Download citation
Download citation
link to html
The crystal structure of the title compound, [Cu(C12H8N2){N(CN)2}](ClO4), consists of zigzag chain [Cu(phen)(dca)]nn+ cations and [ClO4] anions (phen = 1,10-phenanthroline and dca = [N(CN)2]). The CuII atom has a near square planar coordination environment with two N atoms of phen ligands and two N-terminal atoms of dca ligands. The complex forms a one-dimensional chain structure along the c axis, using dca as an end-to-end bridging ligand. The hydrogen-bonding interactions produce a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803007438/om6139sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803007438/om6139Isup2.hkl
Contains datablock I

CCDC reference: 214568

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.045
  • wR factor = 0.115
  • Data-to-parameter ratio = 13.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
ABSTM_02 Alert C The ratio of Tmax/Tmin expected RT(exp) is > 1.10 Absorption corrections should be applied. Tmin and Tmax expected: 0.748 0.848 RT(exp) = 1.133 General Notes
ABSTY_01 Extra text has been found in the _exptl_absorpt_correction_type field, which should be only a single keyword. A literature citation should be included in the _exptl_absorpt_process_details field. REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.48 From the CIF: _reflns_number_total 2952 Count of symmetry unique reflns 1736 Completeness (_total/calc) 170.05% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1216 Fraction of Friedel pairs measured 0.700 Are heavy atom types Z>Si present yes Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

In recent years, metal–dicyanamide (dca, [N(CN)2]) coordination chemistry has become a fast growing research field because of its interesting coordination and physical properties (Marshall et al., 2002; Shi et al., 2002; Brown & Manson, 2002). Since dicyanamide has three N-donor atoms, it can exhibit several possible coordination modes (Marshall et al., 2002; Shi et al., 2002). The complexes formulated as [M(dca)2]n (M = Mn, Fe, Co, Ni, Cu, Zn, Ag, etc.) containing only dca have been synthesized, which are of a quite limited structural type (Batten et al., 1998, 1999; Jensen, Batten, Fallon, Moubaraki et al., 1999; Jensen et al., 2000; Kurmoo & Kepert, 1998; Manson, Lee et al., 1998; Britton, 1990). By introducing co-ligands that may be monodentate or bidentate ligands, such as pyridine, bipyridine, 1,10-phenanthroline, 2,2'-biimidazole etc., many complexes have been synthesized with various interesting structures (Manson, Incarvito et al., 1998; Manson et al., 1999; Jensen, Batten, Fallon, Hockless et al., 1999; Batten et al., 1999; Wang, Luo, Sun, Yan, Gao & Liao, 2000; Wang, Luo, Sun, Yan, Liao & Gao, 2000; Sun et al., 2000; Werff et al., 2001). As an extension of this research area, we synthesized a new one-dimensional complex [Cu(1,10-phen)(dca)](ClO4), (I). Herein we report the preparation and crystal structure of (I). [Note that the scheme is incorrect; please provide revision with unsaturation in the phen ligand]

The coordination mode of Cu atom in (I) is similar to the complex [Cu(dca)(MeCN)] reported by Batten et al. (2000). The CuII atom is four-coordinated with two terminal N atoms of two different [N(CN)2] ligands [Cu1—N3 1.978 (2) Å and Cu1—N5i 1.948 (2) Å; symmetry code: (i) x, −y, z − 0.5] and two N atoms of phen ligands [Cu1—N1 2.017 (2) Å and Cu1—N1 1.996 (2) Å]. The Cu and four coordinated N atoms (N1, N2, N3 and N5) constitute a near square coplanar geometry defined by the equation −7.7931 x + 3.1106 y − 4.8987 z = −3.4625, and deviate from the plane by 0.087, −0.323, 0.286, −0.302 and 0.253 Å, respectively. The Cu—N distances are in good agreement with those found in the complexes reported by Wang, Luo, Sun, Yan, Gao & Liao (2000) and Potocnak et al. (1996). Each [N(CN)2] is coordinated to two metal atoms via the two nitrile N atoms. The [N(CN)2] ligands end-to-end bridge the CuII atoms into one-dimensional zigzag chain extended along the c axis, as shown in Fig. 1, and between which the [ClO4] anions are located, as shown in Fig. 2. The parallel chains are further connected by the C—H···O hydrogen bonds, consisting of three O atoms of [ClO4] anion and the C atoms of phen [C1—H···O1 = 3.301 (4), C6—H···O2 = 3.368 (3), C10—H···O2 3.193 (3) and C10—H···O4 3.261 (3) Å], to form a three-dimensional framework. It is worthy of note that the [ClO4] anion is ordered due to the hydrogen-bonding interactions.

Experimental top

Aqueous solution of Cu(ClO4)2 (1 M, 0.5 ml) and 4 ml aqueous solution of Nadca (1 mmol, 91 mg) was thoroughly mixed, then 10 ml of an ethanol solution of 1,10-phen (0.5 mmol, 99 mg) was added dropwise with stirring. The resulting mixture was filtered and the filtrate was left undisturbed at room temperature. The transparent green needle-like crystals were obtained after a few days.

Refinement top

H atoms were added according to theoretical models, assigned isotropic displacement parameters and allowed to ride on their respective parent C atoms before the final cycle of least-squares refinement.

Computing details top

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The chain structure of the title complex with thermal ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. The three-dimensional framework of the complex formed through hydrogen-bond interactions. The hydrogen bonds are represented by dotted lines.
catena-poly[[[(1,10-phenanthroline)copper(II)]-µ-dicyanamido] perchlorate] top
Crystal data top
[Cu(C2N3)(C12H8N2)](ClO4)Dx = 1.798 Mg m3
Mr = 409.24Melting point: not measured K
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 14.260 (5) ÅCell parameters from 2248 reflections
b = 9.660 (2) Åθ = 3.3–27.5°
c = 12.789 (5) ŵ = 1.65 mm1
β = 120.878 (12)°T = 293 K
V = 1512.0 (9) Å3Needle-like, green
Z = 40.50 × 0.15 × 0.10 mm
F(000) = 820
Data collection top
Rigaku Mercury CCD
diffractometer
2571 reflections with I > 2σ(I)
Radiation source: rotating-anode generatorRint = 0.042
Graphite Monochromator monochromatorθmax = 27.5°, θmin = 3.3°
ω scansh = 1818
5925 measured reflectionsk = 1212
2952 independent reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0654P)2 + 0.0356P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
2952 reflectionsΔρmax = 0.45 e Å3
226 parametersΔρmin = 0.27 e Å3
2 restraintsAbsolute structure: Flack (1983), 0000 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (2)
Crystal data top
[Cu(C2N3)(C12H8N2)](ClO4)V = 1512.0 (9) Å3
Mr = 409.24Z = 4
Monoclinic, CcMo Kα radiation
a = 14.260 (5) ŵ = 1.65 mm1
b = 9.660 (2) ÅT = 293 K
c = 12.789 (5) Å0.50 × 0.15 × 0.10 mm
β = 120.878 (12)°
Data collection top
Rigaku Mercury CCD
diffractometer
2571 reflections with I > 2σ(I)
5925 measured reflectionsRint = 0.042
2952 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.115Δρmax = 0.45 e Å3
S = 1.05Δρmin = 0.27 e Å3
2952 reflectionsAbsolute structure: Flack (1983), 0000 Friedel pairs
226 parametersAbsolute structure parameter: 0.03 (2)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles, correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. The electrostatic interactions exist between the [Cu(phen)(dca)]+ cations and the [ClO4] anions. All atoms are not connected by chemical binding, so atoms given in a CIF don't form a 'connected set'.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.37752 (3)0.24939 (2)0.43022 (3)0.03491 (5)
Cl11.13815 (4)0.05316 (4)0.18648 (4)0.04123 (11)
O11.06513 (14)0.0556 (2)0.17678 (16)0.0896 (7)
O21.20426 (13)0.0083 (2)0.13894 (16)0.0930 (6)
O31.07396 (14)0.1713 (2)0.12134 (15)0.0839 (7)
O41.20552 (16)0.0885 (2)0.30898 (16)0.0838 (7)
N50.44323 (11)0.16794 (19)0.84346 (12)0.0453 (5)
N40.50825 (14)0.0578 (2)0.72143 (17)0.0873 (7)
N30.41739 (12)0.09309 (16)0.54535 (13)0.0409 (5)
N10.38428 (10)0.44487 (16)0.37902 (11)0.0378 (4)
N20.28288 (10)0.33669 (14)0.48467 (11)0.0343 (4)
C140.46648 (13)0.1129 (2)0.78186 (15)0.0413 (6)
C130.45370 (12)0.0244 (2)0.62794 (15)0.0401 (5)
C10.43935 (14)0.4951 (2)0.32990 (16)0.0453 (6)
H1A0.47380.43420.30410.054*
C20.44692 (15)0.6367 (2)0.31596 (17)0.0568 (7)
H2A0.48650.66900.28150.068*
C30.39659 (19)0.7287 (2)0.3525 (2)0.0574 (8)
H3A0.40210.82330.34350.069*
C40.33732 (14)0.67952 (19)0.40307 (16)0.0422 (6)
C50.28131 (19)0.7655 (2)0.4459 (2)0.0530 (8)
H5A0.28200.86110.43760.064*
C60.22737 (16)0.7103 (2)0.49823 (18)0.0523 (7)
H6A0.19160.76820.52460.063*
C70.22530 (13)0.5632 (2)0.51294 (15)0.0411 (6)
C80.17059 (12)0.4964 (2)0.56608 (16)0.0482 (6)
H8A0.13460.54870.59580.058*
C90.17122 (13)0.3565 (2)0.57308 (15)0.0473 (6)
H9A0.13380.31230.60540.057*
C100.22851 (15)0.2789 (2)0.53150 (17)0.0433 (6)
H10A0.22830.18290.53700.052*
C110.27837 (11)0.47773 (17)0.47230 (13)0.0298 (5)
C120.33392 (12)0.53514 (18)0.41469 (13)0.0327 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.04528 (6)0.03228 (8)0.03751 (6)0.00895 (7)0.02867 (5)0.00588 (6)
Cl10.04269 (15)0.04197 (19)0.04005 (14)0.0031 (2)0.02195 (11)0.0047 (2)
O10.0904 (9)0.0779 (11)0.0935 (11)0.0363 (8)0.0422 (8)0.0019 (9)
O20.1296 (8)0.0630 (10)0.1410 (8)0.0018 (9)0.1086 (6)0.0207 (9)
O30.0661 (8)0.0808 (11)0.0845 (10)0.0218 (9)0.0241 (8)0.0305 (10)
O40.0782 (10)0.0938 (14)0.0579 (8)0.0100 (10)0.0196 (7)0.0122 (9)
N50.0498 (6)0.0517 (10)0.0466 (6)0.0019 (7)0.0334 (4)0.0054 (7)
N40.0483 (7)0.1297 (15)0.0945 (8)0.0262 (9)0.0443 (6)0.0772 (9)
N30.0459 (6)0.0360 (8)0.0449 (6)0.0062 (6)0.0262 (5)0.0086 (6)
N10.0387 (5)0.0432 (8)0.0379 (6)0.0067 (6)0.0242 (4)0.0093 (6)
N20.0355 (5)0.0326 (7)0.0365 (5)0.0012 (6)0.0197 (4)0.0008 (6)
C140.0368 (7)0.0473 (10)0.0385 (7)0.0035 (7)0.0184 (6)0.0100 (7)
C130.0329 (6)0.0432 (10)0.0492 (8)0.0003 (7)0.0246 (5)0.0094 (7)
C10.0435 (7)0.0530 (11)0.0421 (7)0.0041 (8)0.0240 (6)0.0133 (8)
C20.0517 (8)0.0648 (13)0.0578 (9)0.0089 (9)0.0308 (7)0.0184 (9)
C30.0547 (10)0.0405 (11)0.0620 (12)0.0114 (8)0.0191 (9)0.0107 (8)
C40.0422 (8)0.0306 (9)0.0394 (8)0.0028 (7)0.0107 (7)0.0012 (7)
C50.0534 (10)0.0337 (10)0.0573 (11)0.0062 (8)0.0178 (9)0.0054 (8)
C60.0447 (8)0.0431 (10)0.0580 (10)0.0141 (8)0.0182 (8)0.0125 (8)
C70.0338 (7)0.0481 (10)0.0350 (7)0.0098 (7)0.0130 (6)0.0026 (7)
C80.0351 (6)0.0688 (13)0.0509 (8)0.0085 (8)0.0294 (5)0.0024 (9)
C90.0395 (7)0.0683 (14)0.0465 (7)0.0046 (8)0.0310 (5)0.0057 (8)
C100.0423 (7)0.0450 (11)0.0505 (8)0.0011 (7)0.0296 (6)0.0082 (7)
C110.0265 (6)0.0287 (8)0.0280 (6)0.0018 (6)0.0097 (5)0.0000 (6)
C120.0317 (6)0.0324 (8)0.0292 (6)0.0031 (6)0.0121 (5)0.0052 (6)
Geometric parameters (Å, º) top
Cu1—N5i1.9482 (19)C2—C31.366 (4)
Cu1—N31.9778 (16)C2—H2A0.9300
Cu1—N21.9956 (17)C3—C41.386 (4)
Cu1—N12.0170 (16)C3—H3A0.9300
Cl1—O41.3960 (18)C4—C121.406 (3)
Cl1—O21.426 (2)C4—C51.441 (4)
Cl1—O31.4323 (18)C5—C61.361 (4)
Cl1—O11.439 (2)C5—H5A0.9300
N5—C141.132 (3)C6—C71.435 (3)
N5—Cu1ii1.9482 (19)C6—H6A0.9300
N4—C141.307 (3)C7—C111.389 (3)
N4—C131.308 (3)C7—C81.425 (3)
N3—C131.124 (2)C8—C91.354 (3)
N1—C11.324 (3)C8—H8A0.9300
N1—C121.349 (2)C9—C101.399 (3)
N2—C101.322 (3)C9—H9A0.9300
N2—C111.369 (2)C10—H10A0.9300
C1—C21.391 (3)C11—C121.441 (3)
C1—H1A0.9300
N5i—Cu1—N394.43 (8)C2—C3—H3A120.3
N5i—Cu1—N2168.11 (5)C4—C3—H3A120.3
N3—Cu1—N292.88 (7)C3—C4—C12116.8 (2)
N5i—Cu1—N194.37 (7)C3—C4—C5124.74 (19)
N3—Cu1—N1155.92 (5)C12—C4—C5118.4 (2)
N2—Cu1—N182.60 (7)C6—C5—C4121.61 (19)
O4—Cl1—O2109.14 (12)C6—C5—H5A119.2
O4—Cl1—O3108.92 (11)C4—C5—H5A119.2
O2—Cl1—O3111.04 (13)C5—C6—C7120.5 (2)
O4—Cl1—O1109.02 (13)C5—C6—H6A119.8
O2—Cl1—O1110.40 (13)C7—C6—H6A119.8
O3—Cl1—O1108.27 (11)C11—C7—C8116.47 (18)
C14—N5—Cu1ii169.85 (14)C11—C7—C6119.2 (2)
C14—N4—C13123.37 (19)C8—C7—C6124.3 (2)
C13—N3—Cu1165.54 (14)C9—C8—C7119.8 (2)
C1—N1—C12118.13 (17)C9—C8—H8A120.1
C1—N1—Cu1129.50 (14)C7—C8—H8A120.1
C12—N1—Cu1111.90 (13)C8—C9—C10119.7 (2)
C10—N2—C11117.95 (17)C8—C9—H9A120.2
C10—N2—Cu1129.69 (13)C10—C9—H9A120.2
C11—N2—Cu1112.34 (13)N2—C10—C9122.58 (19)
N5—C14—N4171.13 (19)N2—C10—H10A118.7
N3—C13—N4171.4 (2)C9—C10—H10A118.7
N1—C1—C2121.7 (2)N2—C11—C7123.42 (18)
N1—C1—H1A119.1N2—C11—C12115.88 (16)
C2—C1—H1A119.1C7—C11—C12120.70 (16)
C3—C2—C1120.4 (2)N1—C12—C4123.52 (19)
C3—C2—H2A119.8N1—C12—C11116.85 (15)
C1—C2—H2A119.8C4—C12—C11119.57 (18)
C2—C3—C4119.4 (2)
Symmetry codes: (i) x, y, z1/2; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1iii0.932.563.301 (4)138
C6—H6A···O2iv0.932.563.368 (3)146
C10—H10A···O2v0.932.393.193 (3)145
C10—H10A···O4vi0.932.913.261 (3)104
Symmetry codes: (iii) x1/2, y+1/2, z; (iv) x1, y+1, z+1/2; (v) x1, y, z+1/2; (vi) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C2N3)(C12H8N2)](ClO4)
Mr409.24
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)14.260 (5), 9.660 (2), 12.789 (5)
β (°) 120.878 (12)
V3)1512.0 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.65
Crystal size (mm)0.50 × 0.15 × 0.10
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5925, 2952, 2571
Rint0.042
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.115, 1.05
No. of reflections2952
No. of parameters226
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.27
Absolute structureFlack (1983), 0000 Friedel pairs
Absolute structure parameter0.03 (2)

Computer programs: CrystalClear (Rigaku, 2002), CrystalClear, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Cu1—N5i1.9482 (19)N5—Cu1ii1.9482 (19)
Cu1—N31.9778 (16)N4—C141.307 (3)
Cu1—N21.9956 (17)N4—C131.308 (3)
Cu1—N12.0170 (16)N3—C131.124 (2)
N5—C141.132 (3)
N5i—Cu1—N394.43 (8)O2—Cl1—O1110.40 (13)
N5i—Cu1—N2168.11 (5)O3—Cl1—O1108.27 (11)
N3—Cu1—N292.88 (7)C14—N5—Cu1ii169.85 (14)
N5i—Cu1—N194.37 (7)C14—N4—C13123.37 (19)
N3—Cu1—N1155.92 (5)C13—N3—Cu1165.54 (14)
N2—Cu1—N182.60 (7)C1—N1—Cu1129.50 (14)
O4—Cl1—O2109.14 (12)C12—N1—Cu1111.90 (13)
O4—Cl1—O3108.92 (11)C10—N2—Cu1129.69 (13)
O2—Cl1—O3111.04 (13)C11—N2—Cu1112.34 (13)
O4—Cl1—O1109.02 (13)N5—C14—N4171.13 (19)
Symmetry codes: (i) x, y, z1/2; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1iii0.932.563.301 (4)138
C6—H6A···O2iv0.932.563.368 (3)146
C10—H10A···O2v0.932.393.193 (3)145
C10—H10A···O4vi0.932.913.261 (3)104
Symmetry codes: (iii) x1/2, y+1/2, z; (iv) x1, y+1, z+1/2; (v) x1, y, z+1/2; (vi) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds