Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Cu(C15H11NO3)(H2O)2], was formed by the reaction of cupric perchlorate, L-α-phenyl­glycine and salicyl­aldehyde. Crystallographic analysis shows that the compound is a new Cu–Schiff base of an amino acid complex. The ligand chelates with CuII in a tridentate fashion. One water mol­ecule is in this ligand plane and another is in an axial position. Extensive hydrogen-bonding interactions are present.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802020706/om6112sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802020706/om6112Isup2.hkl
Contains datablock I

CCDC reference: 189646

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.025
  • wR factor = 0.046
  • Data-to-parameter ratio = 6.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Amber Alert Alert Level B:
SHFSU_01 Alert B The absolute value of parameter shift to su ratio > 0.10 Absolute value of the parameter shift to su ratio given 0.116 Additional refinement cycles may be required.
Yellow Alert Alert Level C:
PLAT_031 Alert C Refined Extinction Parameter within Range .... 2.58 Sigma General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.48 From the CIF: _reflns_number_total 1757 Count of symmetry unique reflns 1761 Completeness (_total/calc) 99.77% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure
0 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Transition metal complexes of chiral ligands attract widespread attention from the viewpoint of their structures, molecular recognition, and molecular processes (Whitesides et al., 1995; Philp & Stoddart, 1996). As model systems for pyridoxal-potentiated enzymes, N-salicylidene-L-amino acids are being applied to synthesize a series of transition metal-chiral ligand complexes. Several N-salicylidene-L-amino acids–transition metal complexes have been synthesized and studied, using amino acids with different side-chain groups, such as valine (Rajak et al., 1999), glutamic acid (Korhonen et al., 1984), phenylalanine (Marinovich et al., 1999), alanine (Warda, 1999) and methionine (Palacios et al., 1989).

We report here a new CuII complex of N-salicylidene-amino acid, (I), formed from copper(II), L-2-phenyl-glycine and salicylaldehyde. The coordination of the molecule can be described as 4 + 1; each CuII ion is coordinated by the carboxylate and phenolate O atoms and amine N atom from the ligand, with bond distances of 1.950 (2), 1.932 (2) and 1.900 (2) Å, respectively, together with one water molecule at 1.960 (2) Å, forming a square-planar geometry. The axial position is occupied by another coordinated water molecule, with a Cu—O distance of 2.400 (3) Å. Except for the phenyl group, all the atoms of the planar set and CuII are coplanar, with an average deviation of 0.084 Å. In the crystal structure of the title compound, hydrogen-bonding interactions between the coordinated water molecules and free carboxylate and phenolate O atoms results in a two-dimensional layer structure, as shown in Fig. 2.

Experimental top

A 15.0 ml me thanol solution of salicylaldehyde (100 ml, 1.0 mmol) and cupric perchlorate (576 mg, 1.0 mmol) was added into a 15.0 ml suspended aqueous solution of L-2-phenyl-glycine (150 mg, 1.0 mmol). The resulting mixture was stirred until L-2-phenylglycine completely dissolved. Green prismatic single crystals of the title complex (yield 72%) suitable for X-ray diffraction analysis were obtained by evaporation of the filtered mixture at room temperature after 6 days.

Refinement top

One reflection, 001, was omitted due to extinction.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: XPREP in SHELXTL (Siemens, 1994); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXL97 (Siemens, 1996); software used to prepare material for publication: SHELXL97 (Siemens, 1996).

Figures top
[Figure 1] Fig. 1. A displacement ellipsoid plot at the 30% probability level.
[Figure 2] Fig. 2. A view of the packing as viewed down the a axis.
Diaqua(N-salicylidene-L-2-phenylglycinate-κ3N,O,O')copper(II) top
Crystal data top
[Cu(C15H11NO3)(H2O)2]F(000) = 362
Mr = 352.82Dx = 1.625 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 5.7870 (12) ÅCell parameters from 64 reflections
b = 9.4205 (19) Åθ = 2.7–27.5°
c = 13.242 (3) ŵ = 1.54 mm1
β = 92.81 (3)°T = 293 K
V = 721.0 (3) Å3Plate, green
Z = 20.40 × 0.36 × 0.16 mm
Data collection top
Siemens SMART CCD
diffractometer
1757 independent reflections
Radiation source: fine-focus sealed tube1509 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.565, Tmax = 0.782k = 1212
2514 measured reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0224P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.046(Δ/σ)max = 0.116
S = 0.85Δρmax = 0.23 e Å3
1757 reflectionsΔρmin = 0.29 e Å3
260 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0031 (12)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), xxxx Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.061 (18)
Crystal data top
[Cu(C15H11NO3)(H2O)2]V = 721.0 (3) Å3
Mr = 352.82Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.7870 (12) ŵ = 1.54 mm1
b = 9.4205 (19) ÅT = 293 K
c = 13.242 (3) Å0.40 × 0.36 × 0.16 mm
β = 92.81 (3)°
Data collection top
Siemens SMART CCD
diffractometer
1757 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1509 reflections with I > 2σ(I)
Tmin = 0.565, Tmax = 0.782Rint = 0.034
2514 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025All H-atom parameters refined
wR(F2) = 0.046(Δ/σ)max = 0.116
S = 0.85Δρmax = 0.23 e Å3
1757 reflectionsΔρmin = 0.29 e Å3
260 parametersAbsolute structure: Flack (1983), xxxx Friedel pairs
1 restraintAbsolute structure parameter: 0.061 (18)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.4395 (4)0.3753 (3)0.3047 (2)0.0261 (5)
Cu0.60243 (5)0.49428 (7)0.39962 (3)0.03050 (11)
O10.3988 (4)0.6544 (2)0.37471 (18)0.0360 (5)
O20.8241 (4)0.3384 (3)0.40933 (18)0.0353 (6)
O30.8516 (4)0.1071 (2)0.37928 (18)0.0418 (6)
O40.7923 (4)0.6198 (3)0.4877 (2)0.0421 (6)
O50.4049 (5)0.3883 (3)0.5359 (2)0.0409 (6)
C10.7514 (5)0.2243 (3)0.3706 (2)0.0306 (7)
C20.5184 (5)0.2257 (3)0.3101 (2)0.0261 (6)
C30.5234 (5)0.1508 (3)0.2096 (2)0.0305 (7)
C40.6976 (7)0.1751 (4)0.1436 (3)0.0464 (9)
C50.6983 (8)0.1031 (6)0.0525 (3)0.0606 (12)
C60.5329 (8)0.0059 (8)0.0266 (3)0.0627 (12)
C70.3605 (8)0.0199 (9)0.0904 (3)0.0649 (14)
C80.3536 (6)0.0523 (4)0.1811 (3)0.0463 (9)
C90.2624 (6)0.4096 (4)0.2465 (3)0.0308 (7)
C100.1524 (5)0.5461 (3)0.2444 (2)0.0301 (7)
C110.0431 (6)0.5644 (4)0.1769 (3)0.0400 (8)
C120.1707 (7)0.6853 (5)0.1746 (3)0.0455 (10)
C130.1069 (6)0.7952 (4)0.2406 (3)0.0429 (8)
C140.0800 (6)0.7819 (4)0.3073 (3)0.0382 (8)
C150.2172 (5)0.6587 (3)0.3106 (2)0.0287 (6)
H20.410 (5)0.182 (4)0.351 (2)0.025 (8)*
H40.820 (7)0.246 (5)0.164 (3)0.050 (12)*
H4A0.898 (6)0.612 (5)0.527 (3)0.056 (12)*
H4B0.772 (5)0.704 (4)0.484 (2)0.015 (8)*
H50.803 (7)0.117 (5)0.012 (3)0.061 (13)*
H5A0.327 (7)0.433 (5)0.566 (3)0.056 (16)*
H5B0.552 (11)0.325 (8)0.573 (4)0.14 (2)*
H60.531 (7)0.047 (5)0.036 (3)0.067 (14)*
H70.248 (8)0.091 (6)0.076 (3)0.087 (16)*
H80.224 (5)0.038 (4)0.228 (2)0.038 (10)*
H90.188 (6)0.341 (5)0.205 (3)0.048 (10)*
H110.083 (5)0.484 (6)0.133 (2)0.033 (8)*
H120.289 (7)0.689 (5)0.136 (3)0.056 (12)*
H130.174 (6)0.877 (4)0.237 (3)0.038 (10)*
H140.117 (6)0.856 (5)0.348 (3)0.046 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.0254 (12)0.0223 (13)0.0302 (14)0.0021 (11)0.0024 (11)0.0027 (12)
Cu0.03262 (17)0.02181 (15)0.03601 (18)0.0018 (2)0.00909 (12)0.0030 (3)
O10.0386 (12)0.0244 (12)0.0435 (14)0.0035 (10)0.0129 (10)0.0079 (12)
O20.0294 (11)0.0279 (13)0.0473 (14)0.0017 (10)0.0106 (10)0.0045 (12)
O30.0420 (12)0.0249 (12)0.0564 (14)0.0078 (10)0.0188 (11)0.0013 (11)
O40.0466 (15)0.0231 (14)0.0542 (16)0.0004 (12)0.0228 (12)0.0042 (12)
O50.0480 (14)0.0306 (13)0.0442 (14)0.0047 (12)0.0022 (11)0.0054 (12)
C10.0319 (14)0.0259 (16)0.0333 (15)0.0046 (14)0.0061 (13)0.0007 (15)
C20.0257 (13)0.0207 (14)0.0313 (15)0.0003 (12)0.0041 (12)0.0026 (13)
C30.0326 (14)0.0241 (15)0.0340 (15)0.0064 (13)0.0046 (12)0.0029 (14)
C40.0446 (19)0.044 (2)0.050 (2)0.0000 (18)0.0022 (17)0.0028 (19)
C50.070 (3)0.066 (3)0.047 (2)0.015 (3)0.018 (2)0.002 (2)
C60.083 (3)0.057 (3)0.046 (2)0.017 (4)0.010 (2)0.018 (3)
C70.070 (2)0.059 (4)0.064 (2)0.000 (3)0.020 (2)0.022 (3)
C80.0459 (18)0.043 (2)0.050 (2)0.0081 (16)0.0023 (17)0.0074 (17)
C90.0303 (17)0.0258 (16)0.0354 (17)0.0002 (15)0.0071 (15)0.0043 (15)
C100.0295 (15)0.0248 (16)0.0352 (16)0.0015 (13)0.0056 (14)0.0030 (13)
C110.0416 (18)0.0285 (17)0.0484 (19)0.0015 (16)0.0123 (16)0.0005 (16)
C120.0396 (19)0.041 (2)0.054 (2)0.0104 (18)0.0154 (18)0.0039 (19)
C130.0404 (18)0.0314 (19)0.056 (2)0.0141 (16)0.0027 (16)0.0052 (18)
C140.0435 (18)0.0283 (17)0.0422 (18)0.0065 (16)0.0036 (15)0.0022 (17)
C150.0299 (14)0.0247 (15)0.0315 (15)0.0021 (13)0.0009 (13)0.0006 (14)
Geometric parameters (Å, º) top
N—C91.292 (4)C4—H41.01 (5)
N—C21.482 (4)C5—C61.357 (7)
N—Cu1.900 (2)C5—H50.84 (4)
Cu—O11.932 (2)C6—C71.360 (6)
Cu—O21.950 (2)C6—H60.96 (4)
Cu—O41.960 (3)C7—C81.383 (6)
Cu—O52.400 (3)C7—H70.95 (5)
O1—C151.319 (3)C8—H81.00 (3)
O2—C11.254 (4)C9—C101.435 (5)
O3—C11.250 (4)C9—H90.94 (4)
O4—H4B0.81 (4)C10—C151.415 (5)
O4—H4A0.79 (4)C10—C111.418 (4)
O5—H5A0.75 (4)C11—C121.357 (5)
O5—H5B1.13 (7)C11—H110.98 (5)
C1—C21.535 (4)C12—C131.393 (6)
C2—C31.507 (4)C12—H120.84 (4)
C2—H20.94 (3)C13—C141.369 (5)
C3—C81.390 (5)C13—H130.86 (4)
C3—C41.385 (5)C14—C151.406 (4)
C4—C51.384 (6)C14—H140.90 (4)
C9—N—C2120.0 (3)C3—C4—H4118 (3)
C9—N—Cu126.9 (2)C6—C5—C4121.3 (4)
C2—N—Cu112.78 (17)C6—C5—H5118 (3)
N—Cu—O193.93 (10)C4—C5—H5121 (3)
N—Cu—O284.43 (10)C5—C6—C7119.6 (5)
O1—Cu—O2173.10 (11)C5—C6—H6123 (3)
N—Cu—O4174.51 (13)C7—C6—H6117 (3)
O1—Cu—O487.12 (11)C6—C7—C8120.3 (5)
O2—Cu—O493.88 (11)C6—C7—H7121 (3)
N—Cu—O590.74 (10)C8—C7—H7118 (3)
O1—Cu—O598.30 (11)C7—C8—C3121.0 (4)
O2—Cu—O588.44 (10)C7—C8—H8121.4 (19)
O4—Cu—O594.45 (11)C3—C8—H8117.6 (19)
C15—O1—Cu126.4 (2)N—C9—C10125.0 (3)
C1—O2—Cu114.34 (18)N—C9—H9121 (2)
Cu—O4—H4B119 (2)C10—C9—H9114 (2)
Cu—O4—H4A137 (4)C15—C10—C11118.6 (3)
H4B—O4—H4A104 (4)C15—C10—C9123.8 (3)
Cu—O5—H5A120 (3)C11—C10—C9117.5 (3)
Cu—O5—H5B100 (3)C12—C11—C10122.2 (3)
H5A—O5—H5B122 (4)C12—C11—H11122 (2)
O3—C1—O2125.1 (2)C10—C11—H11116 (2)
O3—C1—C2116.5 (3)C11—C12—C13118.8 (3)
O2—C1—C2118.3 (3)C11—C12—H12119 (3)
N—C2—C3114.9 (2)C13—C12—H12122 (3)
N—C2—C1107.1 (2)C14—C13—C12120.9 (3)
C3—C2—C1113.7 (2)C14—C13—H13117 (2)
N—C2—H2103.5 (19)C12—C13—H13122 (2)
C3—C2—H2110.0 (19)C13—C14—C15121.5 (3)
C1—C2—H2106.8 (18)C13—C14—H14118 (2)
C8—C3—C4117.7 (3)C15—C14—H14120 (2)
C8—C3—C2120.6 (3)O1—C15—C14118.5 (3)
C4—C3—C2121.7 (3)O1—C15—C10123.7 (3)
C5—C4—C3120.2 (4)C14—C15—C10117.9 (3)
C5—C4—H4122 (3)

Experimental details

Crystal data
Chemical formula[Cu(C15H11NO3)(H2O)2]
Mr352.82
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)5.7870 (12), 9.4205 (19), 13.242 (3)
β (°) 92.81 (3)
V3)721.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.54
Crystal size (mm)0.40 × 0.36 × 0.16
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.565, 0.782
No. of measured, independent and
observed [I > 2σ(I)] reflections
2514, 1757, 1509
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.046, 0.85
No. of reflections1757
No. of parameters260
No. of restraints1
H-atom treatmentAll H-atom parameters refined
(Δ/σ)max0.116
Δρmax, Δρmin (e Å3)0.23, 0.29
Absolute structureFlack (1983), xxxx Friedel pairs
Absolute structure parameter0.061 (18)

Computer programs: SMART (Siemens, 1996), SMART, XPREP in SHELXTL (Siemens, 1994), SHELXTL, SHELXL97 (Siemens, 1996).

Selected geometric parameters (Å, º) top
N—Cu1.900 (2)Cu—O52.400 (3)
Cu—O11.932 (2)O4—H4B0.81 (4)
Cu—O21.950 (2)O5—H5A0.75 (4)
Cu—O41.960 (3)O5—H5B1.13 (7)
N—Cu—O193.93 (10)O2—Cu—O493.88 (11)
N—Cu—O284.43 (10)N—Cu—O590.74 (10)
O1—Cu—O2173.10 (11)O1—Cu—O598.30 (11)
N—Cu—O4174.51 (13)O2—Cu—O588.44 (10)
O1—Cu—O487.12 (11)O4—Cu—O594.45 (11)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds