Download citation
Download citation
link to html
The title compound, [Cu2Cl4(C20H18N2O)2], is a centrosymmetric dimer bridged through the Cl atoms. The bridging Cu2Cl2 unit is planar and each CuII ion has two different distances to the bridging Cl atom. The CuII ions are coordinated to three Cl and two N atoms in a square-pyramidal disposition. Hydro­gen bonds are formed by –OH and –NH with the Cl atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801016890/om6058sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801016890/om6058Isup2.hkl
Contains datablock I

CCDC reference: 175978

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.027
  • wR factor = 0.062
  • Data-to-parameter ratio = 15.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.597 Tmax scaled 0.597 Tmin scaled 0.502

Comment top

The synthesis and characterization of binuclear copper(II) complexes has made an impact on bio-inorganic chemistry (Solomon et al., 1996). Copper(II) compounds with imidazoles have been used as models to mimic biological systems (Kitajima & Moro-Oka, 1994). Copper(II)–carboxylate adducts with imidazole ligands have a variety of pharmacological properties (Tamura & Imai, 1987). Recently, some attention has been paid to the study of CuII complexes with –N—C—C—N–, which has a flexible backbone that enables it to act as a bis-chelating ligand (Bernhardt & Shape, 1998; Haidar et al., 1997; Urtiaga et al., 1997; Comba et al., 1995). Our study is focused on the determination of the bio-active properties of CuII complexes with –N—C—CN– ligands. While trying to synthesize CuN4 compounds with that ligand from the reaction of 1,2-diphenyl-2-(phenylamino)ethanoxime with CuCl2 in ethanol, we obtained a new compound of the type Cu2Cl4N4, as shown by the crystallographic study, namely di-µ-chloro-bis{chloro[1,2-diphenyl-2-(phenylamino)ethanoximato]copper(II)}, (I).

The determination of the crystal structure from data recorded at 100 K shows that (I) consists of binuclear molecules with Cl acting as the bridging atoms (Fig. 1). This compound is centrosymmetric with only one half independent molecule per asymmetric unit. Each metal centre has a square-pyramidal coordination. The four short bonds are to two N atoms, a terminal Cl atom and a bridging Cl atom. The long apical bond involves the other bridging Cl atom. So, in (I) there are two types of Cl atoms, bridging and non-bridging.

The bridging Cu2Cl2 unit is planar. The Cu1—Cl1 and Cu1—Cl1i [symmetry code: (i) -x, -y, -z] distances are not equal (Table 1); the larger distance corresponding to the Cl in the apex of the square pyramid and the smaller one to the basal Cl.

The copper–copper distance (Table 1) is similar to the value [3.518 (3) Å] found by Menger et al. (1991) in di-µ-chloro-bis[chloro(2,9-didodecyl-1,10-phenanthroline-N,N')copper], and it is close to the mean copper–copper distance (3.525 Å) found in the di-µ-chloro pentacoordinated CuII complexes registered in the April 2001 version of the Cambridge Structural Database (Allen & Kennard, 1993).

The OH group is involved in a bifurcated hydrogen bond (Jeffrey et al., 1985) with Cl1i and Cl2i, and –NH forms an intermolecular hydrogen bond with Cl2ii [symmetry code: (ii) 1 - x, -y, -z] (Table 2).

Experimental top

Compound (I) was obtained by slow addition of 30 ml of an absolute ethanol solution (0.001 M) of 1,2-diphenyl-2-phenylamine-ethanoxime to 30 ml of an absolute ethanol solution (0.001 M) of CuCl2·2H2O. The resulting green precipitate was left overnight, filtered and washed several times with water, followed by ethanol and ether. Recrystallization from absolute ethanol after drying in vacuum gave crystals suitable for X-ray structural analysis; m.p. 456–457 K.

Refinement top

All H atoms were located in difference Fourier maps and refined freely except the H atom bonded to O1, which was calculated in an ideal position and refined using a riding model via the SHELXL97 HFIX 83 facility.

Computing details top

Data collection: SHELXTL (Bruker, 1997) [AUTHOR: was SHELXTL really used for data collection, cell refinement and data reduction ?]; cell refinement: SHELXTL; data reduction: SHELXTL; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (i) -x, -y, -z].
Di-µ-chloro-bis{chloro[1,2-diphenyl-2-(phenylamino)ethanoximato]copper(II)} top
Crystal data top
[Cu2Cl4(C20H18N2O)2]Dx = 1.561 Mg m3
Mr = 873.61Melting point = 456–457 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.1739 (3) ÅCell parameters from 6428 reflections
b = 22.1696 (7) Åθ = 2.4–28.5°
c = 9.4404 (3) ŵ = 1.47 mm1
β = 104.592 (1)°T = 100 K
V = 1858.07 (10) Å3Rhombohedral, dark-green
Z = 20.42 × 0.38 × 0.35 mm
F(000) = 892
Data collection top
Bruker SMART CCD 1K area-detector
diffractometer
4707 independent reflections
Radiation source: fine-focus sealed tube4187 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8 pixels mm-1θmax = 28.5°, θmin = 1.8°
ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2929
Tmin = 0.842, Tmax = 1.000l = 1212
21701 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0227P)2 + 1.7471P]
where P = (Fo2 + 2Fc2)/3
4707 reflections(Δ/σ)max = 0.008
303 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Cu2Cl4(C20H18N2O)2]V = 1858.07 (10) Å3
Mr = 873.61Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.1739 (3) ŵ = 1.47 mm1
b = 22.1696 (7) ÅT = 100 K
c = 9.4404 (3) Å0.42 × 0.38 × 0.35 mm
β = 104.592 (1)°
Data collection top
Bruker SMART CCD 1K area-detector
diffractometer
4707 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4187 reflections with I > 2σ(I)
Tmin = 0.842, Tmax = 1.000Rint = 0.027
21701 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.45 e Å3
4707 reflectionsΔρmin = 0.40 e Å3
303 parameters
Special details top

Experimental. The data collection nominally covered full sphere of reciprocal Space, by a combination of 5 sets of ω scans each set at different ϕ and/or 2θ angles and each scan (25 s exposure) covering 0.3° in ω. Crystal to detector distance 4.51 cm.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.17994 (2)0.033141 (8)0.04072 (2)0.01209 (6)
Cl10.05756 (4)0.018429 (18)0.18538 (4)0.01537 (8)
Cl20.31650 (4)0.045273 (17)0.00170 (5)0.01608 (8)
O10.02507 (13)0.12175 (5)0.13696 (13)0.0167 (2)
H10.07470.08950.12600.025*
N10.31781 (16)0.09236 (6)0.03444 (15)0.0132 (3)
N20.10730 (15)0.11295 (6)0.09524 (15)0.0131 (3)
C10.34128 (18)0.14598 (7)0.06463 (18)0.0140 (3)
C20.19444 (18)0.15914 (7)0.10667 (17)0.0129 (3)
C30.47135 (18)0.13359 (7)0.19754 (18)0.0152 (3)
C40.4560 (2)0.09314 (8)0.30557 (19)0.0186 (3)
C50.5784 (2)0.08049 (9)0.4230 (2)0.0225 (4)
C60.7157 (2)0.10865 (9)0.4334 (2)0.0238 (4)
C70.7308 (2)0.14934 (9)0.3269 (2)0.0228 (4)
C80.6092 (2)0.16166 (8)0.2086 (2)0.0191 (3)
C90.16510 (19)0.22071 (7)0.15414 (18)0.0145 (3)
C100.0205 (2)0.24575 (8)0.1131 (2)0.0186 (3)
C110.0031 (2)0.30448 (8)0.1526 (2)0.0212 (4)
C120.1153 (2)0.33832 (8)0.2355 (2)0.0209 (4)
C130.2584 (2)0.31401 (8)0.2761 (2)0.0226 (4)
C140.2844 (2)0.25564 (8)0.2352 (2)0.0196 (4)
C150.25378 (18)0.10360 (7)0.18925 (18)0.0145 (3)
C160.16326 (19)0.15342 (8)0.2383 (2)0.0177 (3)
C170.0977 (2)0.15973 (9)0.3881 (2)0.0211 (4)
C180.1210 (2)0.11698 (9)0.4864 (2)0.0215 (4)
C190.2114 (2)0.06716 (8)0.4356 (2)0.0199 (3)
C200.2789 (2)0.06052 (8)0.28719 (19)0.0172 (3)
H20.400 (2)0.0746 (9)0.019 (2)0.014 (5)*
H30.364 (2)0.1803 (9)0.011 (2)0.009 (4)*
H40.363 (3)0.0753 (10)0.304 (2)0.021 (5)*
H50.566 (3)0.0540 (11)0.494 (3)0.026 (6)*
H60.796 (3)0.1007 (10)0.510 (3)0.026 (6)*
H70.822 (3)0.1684 (10)0.331 (2)0.023 (6)*
H80.619 (2)0.1876 (10)0.135 (2)0.020 (5)*
H90.059 (2)0.2231 (10)0.060 (2)0.019 (5)*
H100.102 (3)0.3208 (10)0.122 (2)0.025 (6)*
H110.097 (3)0.3785 (11)0.264 (3)0.030 (6)*
H120.336 (3)0.3373 (10)0.329 (3)0.025 (6)*
H130.385 (3)0.2396 (10)0.261 (2)0.022 (5)*
H140.146 (2)0.1838 (10)0.174 (2)0.022 (5)*
H150.038 (3)0.1932 (10)0.421 (2)0.025 (6)*
H160.075 (2)0.1208 (10)0.589 (2)0.023 (6)*
H170.225 (3)0.0371 (10)0.506 (3)0.025 (6)*
H180.338 (2)0.0250 (10)0.254 (2)0.022 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01278 (10)0.01011 (9)0.01385 (10)0.00086 (7)0.00420 (7)0.00073 (7)
Cl10.01524 (18)0.01635 (18)0.01429 (18)0.00248 (13)0.00332 (14)0.00197 (13)
Cl20.01434 (18)0.01154 (17)0.0226 (2)0.00126 (13)0.00510 (15)0.00041 (14)
O10.0127 (6)0.0170 (6)0.0228 (6)0.0030 (4)0.0089 (5)0.0045 (5)
N10.0130 (7)0.0111 (6)0.0156 (7)0.0011 (5)0.0035 (5)0.0012 (5)
N20.0114 (6)0.0156 (6)0.0129 (6)0.0003 (5)0.0043 (5)0.0012 (5)
C10.0134 (7)0.0122 (7)0.0162 (8)0.0008 (6)0.0034 (6)0.0016 (6)
C20.0119 (7)0.0135 (7)0.0126 (7)0.0009 (5)0.0017 (6)0.0004 (6)
C30.0135 (8)0.0159 (7)0.0159 (8)0.0011 (6)0.0031 (6)0.0044 (6)
C40.0150 (8)0.0219 (8)0.0181 (8)0.0012 (6)0.0026 (7)0.0017 (7)
C50.0221 (9)0.0242 (9)0.0190 (9)0.0026 (7)0.0010 (7)0.0003 (7)
C60.0169 (9)0.0313 (10)0.0195 (9)0.0043 (7)0.0021 (7)0.0062 (7)
C70.0124 (8)0.0300 (10)0.0247 (9)0.0011 (7)0.0025 (7)0.0085 (7)
C80.0152 (8)0.0224 (9)0.0203 (9)0.0009 (6)0.0055 (7)0.0029 (7)
C90.0160 (8)0.0119 (7)0.0158 (8)0.0003 (6)0.0045 (6)0.0011 (6)
C100.0145 (8)0.0179 (8)0.0221 (9)0.0001 (6)0.0020 (7)0.0036 (7)
C110.0176 (9)0.0194 (9)0.0265 (9)0.0052 (7)0.0054 (7)0.0016 (7)
C120.0265 (9)0.0145 (8)0.0211 (9)0.0029 (7)0.0047 (7)0.0045 (6)
C130.0217 (9)0.0181 (8)0.0233 (9)0.0017 (7)0.0031 (7)0.0050 (7)
C140.0149 (8)0.0168 (8)0.0248 (9)0.0009 (6)0.0005 (7)0.0028 (7)
C150.0099 (7)0.0179 (8)0.0156 (8)0.0033 (6)0.0031 (6)0.0016 (6)
C160.0154 (8)0.0193 (8)0.0187 (8)0.0000 (6)0.0048 (7)0.0006 (6)
C170.0145 (8)0.0268 (9)0.0206 (9)0.0036 (7)0.0017 (7)0.0041 (7)
C180.0158 (8)0.0330 (10)0.0141 (8)0.0017 (7)0.0008 (7)0.0017 (7)
C190.0190 (8)0.0238 (9)0.0175 (8)0.0037 (7)0.0056 (7)0.0020 (7)
C200.0172 (8)0.0175 (8)0.0174 (8)0.0009 (6)0.0053 (7)0.0010 (6)
Geometric parameters (Å, º) top
Cu1—N22.0031 (14)C7—C81.392 (3)
Cu1—N12.0686 (14)C7—H70.93 (2)
Cu1—Cl22.2371 (4)C8—H80.93 (2)
Cu1—Cl1i2.2814 (4)C9—C101.399 (2)
Cu1—Cl12.6582 (4)C9—C141.400 (2)
Cu1—Cu1i3.5172 (4)C10—C111.386 (2)
Cl1—Cu1i2.2814 (4)C10—H90.92 (2)
O1—N21.3816 (17)C11—C121.388 (3)
O1—H10.8400C11—H100.95 (2)
N1—C151.453 (2)C12—C131.380 (3)
N1—C11.494 (2)C12—H110.96 (2)
N1—H20.83 (2)C13—C141.388 (2)
N2—C21.287 (2)C13—H120.92 (2)
C1—C31.523 (2)C14—H130.96 (2)
C1—C21.525 (2)C15—C201.388 (2)
C1—H30.964 (19)C15—C161.389 (2)
C2—C91.482 (2)C16—C171.397 (3)
C3—C81.390 (2)C16—H140.95 (2)
C3—C41.392 (2)C17—C181.380 (3)
C4—C51.393 (3)C17—H150.93 (2)
C4—H40.94 (2)C18—C191.392 (3)
C5—C61.387 (3)C18—H160.96 (2)
C5—H50.92 (2)C19—C201.390 (2)
C6—C71.383 (3)C19—H170.97 (2)
C6—H60.91 (2)C20—H180.97 (2)
N2—Cu1—N178.42 (5)C5—C6—H6120.4 (15)
N2—Cu1—Cl2165.92 (4)C6—C7—C8120.28 (17)
N1—Cu1—Cl290.77 (4)C6—C7—H7121.2 (14)
N2—Cu1—Cl1i92.47 (4)C8—C7—H7118.5 (14)
N1—Cu1—Cl1i163.53 (4)C3—C8—C7120.16 (18)
Cl2—Cu1—Cl1i95.736 (16)C3—C8—H8118.8 (13)
N2—Cu1—Cl193.23 (4)C7—C8—H8121.0 (13)
N1—Cu1—Cl1104.52 (4)C10—C9—C14119.18 (15)
Cl2—Cu1—Cl198.258 (15)C10—C9—C2120.87 (15)
Cl1i—Cu1—Cl189.528 (15)C14—C9—C2119.87 (15)
N2—Cu1—Cu1i94.04 (4)C11—C10—C9119.96 (16)
N1—Cu1—Cu1i144.25 (4)C11—C10—H9120.0 (13)
Cl2—Cu1—Cu1i99.984 (13)C9—C10—H9120.0 (13)
Cu1i—Cl1—Cu190.472 (15)C10—C11—C12120.41 (17)
N2—O1—H1109.5C10—C11—H10118.5 (14)
C15—N1—C1116.82 (13)C12—C11—H10121.1 (14)
C15—N1—Cu1109.07 (10)C13—C12—C11119.97 (16)
C1—N1—Cu1107.11 (10)C13—C12—H11120.7 (14)
C15—N1—H2111.9 (14)C11—C12—H11119.3 (14)
C1—N1—H2106.8 (14)C12—C13—C14120.30 (17)
Cu1—N1—H2104.3 (14)C12—C13—H12119.0 (14)
C2—N2—O1115.84 (13)C14—C13—H12120.7 (14)
C2—N2—Cu1118.98 (11)C13—C14—C9120.15 (16)
O1—N2—Cu1124.84 (10)C13—C14—H13119.7 (13)
N1—C1—C3109.38 (13)C9—C14—H13120.1 (13)
N1—C1—C2108.52 (13)C20—C15—C16120.71 (16)
C3—C1—C2112.34 (13)C20—C15—N1117.32 (15)
N1—C1—H3108.5 (11)C16—C15—N1121.85 (15)
C3—C1—H3110.2 (11)C15—C16—C17119.03 (17)
C2—C1—H3107.8 (11)C15—C16—H14122.2 (13)
N2—C2—C9127.00 (15)C17—C16—H14118.8 (13)
N2—C2—C1113.37 (14)C18—C17—C16120.79 (17)
C9—C2—C1119.63 (14)C18—C17—H15119.9 (14)
C8—C3—C4119.45 (16)C16—C17—H15119.3 (14)
C8—C3—C1119.38 (15)C17—C18—C19119.54 (17)
C4—C3—C1121.14 (15)C17—C18—H16121.0 (13)
C3—C4—C5120.16 (17)C19—C18—H16119.5 (13)
C3—C4—H4121.3 (13)C20—C19—C18120.45 (17)
C5—C4—H4118.5 (13)C20—C19—H17121.0 (14)
C6—C5—C4120.10 (18)C18—C19—H17118.5 (13)
C6—C5—H5120.9 (14)C15—C20—C19119.48 (16)
C4—C5—H5119.0 (14)C15—C20—H18121.3 (13)
C7—C6—C5119.84 (18)C19—C20—H18119.2 (13)
C7—C6—H6119.8 (15)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl2i0.842.443.1516 (12)143
O1—H1···Cl1i0.842.683.2042 (13)122
N1—H2···Cl2ii0.83 (2)2.64 (2)3.4473 (15)164.7 (18)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu2Cl4(C20H18N2O)2]
Mr873.61
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.1739 (3), 22.1696 (7), 9.4404 (3)
β (°) 104.592 (1)
V3)1858.07 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.47
Crystal size (mm)0.42 × 0.38 × 0.35
Data collection
DiffractometerBruker SMART CCD 1K area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.842, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
21701, 4707, 4187
Rint0.027
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.063, 1.07
No. of reflections4707
No. of parameters303
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.40

Computer programs: SHELXTL (Bruker, 1997) [AUTHOR: was SHELXTL really used for data collection, cell refinement and data reduction ?], SHELXTL, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Cu1—N22.0031 (14)Cu1—Cl1i2.2814 (4)
Cu1—N12.0686 (14)Cu1—Cl12.6582 (4)
Cu1—Cl22.2371 (4)Cu1—Cu1i3.5172 (4)
N2—Cu1—N178.42 (5)Cl2—Cu1—Cl1i95.736 (16)
N2—Cu1—Cl2165.92 (4)N2—Cu1—Cl193.23 (4)
N1—Cu1—Cl290.77 (4)N1—Cu1—Cl1104.52 (4)
N2—Cu1—Cl1i92.47 (4)Cl2—Cu1—Cl198.258 (15)
N1—Cu1—Cl1i163.53 (4)Cl1i—Cu1—Cl189.528 (15)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl2i0.842.443.1516 (12)143.2
O1—H1···Cl1i0.842.683.2042 (13)122.1
N1—H2···Cl2ii0.83 (2)2.64 (2)3.4473 (15)164.7 (18)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds