Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Sulfur- and phospho­rus-donor atoms define an approximately linear geometry about the Au atom in the title compound, [Au(S2CNEt2){(p-MeO-C6H4)3P}]. The key geometric parameters are Au—S 2.3350 (8) Å, Au—P 2.2528 (7) Å and an S—Au—P angle of 169.80 (3)°. The deviation from linearity is ascribed to a close intramolecular Au...S contact of 3.0564 (8) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802002064/om6078sup1.cif
Contains datablocks general, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802002064/om6078Isup2.hkl
Contains datablock I

CCDC reference: 182574

Key indicators

  • Single-crystal X-ray study
  • T = 223 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.033
  • wR factor = 0.078
  • Data-to-parameter ratio = 25.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Intramolecuar Au···S or Au···O interactions are found in structures with the general formula R3PAu(S2COR') (R, R' = alkyl, aryl) and are thought to be dictated by global crystal-packing considerations (Siasios & Tiekink, 1993a,b). Analogous Au···S interactions are found in the related crystal structures of (C6H5)3PAu(S2CNEt2), (II) (Wijnhoven et al., 1972), (c-C6H11)3PAu(S2CNEt2), (III) (Ho & Tiekink, 2001b), and dinuclear (Et2NCS2)AuP(C6H5)2CH2CH2(C6H5)2PAu(S2CNEt2), (IV) (Faamau & Tiekink, 1994). In connection with the above, the structure of the title compound, (p-MeO-C6H4)3PAu(S2CNEt2), (I), was determined.

A linear geometry defined by sulfur, derived from a monodentate dithiocarbamate ligand, and P atoms, from the phosphine, is found in (I) (Fig. 1 and Table 1). The Au—S and Au—P separations of 2.3350 (8) and 2.2528 (7) Å, respectively, lie within the range of Au—S and Au—P distances found in the mononuclear structures of (II) and (III) mentioned above. To a first approximation, the geometry is linear but a significant distortion away from the ideal angle of 180° is noted as the S—Au—P angle is 169.80 (3)°. This may be correlated with the close approach of the non-coordinating S2 atom to the Au centre so that Au···S is 3.0564 (8) Å. This separation lies between the comparable Au···S separations found in (II) and (III), for which the angles subtended at gold were found to be 175.7 (1) and 171.61 (4)°, respectively.

There are two C—H···π contacts less than 3.2 Å. These occur between the methylene C4—H and the centroid of the C6—C11 ring (distance 2.95 Å and angle at H of 125° with symmetry operation 1 + x, y, z) and C17—H with the centroid of the C20—C25 ring (3.12 Å, 152° and x, 1/2 - y, -1/2 + z).

Experimental top

To a dichloromethane solution (4 ml) of (p-MeO-C6H4)3PAuCl (0.20 g, 0.34 mmol; Ho & Tiekink, 2001a) was added NaS2CNEt2 (Merck; 58 mg, 0.34 mmol). The colourless solution immediately turned yellow indicating the formation of the product and was stirred for 2 h. The yellow solution was filtered through Celite and concentrated to approximately 1 ml to yield the product. The product was recrystallized by the vapour diffusion of methanol into a chloroform solution of the compound to yield X-ray quality pale-yellow crystals (168 mg, 71%); m.p. 404 K. 1H NMR (CDCl3): δ 7.57–7.49 (m, 6H, Ph), 6.95–6.91 (m, 6H, Ph), 3.93 (q, 4H, J = 7.5 Hz), 3.82 (s, 9H, OCH3), 1.33 p.p.m. (t, 6H, J = 7.5 Hz). 31P{1H} (CDCl3): δ 32.5 p.p.m. ESI-MS: m/z 1247 [(M+—NEt2)]2. IR (KBr) 1499 ν(C—N), 1105 and 995 ν(C—S) cm-1.

Refinement top

The C-bound H atoms were placed in their geometrically calculated positions and included in the final refinement in the riding-model approximation with an overall displacement parameter, Uiso, with Uiso for phenyl H, 1.25Uiso for methylene H and 1.5Uiso for CH3 H atoms. The residual electron-density peak is located in the vicinity of the Au atom.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SHELXTL (Bruker, 2000); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHEXLTL.

Figures top
[Figure 1] Fig. 1. The molecular structure and crystallographic numbering scheme for (I). Displacement ellipsoids are shown at the 50% probability level.
(I) top
Crystal data top
[Au(C5H10NS2)(C21H21O3P)]F(000) = 1376
Mr = 697.57Dx = 1.727 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 21862 reflections
a = 10.4567 (4) Åθ = 1.8–30.0°
b = 15.6672 (7) ŵ = 5.73 mm1
c = 17.0037 (7) ÅT = 223 K
β = 105.576 (1)°Block, pale-yellow
V = 2683.36 (19) Å30.42 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker AXS SMART CCD
diffractometer
7806 independent reflections
Radiation source: fine-focus sealed tube6349 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 30.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS, Bruker, 2000)
h = 1414
Tmin = 0.218, Tmax = 0.564k = 2210
21862 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0366P)2]
where P = (Fo2 + 2Fc2)/3
7806 reflections(Δ/σ)max = 0.001
308 parametersΔρmax = 2.14 e Å3
0 restraintsΔρmin = 1.26 e Å3
Crystal data top
[Au(C5H10NS2)(C21H21O3P)]V = 2683.36 (19) Å3
Mr = 697.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.4567 (4) ŵ = 5.73 mm1
b = 15.6672 (7) ÅT = 223 K
c = 17.0037 (7) Å0.42 × 0.10 × 0.10 mm
β = 105.576 (1)°
Data collection top
Bruker AXS SMART CCD
diffractometer
7806 independent reflections
Absorption correction: multi-scan
(SADABS, Bruker, 2000)
6349 reflections with I > 2σ(I)
Tmin = 0.218, Tmax = 0.564Rint = 0.034
21862 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.02Δρmax = 2.14 e Å3
7806 reflectionsΔρmin = 1.26 e Å3
308 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au0.253610 (11)0.108658 (8)0.285428 (7)0.03034 (5)
S10.46076 (8)0.07925 (6)0.26427 (6)0.03776 (19)
S20.32699 (10)0.08061 (7)0.29502 (7)0.0497 (2)
P10.05945 (7)0.16064 (6)0.29844 (5)0.02776 (17)
O10.2328 (2)0.06842 (16)0.46939 (14)0.0382 (5)
O20.3150 (3)0.23938 (18)0.02588 (14)0.0451 (6)
O30.1353 (2)0.49484 (16)0.47388 (15)0.0412 (6)
N10.5472 (3)0.0759 (2)0.24463 (18)0.0397 (7)
C10.4516 (3)0.0328 (2)0.26652 (19)0.0335 (7)
C20.5483 (4)0.1701 (3)0.2446 (3)0.0504 (10)
H2A0.59060.19050.20320.051 (2)*
H2B0.45670.19120.23010.051 (2)*
C30.6219 (5)0.2052 (3)0.3269 (3)0.0606 (12)
H3A0.62110.26710.32480.062 (3)*
H3B0.57900.18610.36780.062 (3)*
H3C0.71290.18500.34110.062 (3)*
C40.6530 (3)0.0341 (3)0.2165 (2)0.0490 (10)
H4A0.73150.07110.22850.051 (2)*
H4B0.67780.01950.24650.051 (2)*
C50.6097 (4)0.0155 (3)0.1257 (3)0.0608 (12)
H5A0.68200.01140.10940.062 (3)*
H5B0.53360.02250.11390.062 (3)*
H5C0.58560.06840.09580.062 (3)*
C60.0265 (3)0.0929 (2)0.35418 (18)0.0267 (6)
C70.0019 (3)0.0053 (2)0.36057 (18)0.0290 (6)
H70.06310.01840.33820.0411 (17)*
C80.0716 (3)0.0466 (2)0.39905 (18)0.0305 (7)
H80.05390.10550.40330.0411 (17)*
C90.1686 (3)0.0123 (2)0.43189 (18)0.0288 (6)
C100.1939 (3)0.0743 (2)0.42636 (19)0.0300 (6)
H100.25970.09760.44830.0411 (17)*
C110.1219 (3)0.1266 (2)0.38838 (19)0.0286 (6)
H110.13780.18580.38580.0411 (17)*
C120.3418 (4)0.0358 (3)0.4969 (2)0.0454 (9)
H12A0.37890.08130.52260.062 (3)*
H12B0.40960.01380.45070.062 (3)*
H12C0.31050.00970.53610.062 (3)*
C130.0581 (3)0.1809 (2)0.20087 (18)0.0290 (6)
C140.1937 (3)0.1886 (3)0.1924 (2)0.0430 (9)
H140.22620.18000.23820.0411 (17)*
C150.2816 (3)0.2085 (3)0.1184 (2)0.0418 (9)
H150.37250.21470.11450.0411 (17)*
C160.2358 (3)0.2194 (2)0.0501 (2)0.0337 (7)
C170.1014 (3)0.2104 (3)0.0572 (2)0.0431 (9)
H170.06960.21780.01090.0411 (17)*
C180.0143 (3)0.1910 (2)0.1305 (2)0.0380 (8)
H180.07630.18430.13380.0411 (17)*
C190.4478 (4)0.2637 (3)0.0308 (2)0.0543 (11)
H19A0.49380.27680.08700.062 (3)*
H19B0.44750.31360.00300.062 (3)*
H19C0.49280.21710.01160.062 (3)*
C200.0797 (3)0.2620 (2)0.35186 (18)0.0273 (6)
C210.1594 (3)0.2661 (2)0.4318 (2)0.0324 (7)
H210.20010.21600.45720.0411 (17)*
C220.1801 (3)0.3425 (2)0.4751 (2)0.0342 (7)
H220.23440.34380.52900.0411 (17)*
C230.1207 (3)0.4162 (2)0.4384 (2)0.0314 (7)
C240.0410 (4)0.4133 (2)0.3586 (2)0.0410 (8)
H240.00060.46360.33340.0411 (17)*
C250.0205 (3)0.3371 (2)0.3158 (2)0.0368 (8)
H250.03390.33610.26190.0411 (17)*
C260.2102 (4)0.5013 (3)0.5563 (2)0.0518 (10)
H26A0.21300.56040.57370.062 (3)*
H26B0.29980.48110.56170.062 (3)*
H26C0.16910.46680.59020.062 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.02452 (7)0.03545 (8)0.03282 (7)0.00610 (5)0.01078 (5)0.00062 (5)
S10.0274 (4)0.0366 (5)0.0528 (5)0.0053 (4)0.0168 (4)0.0001 (4)
S20.0387 (5)0.0437 (5)0.0709 (7)0.0003 (4)0.0220 (5)0.0021 (5)
P10.0241 (3)0.0298 (4)0.0312 (4)0.0044 (3)0.0106 (3)0.0016 (3)
O10.0408 (13)0.0359 (14)0.0397 (12)0.0054 (11)0.0138 (10)0.0065 (11)
O20.0451 (14)0.0529 (17)0.0336 (12)0.0053 (13)0.0039 (11)0.0077 (12)
O30.0493 (14)0.0327 (13)0.0435 (13)0.0010 (12)0.0158 (11)0.0069 (11)
N10.0327 (14)0.0383 (17)0.0468 (17)0.0099 (14)0.0087 (13)0.0099 (14)
C10.0281 (14)0.0358 (19)0.0358 (16)0.0082 (14)0.0071 (12)0.0046 (15)
C20.047 (2)0.043 (2)0.058 (2)0.0076 (19)0.0103 (18)0.020 (2)
C30.066 (3)0.037 (2)0.072 (3)0.013 (2)0.006 (2)0.012 (2)
C40.0287 (16)0.067 (3)0.054 (2)0.0093 (18)0.0155 (16)0.010 (2)
C50.051 (2)0.079 (3)0.058 (3)0.006 (2)0.024 (2)0.012 (2)
C60.0260 (13)0.0284 (16)0.0257 (14)0.0012 (12)0.0067 (11)0.0019 (12)
C70.0251 (13)0.0309 (17)0.0290 (14)0.0035 (13)0.0037 (11)0.0050 (13)
C80.0316 (15)0.0233 (15)0.0325 (15)0.0001 (13)0.0015 (12)0.0012 (13)
C90.0283 (14)0.0302 (17)0.0252 (14)0.0039 (13)0.0024 (11)0.0015 (13)
C100.0302 (15)0.0308 (17)0.0308 (15)0.0024 (14)0.0115 (12)0.0025 (13)
C110.0317 (15)0.0249 (16)0.0302 (15)0.0041 (13)0.0101 (12)0.0001 (13)
C120.045 (2)0.053 (3)0.0417 (19)0.0081 (19)0.0189 (16)0.0039 (18)
C130.0273 (14)0.0304 (17)0.0305 (14)0.0036 (13)0.0100 (12)0.0005 (13)
C140.0317 (16)0.067 (3)0.0317 (16)0.0077 (17)0.0110 (13)0.0033 (17)
C150.0292 (15)0.057 (2)0.0394 (18)0.0064 (16)0.0089 (14)0.0048 (17)
C160.0363 (16)0.0290 (17)0.0337 (16)0.0017 (14)0.0057 (13)0.0043 (14)
C170.0441 (19)0.054 (2)0.0375 (18)0.0066 (18)0.0213 (16)0.0127 (17)
C180.0325 (16)0.046 (2)0.0390 (17)0.0070 (15)0.0163 (14)0.0081 (16)
C190.045 (2)0.066 (3)0.044 (2)0.007 (2)0.0038 (17)0.004 (2)
C200.0221 (13)0.0304 (16)0.0324 (15)0.0009 (12)0.0127 (11)0.0017 (13)
C210.0323 (15)0.0288 (17)0.0358 (16)0.0049 (14)0.0089 (13)0.0051 (14)
C220.0310 (15)0.039 (2)0.0313 (16)0.0010 (14)0.0056 (13)0.0007 (14)
C230.0291 (15)0.0305 (17)0.0382 (17)0.0015 (13)0.0151 (13)0.0011 (14)
C240.047 (2)0.0325 (18)0.0407 (19)0.0079 (16)0.0078 (16)0.0052 (16)
C250.0375 (17)0.0359 (19)0.0335 (16)0.0035 (15)0.0033 (14)0.0026 (15)
C260.056 (2)0.047 (2)0.049 (2)0.001 (2)0.0097 (19)0.014 (2)
Geometric parameters (Å, º) top
Au—P12.2528 (7)C9—C101.380 (5)
Au—S12.3350 (8)C10—C111.385 (4)
S1—C11.760 (4)C10—H100.9400
S2—C11.683 (3)C11—H110.9400
P1—C131.808 (3)C12—H12A0.9700
P1—C61.814 (3)C12—H12B0.9700
P1—C201.813 (3)C12—H12C0.9700
O1—C91.364 (4)C13—C141.391 (4)
O1—C121.438 (4)C13—C181.400 (4)
O2—C161.371 (4)C14—C151.380 (5)
O2—C191.420 (4)C14—H140.9400
O3—C231.362 (4)C15—C161.380 (5)
O3—C261.414 (4)C15—H150.9400
N1—C11.339 (4)C16—C171.385 (4)
N1—C41.471 (5)C17—C181.366 (5)
N1—C21.476 (5)C17—H170.9400
C2—C31.508 (6)C18—H180.9400
C2—H2A0.9800C19—H19A0.9700
C2—H2B0.9800C19—H19B0.9700
C3—H3A0.9700C19—H19C0.9700
C3—H3B0.9700C20—C251.393 (5)
C3—H3C0.9700C20—C211.393 (4)
C4—C51.516 (6)C21—C221.390 (5)
C4—H4A0.9800C21—H210.9400
C4—H4B0.9800C22—C231.379 (5)
C5—H5A0.9700C22—H220.9400
C5—H5B0.9700C23—C241.391 (5)
C5—H5C0.9700C24—C251.384 (5)
C6—C111.386 (4)C24—H240.9400
C6—C71.396 (4)C25—H250.9400
C7—C81.369 (4)C26—H26A0.9700
C7—H70.9400C26—H26B0.9700
C8—C91.390 (4)C26—H26C0.9700
C8—H80.9400
P1—Au—S1169.80 (3)C6—C11—H11119.6
C1—S1—Au97.80 (11)C10—C11—H11119.6
C13—P1—C6105.77 (14)O1—C12—H12A109.5
C13—P1—C20105.36 (15)O1—C12—H12B109.5
C6—P1—C20104.94 (14)H12A—C12—H12B109.5
C13—P1—Au112.46 (10)O1—C12—H12C109.5
C6—P1—Au115.23 (11)H12A—C12—H12C109.5
C20—P1—Au112.26 (9)H12B—C12—H12C109.5
C9—O1—C12117.1 (3)C14—C13—C18117.4 (3)
C16—O2—C19116.8 (3)C14—C13—P1122.2 (2)
C23—O3—C26118.0 (3)C18—C13—P1120.4 (2)
C1—N1—C4123.2 (3)C15—C14—C13121.7 (3)
C1—N1—C2120.7 (3)C15—C14—H14119.2
C4—N1—C2116.1 (3)C13—C14—H14119.2
N1—C1—S2123.3 (3)C14—C15—C16119.9 (3)
N1—C1—S1116.6 (3)C14—C15—H15120.1
S2—C1—S1120.05 (18)C16—C15—H15120.1
N1—C2—C3111.5 (3)O2—C16—C17116.6 (3)
N1—C2—H2A109.3O2—C16—C15124.2 (3)
C3—C2—H2A109.3C17—C16—C15119.2 (3)
N1—C2—H2B109.3C18—C17—C16120.9 (3)
C3—C2—H2B109.3C18—C17—H17119.5
H2A—C2—H2B108.0C16—C17—H17119.5
C2—C3—H3A109.5C17—C18—C13121.0 (3)
C2—C3—H3B109.5C17—C18—H18119.5
H3A—C3—H3B109.5C13—C18—H18119.5
C2—C3—H3C109.5O2—C19—H19A109.5
H3A—C3—H3C109.5O2—C19—H19B109.5
H3B—C3—H3C109.5H19A—C19—H19B109.5
N1—C4—C5111.8 (3)O2—C19—H19C109.5
N1—C4—H4A109.3H19A—C19—H19C109.5
C5—C4—H4A109.3H19B—C19—H19C109.5
N1—C4—H4B109.3C25—C20—C21118.0 (3)
C5—C4—H4B109.3C25—C20—P1122.8 (2)
H4A—C4—H4B107.9C21—C20—P1119.2 (2)
C4—C5—H5A109.5C22—C21—C20121.5 (3)
C4—C5—H5B109.5C22—C21—H21119.2
H5A—C5—H5B109.5C20—C21—H21119.2
C4—C5—H5C109.5C21—C22—C23119.7 (3)
H5A—C5—H5C109.5C21—C22—H22120.2
H5B—C5—H5C109.5C23—C22—H22120.2
C11—C6—C7118.7 (3)O3—C23—C24115.3 (3)
C11—C6—P1120.6 (2)O3—C23—C22125.1 (3)
C7—C6—P1120.6 (2)C24—C23—C22119.6 (3)
C8—C7—C6120.7 (3)C23—C24—C25120.6 (3)
C8—C7—H7119.7C23—C24—H24119.7
C6—C7—H7119.7C25—C24—H24119.7
C7—C8—C9120.1 (3)C20—C25—C24120.6 (3)
C7—C8—H8119.9C20—C25—H25119.7
C9—C8—H8119.9C24—C25—H25119.7
O1—C9—C10123.8 (3)O3—C26—H26A109.5
O1—C9—C8116.2 (3)O3—C26—H26B109.5
C10—C9—C8120.0 (3)H26A—C26—H26B109.5
C9—C10—C11119.7 (3)O3—C26—H26C109.5
C9—C10—H10120.2H26A—C26—H26C109.5
C11—C10—H10120.2H26B—C26—H26C109.5
C6—C11—C10120.8 (3)

Experimental details

Crystal data
Chemical formula[Au(C5H10NS2)(C21H21O3P)]
Mr697.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)223
a, b, c (Å)10.4567 (4), 15.6672 (7), 17.0037 (7)
β (°) 105.576 (1)
V3)2683.36 (19)
Z4
Radiation typeMo Kα
µ (mm1)5.73
Crystal size (mm)0.42 × 0.10 × 0.10
Data collection
DiffractometerBruker AXS SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS, Bruker, 2000)
Tmin, Tmax0.218, 0.564
No. of measured, independent and
observed [I > 2σ(I)] reflections
21862, 7806, 6349
Rint0.034
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.078, 1.02
No. of reflections7806
No. of parameters308
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.14, 1.26

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Bruker, 2000), PATTY in DIRDIF92 (Beurskens et al., 1992), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHEXLTL.

Selected geometric parameters (Å, º) top
Au—P12.2528 (7)O1—C121.438 (4)
Au—S12.3350 (8)O2—C161.371 (4)
S1—C11.760 (4)O2—C191.420 (4)
S2—C11.683 (3)O3—C231.362 (4)
P1—C131.808 (3)O3—C261.414 (4)
P1—C61.814 (3)N1—C11.339 (4)
P1—C201.813 (3)N1—C41.471 (5)
O1—C91.364 (4)N1—C21.476 (5)
P1—Au—S1169.80 (3)C16—O2—C19116.8 (3)
C1—S1—Au97.80 (11)C23—O3—C26118.0 (3)
C13—P1—C6105.77 (14)C1—N1—C4123.2 (3)
C13—P1—C20105.36 (15)C1—N1—C2120.7 (3)
C6—P1—C20104.94 (14)C4—N1—C2116.1 (3)
C13—P1—Au112.46 (10)N1—C1—S2123.3 (3)
C6—P1—Au115.23 (11)N1—C1—S1116.6 (3)
C20—P1—Au112.26 (9)S2—C1—S1120.05 (18)
C9—O1—C12117.1 (3)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds