ii—K—O2vii147.92 (3)Kvii—O2—Ki106.97 (3)
O2iii—K—O2vii85.06 (3)C2—N1—C2v105.97 (14)
O2iv—K—O2vii54.24 (3)C2—N1—K126.26 (7)
O1—K—O2vii64.44 (3)C2v—N1—K126.26 (7)
O1v—K—O2vii110.01 (3)O2—N2—O1121.83 (11)
O2vi—K—O2vii57.86 (4)O2—N2—C2119.59 (10)
N1—K—O2ii143.06 (3)O1—N2—C2118.57 (10)
O1i—K—O2ii88.29 (3)C1x—C1—C2104.43 (8)
O1ii—K—O2ii39.57 (2)C1x—C1—C2xi104.43 (8)
O2iii—K—O2ii57.58 (3)C2—C1—C2xi151.13 (17)
O2iv—K—O2ii84.96 (3)N1—C2—N2116.65 (10)
O1—K—O2ii142.40 (3)N1—C2—C1112.58 (12)
O1v—K—O2ii95.53 (3)N2—C2—C1130.64 (12)
O2vi—K—O2ii106.97 (3)
N1—K—O1—N28.64 (9)O1i—K—N1—C2v160.07 (11)
O1i—K—O1—N2162.33 (11)O1ii—K—N1—C2v35.92 (12)
O1ii—K—O1—N272.09 (8)O2iii—K—N1—C2v38.16 (13)
O2iii—K—O1—N2103.90 (9)O2iv—K—N1—C2v125.85 (10)
O2iv—K—O1—N2135.69 (9)O1—K—N1—C2v177.47 (13)
O1v—K—O1—N217.76 (10)O1v—K—N1—C2v13.45 (10)
O2vi—K—O1—N250.38 (9)O2vi—K—N1—C2v52.52 (11)
O2vii—K—O1—N287.08 (9)O2vii—K—N1—C2v111.49 (12)
O2ii—K—O1—N2140.55 (8)O2ii—K—N1—C2v51.60 (14)
O2i—K—O1—N2166.74 (8)O2i—K—N1—C2v144.38 (10)
Kviii—K—O1—N293.00 (8)Kviii—K—N1—C2v82.01 (12)
N1—K—O1—Ki153.69 (6)Kix—O2—N2—O1105.98 (14)
O1i—K—O1—Ki0.0Kvii—O2—N2—O191.89 (11)
O1ii—K—O1—Ki90.24 (6)Ki—O2—N2—O114.61 (10)
O2iii—K—O1—Ki93.77 (6)Kix—O2—N2—C272.66 (17)
O2iv—K—O1—Ki61.98 (4)Kvii—O2—N2—C289.47 (11)
O1v—K—O1—Ki144.57 (2)Ki—O2—N2—C2164.04 (10)
O2vi—K—O1—Ki147.30 (4)Ki—O1—N2—O218.69 (13)
O2vii—K—O1—Ki110.60 (4)K—O1—N2—O2177.01 (8)
O2ii—K—O1—Ki21.77 (6)Ki—O1—N2—C2159.96 (8)
O2i—K—O1—Ki4.41 (4)K—O1—N2—C24.33 (14)
Kviii—K—O1—Ki104.67 (4)C2v—N1—C2—N2175.44 (7)
O1i—K—N1—C235.92 (12)K—N1—C2—N217.91 (17)
O1ii—K—N1—C2160.07 (11)C2v—N1—C2—C10.80 (18)
O2iii—K—N1—C2125.85 (10)K—N1—C2—C1165.85 (7)
O2iv—K—N1—C238.16 (13)O2—N2—C2—N1170.79 (12)
O1—K—N1—C213.45 (10)O1—N2—C2—N17.90 (17)
O1v—K—N1—C2177.47 (13)O2—N2—C2—C14.64 (19)
O2vi—K—N1—C2111.49 (12)O1—N2—C2—C1176.68 (10)
O2vii—K—N1—C252.52 (11)C1x—C1—C2—N10.50 (11)
O2ii—K—N1—C2144.38 (10)C2xi—C1—C2—N1179.50 (11)
O2i—K—N1—C251.60 (14)C1x—C1—C2—N2175.08 (11)
Kviii—K—N1—C282.01 (12)C2xi—C1—C2—N24.92 (11)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y1/2, z+1; (iii) x1/2, y1/2, z; (iv) x1/2, y+1/2, z; (v) x, y, z; (vi) x+1/2, y1/2, z; (vii) x+1/2, y+1/2, z; (viii) x, y, z; (ix) x+1/2, y+1/2, z; (x) x+1, y, z; (xi) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds