Download citation
Download citation
link to html
The sodium naphthalenide reduction of 1,3,6-tri-tert-butyl­fulvene gave the dimer, rac-3,4-bis(1,4-di-tert­butyl­cyclo­penta-1,3-dien-2-yl)-2,2,5,5-tetra­methyl­hexane [C36H62, (II)] after protonation of the disodium salt of the bis­(cyclo­penta­dienyl­ethane) intermediate. Bond distances and angles for (II) are consistent with a bis­(cyclo­penta­diene) structure. The ansa bridge bond is long, at 1.592 (2) Å. The substitution pattern on the cyclo­penta­diene rings, as well as the ansa bridge, result in an overall C2 symmetry for (II).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802013089/om6099sup1.cif
Contains datablocks global, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802013089/om6099IIsup2.hkl
Contains datablock II

CCDC reference: 197476

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.060
  • wR factor = 0.158
  • Data-to-parameter ratio = 23.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
ABSTM_02 Alert C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.840 0.990 Tmin' and Tmax expected: 0.976 0.993 RR' = 0.864 Please check that your absorption correction is appropriate.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The reductive dimerization of fulvenes to form bridged-cyclopentadienyl ligands is a versatile synthetic route to ansa-metallocene complexes, which are important in catalytic processes (Long, 1998; Brintzinger et al., 1995; Gomez & Waymouth, 2002; Aitola et al., 2002; Miller & Bercaw, 2002; Angermund et al., 2000; Bogaert et al., 2001; Ihara et al., 2001; Shaltout & Corey, 1995). Methods most commonly used directly incorporate the metal into the ligand framework, and include reaction of fulvenes with activated Ca or Sr (Rieckhoff et al., 1993; Sinnema et al., 2002), Mg/CCl4/TiCl3·3THF or Na(Hg)/TiCl3·3THF (Schwemlein & Brintzinger, 1983), activated lanthanide metals (Recknagel & Edelmann, 1991; Fedushkin et al., 2001), group IV divalent halides (Eisch et al., 1998, 1999) and metal vapors at low temperature (Tacke, Dunne et al., 2001). Fulvene radical anions are key intermediates leading to dimerization in these reactions, and have been studied by theoretical and experimental methods (Tacke, Fox et al., 2001).

Reduction of fulvenes with aromatic hydrocarbon radical anions has also been carried out. Reaction of 6,6-dimethylfulvene with sodium naphthalenide gave a dimer product coupled at the C-1 position on the ring (Oku et al., 1979), while reaction of 6,6-dimethylfulvene with sodium anthracenide followed by TiCl3·3THF was reported to give exclusive formation of the bridged tetramethylethylene-titanocene dichloride (Schwemlein & Brintzinger, 1983). In the reductive coupling of substituted 6-dimethylaminofulvenes with lithium naphthalenide, deamination of proposed bis(cyclopentadienyl) intermediates led to the formation of substituted 6,6'-bifulvenyl compounds (Kawese et al., 1989).

One of our research goals is to investigate the selectivity in reactions of aromatic hydrocarbon radical anions with various substituted fulvenes with an emphasis on obtaining new bis(cyclopentadienyl) compounds useful as ligands for the formation of ansa-metallocene complexes. Recently, we carried out the aromatic hydrocarbon radical anion dimerization of the sterically demanding 1,3,6-tri(tert-butyl)fulvene, (I) (Johnson et al., 1997). A unique feature of this chemistry is the almost exclusive formation of the racemic dimer (II) (79%), from the reaction of (I) and sodium naphthalenide. The dimer (II) is formed by protonation of the isolable bis(cyclopentadienylethane) intermediate. To our knowledge, the dimer (II) is the first reported case of a C2 ansa-cyclopentadiene ligand synthesized by fulvene dimerization using aromatic hydrocarbon radical anions. Research in our laboratory on the utility of (II) for the synthesis of ansa-metallocenes is in progress.

Single-crystal X-ray diffraction results for (II) show a nearly C2 symmetric structure adopted as a result of selective coupling of two 1,3,6-tri-tert-butylfulvene units (Fig. 1 and Table 1). The cyclopentadiene rings are nearly eclipsed in (II) (Fig. 2), with a torsion angle of 119.0 (1)° between the tert-butyl groups of the ansa bridge. C—C bond distances in (II) are comparable to those in a recently reported crystal structure of the related ansa-cyclopentadiene ligand C5H5CMe2CMe2C5H5 (Tacke, Dunne et al., 2001). The C1—C2 bond distance in (II) [1.592 (2) Å] is slightly shorter than in C5H5CMe2CMe2C5H5 [1.600 (3) Å], but consistent with an elongated bridge bond from steric interaction of bulky tert-butyl groups.

Experimental top

Sodium naphthalenide was prepared by combining naphthalene (1.63 g, 12.7 mmol) and sodium (0.31 g, 13 mmol) in dry THF (100 ml) under N2 and allowing the dark-green solution to vigorously stir for 1 h. To the vigorously stirred sodium naphthalenide solution at 195 K was added in one portion a solution of 1,3,6-tri-tert-butylfulvene (3.00 g, 12.2 mmol) in dry THF (50 ml) at 195 K. The color of the reaction mixture immediately faded from dark-green to red, and the red solution was allowed to stir for 30 min at 195 K under N2. The reaction mixture was allowed to slowly warm to room temperature, and THF removed under vacuum. Dry CH3CN (50 ml) was added to the resulting crude orange solid under N2, and the mixture exposed to air. Ammonium chloride (3 ml, 5 M, 15 mmol) was added to the CH3CN solution, resulting in the precipitation of a white solid. The white solid was filtered, washed with CH3CN (30 ml), and dissolved in C6H6 (50 ml). Filtration of solids followed by removal of C6H6 and vacuum drying yielded 2.37 g (79%) of the dimer (II) as a white solid. Crystals suitable for single-crystal X-ray analysis were obtained from 50/50 MeOH/C6H6 as colorless and transparent prisms with well defined faces. 1H NMR 200 MHz (C6D6, 303 K, p.p.m.): δ 1.14, 1.15, 1.41 (s, 54H, tBu); 2.96 (broad s, 4H, ring CH2); 3.43 (s, 2 H, bridge CHtBu); 5.86 (m, 2H, ring CH). 13C NMR 75.5 MHz (C6D6, 303 K, p.p.m.): δ 30.8, 31.2, 33.0 [C(CH3)3]; 32.7, 35.7, 36.9 [C(CH3)3]; 40.4 (ring CH2); 45.7 (CHtBu); 131.5 (ring CH); 139.4, 145.2, 148.1 (ring C). Selected FT–IR (KBr pellet, cm−1): 3104 (w, νringCH); 2958, 2903, 2866 (s, νCH); 1620 (m, νCC). M.p. = 433.1 K decomposition (DSC). The measured density at 173 K was obtained by correcting the measured density at room temperature (0.954, flotation) to 173 K using the room-temperature diffraction data [a = 16.4307 (10) Å, b = 10.5281 (7) Å, c = 19.8552 (12) Å, β = 96.2200 (10)° and V = 3414.4 (4) Å3].

Refinement top

H atoms on C atoms were placed in calculated positions and constrained to ride on the C atom with usual bond lengths. The Ueq values were 1.5 times (methyl groups) the Ueq values of the corresponding C atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of (II). Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. View of (II) along the C1—C2 bond axis. Ring tert-butyl groups have been omitted for clarity. Displacement ellipsoids are shown at the 50% probability level.
rac-3,4-bis(1,4-di-tertbutylcyclopenta-1,3-dien-2-yl)-2,2,5,5-tetramethyl- hexane top
Crystal data top
C36H62F(000) = 1112
Mr = 494.89Dx = 0.983 Mg m3
Dm = 0.974 Mg m3
Dm measured by correction from room temp data
Monoclinic, P21/cMelting point: 160.1 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 16.279 (1) ÅCell parameters from 4491 reflections
b = 10.5194 (8) Åθ = 2.3–22.6°
c = 19.680 (2) ŵ = 0.05 mm1
β = 96.935 (1)°T = 173 K
V = 3345.4 (5) Å3Prism, colourless
Z = 40.45 × 0.27 × 0.13 mm
Data collection top
Bruker CCD area-detector
diffractometer
7984 independent reflections
Radiation source: fine-focus sealed tube5492 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 2020
Tmin = 0.84, Tmax = 0.99k = 1313
28797 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0727P)2 + 0.6485P]
where P = (Fo2 + 2Fc2)/3
7984 reflections(Δ/σ)max = 0.006
343 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C36H62V = 3345.4 (5) Å3
Mr = 494.89Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.279 (1) ŵ = 0.05 mm1
b = 10.5194 (8) ÅT = 173 K
c = 19.680 (2) Å0.45 × 0.27 × 0.13 mm
β = 96.935 (1)°
Data collection top
Bruker CCD area-detector
diffractometer
7984 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
5492 reflections with I > 2σ(I)
Tmin = 0.84, Tmax = 0.99Rint = 0.047
28797 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.03Δρmax = 0.29 e Å3
7984 reflectionsΔρmin = 0.17 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.18486 (8)0.23571 (13)0.07026 (7)0.0249 (3)
H10.20780.14740.07330.030*
C20.18017 (9)0.27894 (13)0.14723 (7)0.0259 (3)
H20.11980.28420.15200.031*
C30.21505 (9)0.41041 (13)0.16677 (7)0.0263 (3)
C40.18070 (9)0.51107 (14)0.19612 (7)0.0304 (3)
C50.24743 (10)0.61145 (16)0.21167 (9)0.0391 (4)
H5A0.23170.69120.18670.047*
H5B0.25650.63000.26130.047*
C60.32375 (9)0.55541 (15)0.18804 (8)0.0319 (3)
C70.30320 (9)0.44127 (14)0.16167 (7)0.0286 (3)
H70.34030.38650.14210.034*
C80.24254 (8)0.31154 (13)0.03031 (7)0.0237 (3)
C90.22705 (9)0.44851 (13)0.01616 (7)0.0257 (3)
H90.18650.49760.03520.031*
C100.27746 (9)0.49392 (14)0.02679 (7)0.0280 (3)
C110.33397 (9)0.38851 (14)0.04231 (8)0.0314 (3)
H11A0.39230.41020.02640.038*
H11B0.32860.37130.09210.038*
C120.30633 (9)0.27425 (13)0.00365 (7)0.0259 (3)
C130.09684 (9)0.22455 (14)0.02584 (8)0.0310 (3)
C140.03887 (11)0.13612 (18)0.06007 (9)0.0452 (4)
H14A0.02750.17320.10370.068*
H14B0.06530.05300.06850.068*
H14C0.01320.12580.02990.068*
C150.05237 (10)0.35231 (17)0.01247 (9)0.0426 (4)
H15A0.07720.39890.02300.064*
H15B0.05780.40250.05470.064*
H15C0.00640.33720.00280.064*
C160.10725 (11)0.16505 (17)0.04391 (8)0.0416 (4)
H16A0.05300.15710.07110.062*
H16B0.13250.08070.03700.062*
H16C0.14300.21940.06820.062*
C170.21699 (10)0.17776 (15)0.20271 (8)0.0350 (4)
C180.17962 (13)0.04484 (16)0.18782 (9)0.0470 (4)
H18A0.19550.01330.14440.071*
H18B0.11920.04990.18480.071*
H18C0.20040.01340.22480.071*
C190.19324 (13)0.21774 (19)0.27306 (8)0.0497 (5)
H19A0.21760.15800.30810.075*
H19B0.13290.21710.27170.075*
H19C0.21420.30350.28420.075*
C200.31136 (11)0.16603 (17)0.20941 (10)0.0476 (4)
H20A0.32870.09040.23640.071*
H20B0.33650.24170.23230.071*
H20C0.32920.15850.16380.071*
C210.09488 (10)0.54331 (16)0.21564 (8)0.0380 (4)
C220.02763 (11)0.4425 (2)0.20039 (12)0.0587 (6)
H22A0.01970.42460.15120.088*
H22B0.02430.47380.21470.088*
H22C0.04440.36440.22550.088*
C230.10156 (14)0.5706 (3)0.29263 (11)0.0766 (8)
H23A0.04630.58720.30560.115*
H23B0.13680.64510.30340.115*
H23C0.12580.49690.31810.115*
C240.06397 (14)0.6639 (2)0.17677 (15)0.0763 (7)
H24A0.06330.65000.12750.114*
H24B0.10100.73500.19110.114*
H24C0.00790.68390.18690.114*
C250.40737 (10)0.62100 (17)0.19631 (9)0.0411 (4)
C260.44144 (13)0.6234 (2)0.27277 (10)0.0688 (7)
H26A0.40360.67160.29820.103*
H26B0.49600.66400.27840.103*
H26C0.44630.53620.29030.103*
C270.39872 (14)0.75785 (19)0.16986 (13)0.0652 (6)
H27A0.37280.75760.12230.098*
H27B0.45360.79710.17230.098*
H27C0.36420.80650.19810.098*
C280.46861 (11)0.5494 (2)0.15733 (11)0.0542 (5)
H28A0.47660.46330.17590.081*
H28B0.52170.59430.16230.081*
H28C0.44680.54470.10870.081*
C290.27782 (10)0.62571 (14)0.05826 (8)0.0355 (4)
C300.21829 (12)0.71369 (16)0.02706 (11)0.0506 (5)
H30A0.16220.67840.03480.076*
H30B0.21900.79770.04850.076*
H30C0.23540.72170.02220.076*
C310.36537 (12)0.68141 (17)0.04733 (10)0.0497 (5)
H31A0.38340.68900.00180.075*
H31B0.36530.76560.06860.075*
H31C0.40330.62520.06820.075*
C320.25126 (16)0.61519 (18)0.13537 (10)0.0614 (6)
H32A0.29010.56010.15590.092*
H32B0.25120.69990.15610.092*
H32C0.19550.57880.14340.092*
C330.35463 (10)0.15013 (14)0.00848 (8)0.0348 (4)
C340.44204 (13)0.1711 (2)0.02756 (16)0.0822 (8)
H34A0.43910.19980.07460.123*
H34B0.47010.23580.00290.123*
H34C0.47310.09120.02830.123*
C350.3584 (2)0.1166 (2)0.08371 (11)0.0839 (9)
H35A0.38740.03550.08660.126*
H35B0.38820.18350.10530.126*
H35C0.30210.10930.10740.126*
C360.32023 (13)0.03310 (16)0.02391 (11)0.0524 (5)
H36A0.35450.04090.01630.079*
H36B0.26330.01790.00310.079*
H36C0.32080.04700.07320.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0248 (7)0.0218 (7)0.0287 (7)0.0018 (5)0.0057 (6)0.0016 (6)
C20.0249 (7)0.0255 (7)0.0282 (7)0.0028 (6)0.0073 (6)0.0024 (6)
C30.0252 (7)0.0293 (7)0.0251 (7)0.0029 (6)0.0058 (6)0.0029 (6)
C40.0288 (8)0.0327 (8)0.0304 (7)0.0024 (6)0.0073 (6)0.0049 (6)
C50.0384 (9)0.0343 (9)0.0456 (9)0.0049 (7)0.0095 (7)0.0146 (7)
C60.0307 (8)0.0345 (8)0.0310 (8)0.0060 (6)0.0060 (6)0.0063 (6)
C70.0248 (7)0.0318 (8)0.0298 (7)0.0014 (6)0.0061 (6)0.0044 (6)
C80.0234 (7)0.0211 (7)0.0265 (7)0.0017 (5)0.0026 (5)0.0032 (5)
C90.0265 (7)0.0202 (7)0.0305 (7)0.0002 (5)0.0045 (6)0.0024 (6)
C100.0302 (8)0.0230 (7)0.0306 (7)0.0050 (6)0.0029 (6)0.0018 (6)
C110.0303 (8)0.0308 (8)0.0348 (8)0.0031 (6)0.0113 (6)0.0005 (6)
C120.0249 (7)0.0228 (7)0.0302 (7)0.0025 (5)0.0044 (6)0.0026 (6)
C130.0275 (8)0.0330 (8)0.0329 (8)0.0084 (6)0.0054 (6)0.0039 (6)
C140.0372 (9)0.0554 (11)0.0434 (10)0.0224 (8)0.0062 (8)0.0057 (8)
C150.0256 (8)0.0478 (10)0.0530 (10)0.0004 (7)0.0016 (7)0.0014 (8)
C160.0386 (9)0.0501 (10)0.0354 (9)0.0097 (8)0.0017 (7)0.0086 (8)
C170.0399 (9)0.0339 (8)0.0313 (8)0.0024 (7)0.0050 (7)0.0024 (7)
C180.0646 (12)0.0358 (9)0.0407 (9)0.0100 (8)0.0062 (8)0.0110 (7)
C190.0651 (12)0.0541 (11)0.0305 (9)0.0035 (9)0.0078 (8)0.0056 (8)
C200.0434 (10)0.0418 (10)0.0557 (11)0.0060 (8)0.0018 (8)0.0103 (8)
C210.0314 (8)0.0456 (9)0.0387 (9)0.0035 (7)0.0108 (7)0.0131 (7)
C220.0296 (9)0.0722 (14)0.0784 (14)0.0044 (9)0.0235 (9)0.0260 (11)
C230.0485 (12)0.136 (2)0.0488 (12)0.0065 (13)0.0220 (10)0.0376 (13)
C240.0504 (13)0.0710 (15)0.110 (2)0.0255 (11)0.0205 (13)0.0147 (14)
C250.0363 (9)0.0479 (10)0.0393 (9)0.0187 (8)0.0049 (7)0.0098 (8)
C260.0475 (12)0.1079 (19)0.0499 (12)0.0301 (12)0.0016 (9)0.0178 (12)
C270.0633 (14)0.0460 (11)0.0886 (16)0.0255 (10)0.0183 (12)0.0064 (11)
C280.0337 (10)0.0680 (13)0.0627 (12)0.0158 (9)0.0134 (9)0.0123 (10)
C290.0479 (10)0.0221 (7)0.0367 (8)0.0073 (7)0.0051 (7)0.0025 (6)
C300.0570 (12)0.0234 (8)0.0727 (13)0.0011 (8)0.0131 (10)0.0077 (8)
C310.0564 (11)0.0325 (9)0.0635 (12)0.0164 (8)0.0209 (9)0.0011 (8)
C320.1021 (18)0.0372 (10)0.0421 (10)0.0082 (10)0.0026 (11)0.0122 (8)
C330.0338 (8)0.0289 (8)0.0436 (9)0.0074 (6)0.0121 (7)0.0030 (7)
C340.0388 (11)0.0489 (12)0.154 (3)0.0143 (9)0.0098 (13)0.0035 (14)
C350.148 (2)0.0548 (13)0.0561 (13)0.0503 (15)0.0436 (15)0.0002 (10)
C360.0627 (12)0.0248 (8)0.0731 (13)0.0131 (8)0.0216 (10)0.0017 (8)
Geometric parameters (Å, º) top
C1—C81.521 (2)C20—H20C0.9800
C1—C131.590 (2)C21—C221.528 (2)
C1—C21.592 (2)C21—C231.533 (3)
C1—H11.0000C21—C241.535 (3)
C2—C31.526 (2)C22—H22A0.9800
C2—C171.589 (2)C22—H22B0.9800
C2—H21.0000C22—H22C0.9800
C3—C41.359 (2)C23—H23A0.9800
C3—C71.487 (2)C23—H23B0.9800
C4—C51.519 (2)C23—H23C0.9800
C4—C211.531 (2)C24—H24A0.9800
C5—C61.499 (2)C24—H24B0.9800
C5—H5A0.9900C24—H24C0.9800
C5—H5B0.9900C25—C281.528 (3)
C6—C71.335 (2)C25—C271.532 (3)
C6—C251.517 (2)C25—C261.540 (3)
C7—H70.9500C26—H26A0.9800
C8—C121.359 (2)C26—H26B0.9800
C8—C91.483 (2)C26—H26C0.9800
C9—C101.335 (2)C27—H27A0.9800
C9—H90.9500C27—H27B0.9800
C10—C111.496 (2)C27—H27C0.9800
C10—C291.519 (2)C28—H28A0.9800
C11—C121.519 (2)C28—H28B0.9800
C11—H11A0.9900C28—H28C0.9800
C11—H11B0.9900C29—C301.522 (2)
C12—C331.533 (2)C29—C321.531 (2)
C13—C151.534 (2)C29—C311.532 (2)
C13—C161.537 (2)C30—H30A0.9800
C13—C141.537 (2)C30—H30B0.9800
C14—H14A0.9800C30—H30C0.9800
C14—H14B0.9800C31—H31A0.9800
C14—H14C0.9800C31—H31B0.9800
C15—H15A0.9800C31—H31C0.9800
C15—H15B0.9800C32—H32A0.9800
C15—H15C0.9800C32—H32B0.9800
C16—H16A0.9800C32—H32C0.9800
C16—H16B0.9800C33—C361.524 (2)
C16—H16C0.9800C33—C341.527 (3)
C17—C201.531 (2)C33—C351.530 (3)
C17—C181.539 (2)C34—H34A0.9800
C17—C191.540 (2)C34—H34B0.9800
C18—H18A0.9800C34—H34C0.9800
C18—H18B0.9800C35—H35A0.9800
C18—H18C0.9800C35—H35B0.9800
C19—H19A0.9800C35—H35C0.9800
C19—H19B0.9800C36—H36A0.9800
C19—H19C0.9800C36—H36B0.9800
C20—H20A0.9800C36—H36C0.9800
C20—H20B0.9800
C8—C1—C13109.03 (11)C22—C21—C4116.80 (13)
C8—C1—C2116.44 (11)C22—C21—C23106.73 (16)
C13—C1—C2113.61 (11)C4—C21—C23109.36 (14)
C8—C1—H1105.6C22—C21—C24106.98 (17)
C13—C1—H1105.6C4—C21—C24108.19 (15)
C2—C1—H1105.6C23—C21—C24108.52 (18)
C3—C2—C17109.62 (12)C21—C22—H22A109.5
C3—C2—C1116.06 (11)C21—C22—H22B109.5
C17—C2—C1113.88 (11)H22A—C22—H22B109.5
C3—C2—H2105.4C21—C22—H22C109.5
C17—C2—H2105.4H22A—C22—H22C109.5
C1—C2—H2105.4H22B—C22—H22C109.5
C4—C3—C7107.99 (12)C21—C23—H23A109.5
C4—C3—C2130.81 (13)C21—C23—H23B109.5
C7—C3—C2120.91 (12)H23A—C23—H23B109.5
C3—C4—C5107.84 (13)C21—C23—H23C109.5
C3—C4—C21135.58 (14)H23A—C23—H23C109.5
C5—C4—C21116.58 (13)H23B—C23—H23C109.5
C6—C5—C4105.27 (12)C21—C24—H24A109.5
C6—C5—H5A110.7C21—C24—H24B109.5
C4—C5—H5A110.7H24A—C24—H24B109.5
C6—C5—H5B110.7C21—C24—H24C109.5
C4—C5—H5B110.7H24A—C24—H24C109.5
H5A—C5—H5B108.8H24B—C24—H24C109.5
C7—C6—C5107.24 (13)C6—C25—C28110.70 (13)
C7—C6—C25129.07 (15)C6—C25—C27110.27 (15)
C5—C6—C25123.67 (13)C28—C25—C27109.36 (16)
C6—C7—C3111.65 (13)C6—C25—C26108.97 (14)
C6—C7—H7124.2C28—C25—C26108.60 (16)
C3—C7—H7124.2C27—C25—C26108.91 (16)
C12—C8—C9108.10 (12)C25—C26—H26A109.5
C12—C8—C1131.21 (12)C25—C26—H26B109.5
C9—C8—C1120.32 (12)H26A—C26—H26B109.5
C10—C9—C8111.27 (12)C25—C26—H26C109.5
C10—C9—H9124.4H26A—C26—H26C109.5
C8—C9—H9124.4H26B—C26—H26C109.5
C9—C10—C11107.71 (12)C25—C27—H27A109.5
C9—C10—C29128.14 (14)C25—C27—H27B109.5
C11—C10—C29124.10 (13)H27A—C27—H27B109.5
C10—C11—C12104.92 (11)C25—C27—H27C109.5
C10—C11—H11A110.8H27A—C27—H27C109.5
C12—C11—H11A110.8H27B—C27—H27C109.5
C10—C11—H11B110.8C25—C28—H28A109.5
C12—C11—H11B110.8C25—C28—H28B109.5
H11A—C11—H11B108.8H28A—C28—H28B109.5
C8—C12—C11107.94 (12)C25—C28—H28C109.5
C8—C12—C33134.79 (13)H28A—C28—H28C109.5
C11—C12—C33117.23 (12)H28B—C28—H28C109.5
C15—C13—C16107.72 (14)C10—C29—C30110.88 (13)
C15—C13—C14107.66 (13)C10—C29—C32108.89 (13)
C16—C13—C14106.54 (13)C30—C29—C32109.06 (16)
C15—C13—C1113.89 (12)C10—C29—C31109.95 (14)
C16—C13—C1109.38 (12)C30—C29—C31109.73 (14)
C14—C13—C1111.34 (13)C32—C29—C31108.27 (15)
C13—C14—H14A109.5C29—C30—H30A109.5
C13—C14—H14B109.5C29—C30—H30B109.5
H14A—C14—H14B109.5H30A—C30—H30B109.5
C13—C14—H14C109.5C29—C30—H30C109.5
H14A—C14—H14C109.5H30A—C30—H30C109.5
H14B—C14—H14C109.5H30B—C30—H30C109.5
C13—C15—H15A109.5C29—C31—H31A109.5
C13—C15—H15B109.5C29—C31—H31B109.5
H15A—C15—H15B109.5H31A—C31—H31B109.5
C13—C15—H15C109.5C29—C31—H31C109.5
H15A—C15—H15C109.5H31A—C31—H31C109.5
H15B—C15—H15C109.5H31B—C31—H31C109.5
C13—C16—H16A109.5C29—C32—H32A109.5
C13—C16—H16B109.5C29—C32—H32B109.5
H16A—C16—H16B109.5H32A—C32—H32B109.5
C13—C16—H16C109.5C29—C32—H32C109.5
H16A—C16—H16C109.5H32A—C32—H32C109.5
H16B—C16—H16C109.5H32B—C32—H32C109.5
C20—C17—C18108.22 (14)C36—C33—C34106.93 (16)
C20—C17—C19107.62 (14)C36—C33—C35106.15 (16)
C18—C17—C19106.43 (14)C34—C33—C35109.76 (19)
C20—C17—C2113.86 (13)C36—C33—C12116.43 (13)
C18—C17—C2111.73 (13)C34—C33—C12107.72 (14)
C19—C17—C2108.65 (13)C35—C33—C12109.72 (14)
C17—C18—H18A109.5C33—C34—H34A109.5
C17—C18—H18B109.5C33—C34—H34B109.5
H18A—C18—H18B109.5H34A—C34—H34B109.5
C17—C18—H18C109.5C33—C34—H34C109.5
H18A—C18—H18C109.5H34A—C34—H34C109.5
H18B—C18—H18C109.5H34B—C34—H34C109.5
C17—C19—H19A109.5C33—C35—H35A109.5
C17—C19—H19B109.5C33—C35—H35B109.5
H19A—C19—H19B109.5H35A—C35—H35B109.5
C17—C19—H19C109.5C33—C35—H35C109.5
H19A—C19—H19C109.5H35A—C35—H35C109.5
H19B—C19—H19C109.5H35B—C35—H35C109.5
C17—C20—H20A109.5C33—C36—H36A109.5
C17—C20—H20B109.5C33—C36—H36B109.5
H20A—C20—H20B109.5H36A—C36—H36B109.5
C17—C20—H20C109.5C33—C36—H36C109.5
H20A—C20—H20C109.5H36A—C36—H36C109.5
H20B—C20—H20C109.5H36B—C36—H36C109.5
C8—C1—C2—C315.63 (17)C8—C1—C13—C1564.50 (15)
C13—C1—C2—C3112.31 (13)C2—C1—C13—C1567.17 (16)
C8—C1—C2—C17113.07 (14)C8—C1—C13—C1656.07 (15)
C13—C1—C2—C17118.99 (13)C2—C1—C13—C16172.26 (12)
C17—C2—C3—C4102.22 (18)C8—C1—C13—C14173.55 (12)
C1—C2—C3—C4127.04 (16)C2—C1—C13—C1454.78 (16)
C17—C2—C3—C770.72 (16)C3—C2—C17—C2060.56 (17)
C1—C2—C3—C760.03 (17)C1—C2—C17—C2071.34 (16)
C7—C3—C4—C50.48 (17)C3—C2—C17—C18176.47 (13)
C2—C3—C4—C5173.15 (14)C1—C2—C17—C1851.63 (17)
C7—C3—C4—C21179.47 (17)C3—C2—C17—C1959.34 (16)
C2—C3—C4—C216.9 (3)C1—C2—C17—C19168.76 (13)
C3—C4—C5—C60.33 (18)C3—C4—C21—C220.3 (3)
C21—C4—C5—C6179.70 (13)C5—C4—C21—C22179.76 (16)
C4—C5—C6—C71.10 (18)C3—C4—C21—C23121.6 (2)
C4—C5—C6—C25177.34 (14)C5—C4—C21—C2358.5 (2)
C5—C6—C7—C31.45 (18)C3—C4—C21—C24120.4 (2)
C25—C6—C7—C3176.88 (15)C5—C4—C21—C2459.5 (2)
C4—C3—C7—C61.27 (18)C7—C6—C25—C2810.8 (2)
C2—C3—C7—C6173.11 (13)C5—C6—C25—C28171.13 (16)
C13—C1—C8—C12105.07 (17)C7—C6—C25—C27131.94 (19)
C2—C1—C8—C12124.79 (16)C5—C6—C25—C2750.0 (2)
C13—C1—C8—C967.09 (15)C7—C6—C25—C26108.6 (2)
C2—C1—C8—C963.06 (17)C5—C6—C25—C2669.5 (2)
C12—C8—C9—C101.96 (17)C9—C10—C29—C307.9 (2)
C1—C8—C9—C10171.84 (12)C11—C10—C29—C30174.96 (15)
C8—C9—C10—C112.38 (16)C9—C10—C29—C32112.10 (19)
C8—C9—C10—C29175.14 (13)C11—C10—C29—C3265.0 (2)
C9—C10—C11—C121.91 (16)C9—C10—C29—C31129.43 (17)
C29—C10—C11—C12175.73 (13)C11—C10—C29—C3153.43 (19)
C9—C8—C12—C110.62 (16)C8—C12—C33—C369.2 (3)
C1—C8—C12—C11172.26 (14)C11—C12—C33—C36173.40 (15)
C9—C8—C12—C33176.93 (15)C8—C12—C33—C34110.8 (2)
C1—C8—C12—C3310.2 (3)C11—C12—C33—C3466.6 (2)
C10—C11—C12—C80.72 (16)C8—C12—C33—C35129.8 (2)
C10—C11—C12—C33178.77 (12)C11—C12—C33—C3552.9 (2)

Experimental details

Crystal data
Chemical formulaC36H62
Mr494.89
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)16.279 (1), 10.5194 (8), 19.680 (2)
β (°) 96.935 (1)
V3)3345.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.05
Crystal size (mm)0.45 × 0.27 × 0.13
Data collection
DiffractometerBruker CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.84, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
28797, 7984, 5492
Rint0.047
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.158, 1.03
No. of reflections7984
No. of parameters343
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.17

Computer programs: SMART (Bruker, 2001), SMART, SAINT-Plus (Bruker, 2001), SHELXTL (Bruker, 2001), SHELXTL.

Selected geometric parameters (Å, º) top
C1—C81.521 (2)C13—C151.534 (2)
C1—C131.590 (2)C13—C161.537 (2)
C1—C21.592 (2)C13—C141.537 (2)
C2—C31.526 (2)C17—C201.531 (2)
C2—C171.589 (2)C17—C181.539 (2)
C3—C41.359 (2)C17—C191.540 (2)
C3—C71.487 (2)C21—C221.528 (2)
C4—C51.519 (2)C21—C231.533 (3)
C4—C211.531 (2)C21—C241.535 (3)
C5—C61.499 (2)C25—C281.528 (3)
C6—C71.335 (2)C25—C271.532 (3)
C6—C251.517 (2)C25—C261.540 (3)
C8—C121.359 (2)C29—C301.522 (2)
C8—C91.483 (2)C29—C321.531 (2)
C9—C101.335 (2)C29—C311.532 (2)
C10—C111.496 (2)C33—C361.524 (2)
C10—C291.519 (2)C33—C341.527 (3)
C11—C121.519 (2)C33—C351.530 (3)
C12—C331.533 (2)
C8—C1—C13109.03 (11)C16—C13—C1109.38 (12)
C8—C1—C2116.44 (11)C14—C13—C1111.34 (13)
C13—C1—C2113.61 (11)C20—C17—C18108.22 (14)
C3—C2—C17109.62 (12)C20—C17—C19107.62 (14)
C3—C2—C1116.06 (11)C18—C17—C19106.43 (14)
C17—C2—C1113.88 (11)C20—C17—C2113.86 (13)
C4—C3—C7107.99 (12)C18—C17—C2111.73 (13)
C4—C3—C2130.81 (13)C19—C17—C2108.65 (13)
C7—C3—C2120.91 (12)C22—C21—C4116.80 (13)
C3—C4—C5107.84 (13)C22—C21—C23106.73 (16)
C3—C4—C21135.58 (14)C4—C21—C23109.36 (14)
C5—C4—C21116.58 (13)C22—C21—C24106.98 (17)
C6—C5—C4105.27 (12)C4—C21—C24108.19 (15)
C7—C6—C5107.24 (13)C23—C21—C24108.52 (18)
C7—C6—C25129.07 (15)C6—C25—C28110.70 (13)
C5—C6—C25123.67 (13)C6—C25—C27110.27 (15)
C6—C7—C3111.65 (13)C28—C25—C27109.36 (16)
C12—C8—C9108.10 (12)C6—C25—C26108.97 (14)
C12—C8—C1131.21 (12)C28—C25—C26108.60 (16)
C9—C8—C1120.32 (12)C27—C25—C26108.91 (16)
C10—C9—C8111.27 (12)C10—C29—C30110.88 (13)
C9—C10—C11107.71 (12)C10—C29—C32108.89 (13)
C9—C10—C29128.14 (14)C30—C29—C32109.06 (16)
C11—C10—C29124.10 (13)C10—C29—C31109.95 (14)
C10—C11—C12104.92 (11)C30—C29—C31109.73 (14)
C8—C12—C11107.94 (12)C32—C29—C31108.27 (15)
C8—C12—C33134.79 (13)C36—C33—C34106.93 (16)
C11—C12—C33117.23 (12)C36—C33—C35106.15 (16)
C15—C13—C16107.72 (14)C34—C33—C35109.76 (19)
C15—C13—C14107.66 (13)C36—C33—C12116.43 (13)
C16—C13—C14106.54 (13)C34—C33—C12107.72 (14)
C15—C13—C1113.89 (12)C35—C33—C12109.72 (14)
C8—C1—C2—C315.63 (17)C1—C2—C3—C4127.04 (16)
C13—C1—C2—C17118.99 (13)C2—C1—C8—C12124.79 (16)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds