Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title mol­ecule, C13H11ClO3S, is stabilized by weak C—H...O interactions. The dihedral angle between the mean planes of the 4-tolyl and the 2-chloro­phenyl rings is 51.47 (9)°. Both the sulfonyl O atoms form a three-centred symmetrical hydrogen-bonded chelate motif with an H atom of the neighbouring 2-chloro­phenyl ring. In addition, two of the sulfonyl O atoms form two other weak hydrogen bonds with the H atoms of the 4-tolyl rings of two different neighbouring mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803005841/om6135sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803005841/om6135Isup2.hkl
Contains datablock I

CCDC reference: 209965

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.038
  • wR factor = 0.096
  • Data-to-parameter ratio = 10.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

p-Toluene sulfonates are used in monitoring the merging of lipids (Yachi et al., 1989), studying membrane fusion during acrosome reaction (Spungin et al., 1992), development of immunoaffinity chromatography for the purification of human coagulation factor (Tharakan et al., 1992), chemical studies on viruses (Alford et al., 1991), development of technology for linking photosensitizer to model monoclonal antibody (Jiang et al., 1990) and chemical modification of σ subunits of the E. coli RNA polymerase (Narayanan & Krakow, 1983). An X-ray study of the title compound, (I), was undertaken in order to determine its crystal and molecular structure owing to the biological importance of its analogues. A search of Version 5.23 of the Cambridge Structural Database (Allen, 2002) revealed 16 structures (refcodes: KAWDAN, FIXCAQ, NEDXUP, NEDYAW, NEDYIE, NUNCII, RASSOT, RELVUZ, SIMVUF, TCPTOS, TEBFOV, TMPDTS, TSMIPH, WOHCUR, ZZZBDA10 and MIWHIJ) that are closely related to the title compound. The S—C, S—O and SO bond lengths (Table 1) are comparable to those found in these structures. The Cl atom lies almost in the plane of the phenyl ring to which it is bonded. The dihedral angle between the 2-chlorophenyl and the 4-tolyl rings is found to be 51.47 (9)° thereby confirming their non-coplanar orientation. This is in contrast to the near coplanar orientation of the 4-tolyl and 2,4-dinitrophenyl rings in 2,4-dinitrophenyl 4-toluenesulfonate (Vembu et al., 2003).

The crystal structure of (I) is stabilized by weak C—H···O interactions. The range for H···O distances (Table 2) found in (I) agree with those found for weak C—H···O bonds (Desiraju & Steiner, 1999). Both O1 and O2 of the sulfonyl group act as acceptors, forming weak hydrogen bonds with the CH group of the 2-chlorophenyl ring of a neighbouring molecule (Fig. 3). The H12···O1 and H12···O2 distances differ by only 0.12 Å. The resulting configuration is best regarded as a three-centre symmetrical hydrogen-bonded chelate (Desiraju, 1989) and observed in molecules containing fewer functional H atoms and several acceptors. The O1···H12···O2 bite angle is 55.2 (3)° and the sum of angles around H12, 352.4 (2)°, indicates the configuration around it to be almost planar, as observed for many molecules with such hydrogen bonds (Jeffrey & Mitra, 1984). One of the sulfonyl O atoms, O1, acts as an acceptor, forming a weak hydrogen bond with H4 of the 4-tolyl ring of a neighbouring molecule. The other sulfonyl O atom, O2, acts as an acceptor to form another weak hydrogen bond with H6 of the 4-tolyl ring of another neighbouring molecule (Fig. 3). The above intermolecular C—H···O interactions contribute to the molecular aggregation of the title molecule.

Experimental top

p-Toluenesulfonyl chloride (0.9 g, 4.7 mmol), dissolved in acetone (4 ml) was added dropwise to 2-chlorophenol (0.5 g, 3.9 mmol) in aqueous NaOH (2.5 ml, 10%) with constant shaking. The precipitated 2-chlorophenyl 4-toluenesulfonate (0.9 g, 3.2 mmol, yield: 82%) was filtered off and recrystallized from aqueous ethanol.

Refinement top

All the H atoms were located in a difference Fourier map and their positional and isotropic displacement paramaters were refined. The C—H bond lengths are in the range 0.88 (3)–1.02 (3) Å. The H—C—H angles for the methyl group are in the range 102 (3)—111 (3)°. The C—C—H angles for the phenyl groups are in the range 119 (1)–124 (1)°.

Computing details top

Data collection: SMART-NT (Bruker, 1998); cell refinement: SMART; data reduction: SAINT-NT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, showing 50% probablity displacement ellipsoids.
[Figure 2] Fig. 2. Diagram showing the potential C—H···O interactions in the title molecule.
2-chlorophenyl 4-toluenesulfonate top
Crystal data top
C13H11ClO3SF(000) = 292
Mr = 282.73Dx = 1.438 Mg m3
Triclinic, P1Melting point = 72–73 K
a = 7.487 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.675 (4) ÅCell parameters from 1959 reflections
c = 10.277 (4) Åθ = 2.4–26.7°
α = 95.378 (6)°µ = 0.45 mm1
β = 97.886 (6)°T = 100 K
γ = 96.404 (6)°Needle, colorless
V = 653.0 (5) Å30.40 × 0.10 × 0.10 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2227 independent reflections
Radiation source: fine-focus sealed tube1762 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
h = 88
Tmin = 0.841, Tmax = 0.957k = 1010
4385 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0594P)2]
where P = (Fo2 + 2Fc2)/3
2227 reflections(Δ/σ)max < 0.001
207 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C13H11ClO3Sγ = 96.404 (6)°
Mr = 282.73V = 653.0 (5) Å3
Triclinic, P1Z = 2
a = 7.487 (3) ÅMo Kα radiation
b = 8.675 (4) ŵ = 0.45 mm1
c = 10.277 (4) ÅT = 100 K
α = 95.378 (6)°0.40 × 0.10 × 0.10 mm
β = 97.886 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2227 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
1762 reflections with I > 2σ(I)
Tmin = 0.841, Tmax = 0.957Rint = 0.027
4385 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.096All H-atom parameters refined
S = 1.02Δρmax = 0.49 e Å3
2227 reflectionsΔρmin = 0.34 e Å3
207 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.33885 (7)0.50916 (6)0.19595 (5)0.02342 (18)
Cl0.51020 (8)0.96080 (6)0.32565 (5)0.03011 (19)
O10.2264 (2)0.42744 (16)0.07871 (15)0.0290 (4)
O20.4723 (2)0.43083 (17)0.27041 (15)0.0299 (4)
O30.46129 (19)0.65838 (17)0.15408 (14)0.0247 (4)
C10.1413 (4)0.8042 (3)0.5581 (3)0.0342 (6)
C20.0217 (3)0.7296 (2)0.4682 (2)0.0241 (5)
C30.0817 (3)0.6964 (3)0.3311 (2)0.0260 (5)
C40.0267 (3)0.6280 (2)0.2466 (2)0.0237 (5)
C50.1981 (3)0.5938 (2)0.3013 (2)0.0213 (5)
C60.2619 (3)0.6262 (2)0.4372 (2)0.0243 (5)
C70.1507 (3)0.6940 (2)0.5196 (2)0.0262 (5)
C80.3708 (3)0.7764 (2)0.0934 (2)0.0207 (5)
C90.2782 (3)0.7476 (3)0.0355 (2)0.0264 (5)
C100.1998 (3)0.8697 (3)0.0928 (2)0.0301 (6)
C110.2183 (3)1.0190 (3)0.0221 (2)0.0301 (6)
C120.3130 (3)1.0465 (3)0.1056 (2)0.0270 (5)
C130.3888 (3)0.9243 (3)0.1646 (2)0.0235 (5)
H1A0.130 (4)0.764 (3)0.647 (3)0.057 (9)*
H1B0.276 (4)0.774 (3)0.524 (3)0.065 (9)*
H1C0.113 (4)0.906 (4)0.571 (3)0.061 (10)*
H30.201 (3)0.719 (2)0.294 (2)0.023 (6)*
H40.015 (3)0.609 (3)0.160 (2)0.025 (6)*
H60.378 (3)0.605 (2)0.475 (2)0.018 (5)*
H70.203 (3)0.714 (3)0.613 (2)0.025 (6)*
H90.268 (3)0.642 (3)0.087 (2)0.027 (6)*
H100.129 (3)0.849 (3)0.181 (2)0.025 (6)*
H110.164 (3)1.098 (3)0.063 (2)0.030 (6)*
H120.335 (3)1.149 (3)0.152 (2)0.034 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0263 (3)0.0142 (3)0.0299 (3)0.0068 (2)0.0057 (2)0.0042 (2)
Cl0.0373 (4)0.0229 (3)0.0275 (3)0.0019 (2)0.0036 (2)0.0074 (2)
O10.0341 (9)0.0152 (8)0.0353 (9)0.0029 (7)0.0041 (7)0.0074 (7)
O20.0332 (9)0.0222 (8)0.0359 (9)0.0140 (7)0.0054 (7)0.0013 (7)
O30.0239 (8)0.0187 (8)0.0323 (9)0.0078 (6)0.0066 (7)0.0031 (7)
C10.0337 (16)0.0323 (16)0.0383 (16)0.0104 (12)0.0120 (12)0.0039 (12)
C20.0242 (12)0.0178 (12)0.0307 (13)0.0032 (9)0.0076 (10)0.0006 (10)
C30.0205 (12)0.0253 (13)0.0322 (13)0.0060 (10)0.0024 (10)0.0021 (10)
C40.0266 (13)0.0193 (12)0.0239 (13)0.0026 (10)0.0028 (10)0.0014 (9)
C50.0229 (11)0.0135 (11)0.0278 (12)0.0037 (9)0.0072 (9)0.0029 (9)
C60.0217 (12)0.0202 (12)0.0306 (13)0.0062 (10)0.0013 (10)0.0004 (10)
C70.0301 (13)0.0210 (12)0.0266 (13)0.0046 (10)0.0035 (11)0.0024 (10)
C80.0180 (11)0.0164 (11)0.0276 (12)0.0034 (9)0.0061 (9)0.0027 (9)
C90.0255 (12)0.0230 (13)0.0302 (13)0.0014 (10)0.0095 (10)0.0060 (10)
C100.0267 (13)0.0373 (15)0.0267 (13)0.0039 (11)0.0070 (11)0.0014 (11)
C110.0270 (13)0.0306 (14)0.0375 (15)0.0092 (11)0.0120 (11)0.0116 (12)
C120.0289 (13)0.0169 (12)0.0381 (14)0.0047 (10)0.0157 (11)0.0000 (10)
C130.0229 (11)0.0224 (12)0.0256 (12)0.0012 (9)0.0097 (9)0.0030 (9)
Geometric parameters (Å, º) top
S—O21.4439 (16)C4—H40.89 (2)
S—O11.4460 (16)C5—C61.403 (3)
S—O31.6276 (16)C6—C71.403 (3)
S—C51.777 (2)C6—H60.95 (2)
Cl—C131.758 (2)C7—H70.98 (2)
O3—C81.433 (3)C8—C91.395 (3)
C1—C21.524 (3)C8—C131.399 (3)
C1—H1A1.01 (3)C9—C101.406 (3)
C1—H1B1.02 (3)C9—H91.00 (2)
C1—H1C0.88 (3)C10—C111.407 (3)
C2—C71.404 (3)C10—H100.98 (2)
C2—C31.411 (3)C11—C121.390 (3)
C3—C41.403 (3)C11—H110.94 (2)
C3—H30.97 (2)C12—C131.405 (3)
C4—C51.404 (3)C12—H120.96 (3)
O2—S—O1119.82 (9)C7—C6—C5118.8 (2)
O2—S—O3102.91 (9)C7—C6—H6118.9 (13)
O1—S—O3108.77 (9)C5—C6—H6122.2 (13)
O2—S—C5110.68 (10)C6—C7—C2121.1 (2)
O1—S—C5109.25 (10)C6—C7—H7115.1 (13)
O3—S—C5104.10 (9)C2—C7—H7123.9 (13)
C8—O3—S118.70 (13)C9—C8—C13121.1 (2)
C2—C1—H1A112.2 (16)C9—C8—O3121.04 (18)
C2—C1—H1B112.1 (17)C13—C8—O3117.68 (19)
H1A—C1—H1B102 (2)C8—C9—C10118.8 (2)
C2—C1—H1C111 (2)C8—C9—H9120.9 (13)
H1A—C1—H1C108 (3)C10—C9—H9120.4 (13)
H1B—C1—H1C111 (3)C9—C10—C11120.4 (2)
C7—C2—C3118.80 (19)C9—C10—H10119.3 (13)
C7—C2—C1120.8 (2)C11—C10—H10120.3 (13)
C3—C2—C1120.4 (2)C12—C11—C10120.2 (2)
C4—C3—C2121.3 (2)C12—C11—H11121.3 (14)
C4—C3—H3119.1 (13)C10—C11—H11118.5 (14)
C2—C3—H3119.6 (13)C11—C12—C13119.7 (2)
C3—C4—C5118.4 (2)C11—C12—H12121.2 (14)
C3—C4—H4119.2 (14)C13—C12—H12118.9 (14)
C5—C4—H4122.4 (14)C8—C13—C12119.7 (2)
C4—C5—C6121.63 (19)C8—C13—Cl120.87 (17)
C4—C5—S119.23 (16)C12—C13—Cl119.38 (17)
C6—C5—S119.14 (16)
O2—S—O3—C8171.50 (14)C5—C6—C7—C20.2 (3)
O1—S—O3—C860.44 (16)C3—C2—C7—C60.1 (3)
C5—S—O3—C855.94 (16)C1—C2—C7—C6179.6 (2)
C7—C2—C3—C40.4 (3)S—O3—C8—C13112.90 (19)
C1—C2—C3—C4179.9 (2)S—O3—C8—C971.2 (2)
C2—C3—C4—C50.4 (3)C13—C8—C9—C101.1 (3)
C3—C4—C5—C60.1 (3)O3—C8—C9—C10176.79 (19)
C3—C4—C5—S179.28 (16)C8—C9—C10—C111.5 (3)
O2—S—C5—C622.0 (2)C9—C10—C11—C120.7 (4)
O1—S—C5—C6155.95 (17)C10—C11—C12—C130.6 (3)
O3—S—C5—C687.96 (18)C9—C8—C13—C120.2 (3)
O2—S—C5—C4158.63 (17)O3—C8—C13—C12175.67 (18)
O1—S—C5—C424.7 (2)C9—C8—C13—Cl178.50 (16)
O3—S—C5—C491.41 (18)O3—C8—C13—Cl2.6 (3)
C4—C5—C6—C70.2 (3)C11—C12—C13—C81.0 (3)
S—C5—C6—C7179.55 (17)C11—C12—C13—Cl179.34 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···Cli1.02 (3)3.11 (3)3.748 (3)122 (2)
C3—H3···Cli0.97 (2)3.20 (2)4.017 (3)143.0 (16)
C3—H3···O3i0.97 (2)2.70 (2)3.613 (3)156.2 (17)
C4—H4···O1ii0.89 (2)2.70 (2)3.571 (3)164.1 (19)
C6—H6···O2iii0.95 (2)2.76 (2)3.477 (3)132.9 (16)
C7—H7···Cliv0.98 (2)3.30 (2)3.774 (2)111.8 (15)
C9—H9···O2v1.00 (2)2.97 (2)3.591 (3)121.2 (15)
C12—H12···O1vi0.96 (3)2.77 (2)3.466 (3)130.2 (17)
C12—H12···O2vi0.96 (3)2.65 (3)3.592 (3)167.2 (19)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y+2, z+1; (v) x+1, y+1, z; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H11ClO3S
Mr282.73
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.487 (3), 8.675 (4), 10.277 (4)
α, β, γ (°)95.378 (6), 97.886 (6), 96.404 (6)
V3)653.0 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.40 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1995)
Tmin, Tmax0.841, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
4385, 2227, 1762
Rint0.027
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.096, 1.02
No. of reflections2227
No. of parameters207
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.49, 0.34

Computer programs: SMART-NT (Bruker, 1998), SMART, SAINT-NT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1998), SHELXTL.

Selected geometric parameters (Å, º) top
S—O21.4439 (16)Cl—C131.758 (2)
S—O11.4460 (16)O3—C81.433 (3)
S—O31.6276 (16)C1—C21.524 (3)
S—C51.777 (2)
O2—S—O1119.82 (9)O1—S—C5109.25 (10)
O2—S—O3102.91 (9)O3—S—C5104.10 (9)
O1—S—O3108.77 (9)C8—O3—S118.70 (13)
O2—S—C5110.68 (10)
C5—S—O3—C855.94 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.89 (2)2.70 (2)3.571 (3)164.1 (19)
C6—H6···O2ii0.95 (2)2.76 (2)3.477 (3)132.9 (16)
C12—H12···O1iii0.96 (3)2.77 (2)3.466 (3)130.2 (17)
C12—H12···O2iii0.96 (3)2.65 (3)3.592 (3)167.2 (19)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds