Download citation
Download citation
link to html
Sydnones are, in most cases, extremely stable crystalline compounds that exhibit a distinct polarity. The five-membered heterocyclic ring that characterizes a sydnone is subject to electrophilic substitution. Only with a strongly activating group present will an attached aryl group compete effectively for the electrophile, due to the considerable partial positive change at the quaternary N atom of the sydnone ring. The title compound, C17H25BrN2O2Si, is of interest due to an intra­molecular shift of the silyl-protecting group that occurs between the syndone ring and the aryl ring when treated with n-butyllithium. This was observed while attempting to replace the aryl bromine. With a curiosity into a rationale for this shift, we have examined a series of precursors, this being the first.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680101563X/om6056sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680101563X/om6056Isup2.hkl
Contains datablock I

CCDC reference: 175377

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.042
  • wR factor = 0.120
  • Data-to-parameter ratio = 26.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
GOODF_01 Alert C The least squares goodness of fit parameter lies outside the range 0.80 <> 2.00 Goodness of fit given = 0.755
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Sydnones are dipolar heteroaromatic compounds first prepared in Sydney, Australia (Earl & Mackney, 1935). They undergo electrophilic aromatic substitution with common electrophiles and this type of reactivity has been extended to the formation of bridged ring analogs via intramolecular processes. For the latter, suitable ortho-substituted arylsydnones have been required, however, the majority of these have been available only through tedious multistep protocols from the corresponding ortho-substituted anilines. We have been interested in more direct routes to ortho-substituted arylsydnones and lithiation strategies have come to the fore. Thus, the molecule described herein was envisaged as a lithiation precursor to a variety of different ortho-substituted arylsydnones via metal-halogen exchange with n-butyllithium, trapping of the incipient anion with a suitable electrophile, and subsequent removal of the silyl protective group with fluoride ion. Interestingly, when an attempt was made to utilize this compound for ortho-substituted arylsydnone synthesis, via reaction with 2.2 equivalents of n-butyllithium at 195 K in dry tetrahydrofuran, migration of the silyl moiety to the ortho-aryl position occurred in high yield. Accordingly, the title compound [and its congeners], (I), have become valuable precursors to ortho-silylarylsydnones; the latter would be difficultly accessible by any other synthetic scheme. It is not clear with the present data how general this novel migration will be and whether or not it is an intra- or intermolecular process, however, further research will help to answer these interesting questions.

The sydnone and phenyl-ring systems found in the compounds are themselves planar, but the rings within a structure lie nearly perpendicular to each other, having an angle of 80.62 (10)°. The bond distances and angles around each atom are within accepted values. In examining the molecule relative to the 1,5 shift, it is noted that the contact distance between the Si atom and Br atom is 4.81 Å, and that between Si and C12 is 4.28 Å.

Experimental top

The title compound was prepared by treatment of 3-(2-bromophenyl)sydnone (Applegate & Turnbull, 1988) in dry tetrahydrofuran at 195 K with 1.5 equivalents of lithium diisopropylamide followed by 2 equivalents of triisopropylsilyl chloride.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD (McArdle, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: OSCAIL (McArdle, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids for all non-H atoms. H atoms have been omitted for clarity.
3-(2-Bromophenyl)-4-(triisopropylsilyl)sydnone top
Crystal data top
C17H25BrN2O2SiF(000) = 824
Mr = 397.39Dx = 1.368 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 11.7560 (18) Åθ = 3.2–12.9°
b = 12.772 (2) ŵ = 2.20 mm1
c = 12.8527 (18) ÅT = 296 K
β = 91.820 (12)°Rectangular solid with sharp bounding edges, colorless
V = 1928.8 (5) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Enraf-Nonius CAD-4
diffractometer
2262 reflections with I<2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.012
Graphite monochromatorθmax = 30.0°, θmin = 2.3°
ω/2θ scansh = 1616
Absorption correction: analytical
(Alcock, 1970)
k = 017
Tmin = 0.477, Tmax = 0.591l = 018
6088 measured reflections3 standard reflections every 120 reflections
5605 independent reflections intensity decay: <0.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 0.76 w = 1/[σ2(Fo2) + (0.0615P)2]
where P = (Fo2 + 2Fc2)/3
5605 reflections(Δ/σ)max = 0.001
214 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C17H25BrN2O2SiV = 1928.8 (5) Å3
Mr = 397.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.7560 (18) ŵ = 2.20 mm1
b = 12.772 (2) ÅT = 296 K
c = 12.8527 (18) Å0.35 × 0.30 × 0.25 mm
β = 91.820 (12)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2262 reflections with I<2σ(I)
Absorption correction: analytical
(Alcock, 1970)
Rint = 0.012
Tmin = 0.477, Tmax = 0.5913 standard reflections every 120 reflections
6088 measured reflections intensity decay: <0.1%
5605 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 0.76Δρmax = 0.41 e Å3
5605 reflectionsΔρmin = 0.40 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.07650 (3)0.58368 (3)0.23990 (3)0.07333 (14)
Si10.25799 (6)0.70689 (6)0.07415 (6)0.04265 (18)
O10.22264 (19)0.68413 (17)0.38982 (16)0.0652 (6)
O50.37655 (19)0.62431 (19)0.30698 (18)0.0728 (6)
N20.1204 (2)0.7300 (2)0.36492 (18)0.0599 (6)
N30.12206 (19)0.74113 (16)0.26418 (16)0.0462 (5)
C40.2160 (2)0.70632 (19)0.2156 (2)0.0447 (6)
C50.2852 (3)0.6668 (2)0.2991 (2)0.0547 (7)
C110.0198 (2)0.7865 (2)0.2175 (2)0.0468 (6)
C120.0755 (2)0.7262 (2)0.1995 (2)0.0525 (7)
C130.1705 (3)0.7695 (3)0.1510 (2)0.0679 (9)
C140.1686 (3)0.8740 (3)0.1235 (3)0.0737 (9)
C150.0751 (3)0.9348 (3)0.1442 (3)0.0721 (9)
C160.0216 (3)0.8919 (2)0.1913 (2)0.0570 (7)
C210.1335 (2)0.7403 (2)0.0168 (2)0.0454 (6)
C220.0447 (3)0.6541 (2)0.0312 (2)0.0639 (8)
C230.1714 (3)0.7760 (3)0.1233 (2)0.0671 (9)
C310.3208 (2)0.5731 (2)0.0536 (2)0.0559 (7)
C320.2431 (3)0.4818 (2)0.0820 (3)0.0795 (10)
C330.3636 (3)0.5588 (3)0.0571 (3)0.0812 (11)
C410.3714 (2)0.8097 (2)0.0597 (2)0.0573 (7)
C420.3282 (3)0.9202 (2)0.0825 (3)0.0814 (11)
C430.4818 (3)0.7881 (3)0.1225 (3)0.0903 (12)
H130.23490.72900.13700.102*
H140.23230.90350.09020.111*
H150.07641.00540.12650.108*
H160.08590.93260.20510.085*
H210.09470.80000.01420.068*
H22A0.02270.68250.06450.096*
H22B0.02630.62610.03550.096*
H22C0.07450.59930.07360.096*
H23A0.20710.71880.15790.101*
H23B0.22460.83270.11500.101*
H23C0.10640.79920.16420.101*
H310.38790.56840.10050.084*
H32A0.17600.48280.03750.119*
H32B0.22180.48870.15320.119*
H32C0.28280.41690.07320.119*
H33A0.40200.49270.06200.122*
H33B0.41550.61430.07260.122*
H33C0.30020.56040.10600.122*
H410.39140.80920.01370.086*
H42A0.31180.92590.15500.122*
H42B0.26020.93360.04130.122*
H42C0.38540.97050.06560.122*
H43A0.53500.84370.11140.135*
H43B0.51380.72300.10040.135*
H43C0.46580.78410.19520.135*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0800 (3)0.0556 (2)0.0850 (3)0.01240 (17)0.01275 (19)0.00641 (17)
Si10.0396 (4)0.0421 (4)0.0460 (4)0.0025 (3)0.0021 (3)0.0014 (3)
O10.0803 (15)0.0651 (13)0.0495 (12)0.0012 (11)0.0089 (11)0.0052 (10)
O50.0659 (14)0.0733 (14)0.0778 (16)0.0144 (12)0.0199 (12)0.0052 (12)
N20.0718 (18)0.0617 (16)0.0462 (14)0.0018 (13)0.0001 (12)0.0025 (12)
N30.0525 (13)0.0428 (12)0.0429 (13)0.0019 (10)0.0020 (10)0.0038 (10)
C40.0459 (15)0.0400 (13)0.0478 (15)0.0053 (12)0.0060 (12)0.0048 (12)
C50.0639 (19)0.0469 (15)0.0527 (18)0.0014 (15)0.0090 (15)0.0049 (13)
C110.0470 (15)0.0521 (16)0.0413 (14)0.0071 (13)0.0027 (12)0.0046 (12)
C120.0559 (18)0.0512 (17)0.0503 (16)0.0011 (13)0.0012 (13)0.0093 (13)
C130.0552 (19)0.086 (2)0.062 (2)0.0013 (17)0.0016 (16)0.0136 (18)
C140.068 (2)0.086 (2)0.065 (2)0.022 (2)0.0097 (17)0.0054 (19)
C150.084 (3)0.060 (2)0.073 (2)0.0211 (18)0.0025 (18)0.0032 (16)
C160.0582 (18)0.0510 (17)0.0618 (18)0.0044 (14)0.0044 (15)0.0018 (14)
C210.0399 (14)0.0501 (15)0.0462 (15)0.0046 (12)0.0006 (12)0.0046 (12)
C220.0549 (18)0.072 (2)0.0636 (19)0.0063 (15)0.0116 (15)0.0099 (16)
C230.066 (2)0.083 (2)0.0520 (18)0.0058 (18)0.0049 (15)0.0096 (16)
C310.0518 (17)0.0504 (16)0.0652 (19)0.0138 (13)0.0033 (14)0.0056 (13)
C320.096 (3)0.0442 (18)0.098 (3)0.0035 (17)0.002 (2)0.0012 (17)
C330.087 (3)0.082 (3)0.076 (2)0.028 (2)0.013 (2)0.0188 (18)
C410.0505 (16)0.0574 (18)0.0640 (19)0.0076 (13)0.0021 (14)0.0016 (14)
C420.082 (2)0.0521 (19)0.110 (3)0.0134 (18)0.004 (2)0.0034 (19)
C430.057 (2)0.100 (3)0.113 (3)0.016 (2)0.020 (2)0.015 (2)
Geometric parameters (Å, º) top
Br1—C121.893 (3)C22—H22A0.9599
Si1—C311.883 (3)C22—H22B0.9599
Si1—C411.884 (3)C22—H22C0.9599
Si1—C211.892 (3)C23—H23A0.9599
Si1—C41.899 (3)C23—H23B0.9599
O1—N21.366 (3)C23—H23C0.9599
O1—C51.415 (4)C31—C321.532 (4)
O5—C51.205 (3)C31—C331.536 (4)
N3—N21.303 (3)C31—H310.9800
N3—C41.360 (3)C32—H32A0.9599
N3—C111.448 (3)C32—H32B0.9599
C4—C51.419 (4)C32—H32C0.9599
C11—C121.372 (4)C33—H33A0.9599
C11—C161.388 (4)C33—H33B0.9599
C12—C131.378 (4)C33—H33C0.9599
C13—C141.380 (5)C41—C431.531 (4)
C13—H130.9300C41—C421.532 (4)
C14—C151.365 (5)C41—H410.9800
C14—H140.9300C42—H42A0.9599
C15—C161.384 (5)C42—H42B0.9599
C15—H150.9300C42—H42C0.9599
C16—H160.9300C43—H43A0.9599
C21—C231.523 (4)C43—H43B0.9599
C21—C221.525 (4)C43—H43C0.9599
C21—H210.9800
C31—Si1—C41109.68 (13)H22A—C22—H22C109.5
C31—Si1—C21114.63 (13)H22B—C22—H22C109.5
C41—Si1—C21108.53 (13)C21—C23—H23A109.5
C31—Si1—C4104.23 (13)C21—C23—H23B109.5
C41—Si1—C4107.65 (13)H23A—C23—H23B109.5
C21—Si1—C4111.88 (12)C21—C23—H23C109.5
N2—O1—C5110.5 (2)H23A—C23—H23C109.5
N3—N2—O1103.8 (2)H23B—C23—H23C109.5
N2—N3—C4117.3 (2)C32—C31—C33110.2 (3)
N2—N3—C11114.6 (2)C32—C31—Si1114.7 (2)
C4—N3—C11128.0 (2)C33—C31—Si1112.3 (2)
N3—C4—C5102.9 (2)C32—C31—H31106.3
N3—C4—Si1132.69 (19)C33—C31—H31106.3
C5—C4—Si1124.4 (2)Si1—C31—H31106.3
O5—C5—O1119.1 (3)C31—C32—H32A109.5
O5—C5—C4135.4 (3)C31—C32—H32B109.5
O1—C5—C4105.5 (2)H32A—C32—H32B109.5
C12—C11—C16121.4 (3)C31—C32—H32C109.5
C12—C11—N3120.6 (2)H32A—C32—H32C109.5
C16—C11—N3118.0 (3)H32B—C32—H32C109.5
C11—C12—C13119.8 (3)C31—C33—H33A109.5
C11—C12—Br1120.3 (2)C31—C33—H33B109.5
C13—C12—Br1119.9 (2)H33A—C33—H33B109.5
C12—C13—C14119.0 (3)C31—C33—H33C109.5
C12—C13—H13120.5H33A—C33—H33C109.5
C14—C13—H13120.5H33B—C33—H33C109.5
C15—C14—C13121.3 (3)C43—C41—C42110.2 (3)
C15—C14—H14119.4C43—C41—Si1114.4 (2)
C13—C14—H14119.4C42—C41—Si1112.5 (2)
C14—C15—C16120.3 (3)C43—C41—H41106.4
C14—C15—H15119.8C42—C41—H41106.4
C16—C15—H15119.8Si1—C41—H41106.4
C15—C16—C11118.1 (3)C41—C42—H42A109.5
C15—C16—H16120.9C41—C42—H42B109.5
C11—C16—H16120.9H42A—C42—H42B109.5
C23—C21—C22109.0 (2)C41—C42—H42C109.5
C23—C21—Si1112.35 (19)H42A—C42—H42C109.5
C22—C21—Si1115.16 (19)H42B—C42—H42C109.5
C23—C21—H21106.6C41—C43—H43A109.5
C22—C21—H21106.6C41—C43—H43B109.5
Si1—C21—H21106.6H43A—C43—H43B109.5
C21—C22—H22A109.5C41—C43—H43C109.5
C21—C22—H22B109.5H43A—C43—H43C109.5
H22A—C22—H22B109.5H43B—C43—H43C109.5
C21—C22—H22C109.5
C31—Si1—C4—N3137.1 (3)C5—O1—N2—N30.9 (3)
C41—Si1—C4—N3106.5 (3)C4—N3—N2—O10.6 (3)
C21—Si1—C4—N312.7 (3)C11—N3—N2—O1178.5 (2)
C31—Si1—C4—C544.2 (3)N2—N3—C4—C50.1 (3)
C41—Si1—C4—C572.2 (3)C11—N3—C4—C5177.6 (2)
C21—Si1—C4—C5168.6 (2)N2—N3—C4—Si1179.0 (2)
C31—Si1—C21—C2380.4 (2)C11—N3—C4—Si13.5 (4)
C41—Si1—C21—C2342.6 (2)N2—N3—C11—C1279.4 (3)
C4—Si1—C21—C23161.2 (2)C4—N3—C11—C1298.1 (3)
C31—Si1—C21—C2245.2 (3)N2—N3—C11—C16100.9 (3)
C41—Si1—C21—C22168.2 (2)C4—N3—C11—C1681.5 (3)
C4—Si1—C21—C2273.2 (2)N3—C4—C5—O5178.2 (3)
C41—Si1—C31—C32169.7 (2)Si1—C4—C5—O52.7 (5)
C21—Si1—C31—C3267.9 (3)N3—C4—C5—O10.4 (3)
C4—Si1—C31—C3254.7 (3)Si1—C4—C5—O1178.62 (18)
C41—Si1—C31—C3363.4 (3)C16—C11—C12—C132.4 (4)
C21—Si1—C31—C3359.0 (3)N3—C11—C12—C13177.2 (3)
C4—Si1—C31—C33178.4 (2)C16—C11—C12—Br1178.1 (2)
C31—Si1—C41—C4349.4 (3)N3—C11—C12—Br12.2 (4)
C21—Si1—C41—C43175.3 (2)C11—C12—C13—C141.5 (4)
C4—Si1—C41—C4363.4 (3)Br1—C12—C13—C14179.1 (2)
C31—Si1—C41—C42176.2 (2)C12—C13—C14—C150.5 (5)
C21—Si1—C41—C4257.8 (3)C13—C14—C15—C161.6 (5)
C4—Si1—C41—C4263.4 (3)C14—C15—C16—C110.7 (5)
N2—O1—C5—O5178.1 (3)C12—C11—C16—C151.3 (4)
N2—O1—C5—C40.8 (3)N3—C11—C16—C15178.3 (3)

Experimental details

Crystal data
Chemical formulaC17H25BrN2O2Si
Mr397.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.7560 (18), 12.772 (2), 12.8527 (18)
β (°) 91.820 (12)
V3)1928.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.20
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionAnalytical
(Alcock, 1970)
Tmin, Tmax0.477, 0.591
No. of measured, independent and
observed [I<2σ(I)] reflections
6088, 5605, 2262
Rint0.012
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.120, 0.76
No. of reflections5605
No. of parameters214
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.40

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, XCAD (McArdle, 1995), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEX (McArdle, 1995), OSCAIL (McArdle, 1995).

Selected geometric parameters (Å, º) top
Br1—C121.893 (3)C11—C121.372 (4)
Si1—C311.883 (3)C11—C161.388 (4)
Si1—C411.884 (3)C12—C131.378 (4)
Si1—C211.892 (3)C13—C141.380 (5)
Si1—C41.899 (3)C14—C151.365 (5)
O1—N21.366 (3)C15—C161.384 (5)
O1—C51.415 (4)C21—C231.523 (4)
O5—C51.205 (3)C21—C221.525 (4)
N3—N21.303 (3)C31—C321.532 (4)
N3—C41.360 (3)C31—C331.536 (4)
N3—C111.448 (3)C41—C431.531 (4)
C4—C51.419 (4)C41—C421.532 (4)
C31—Si1—C41109.68 (13)C12—C11—N3120.6 (2)
C31—Si1—C21114.63 (13)C16—C11—N3118.0 (3)
C41—Si1—C21108.53 (13)C11—C12—C13119.8 (3)
C31—Si1—C4104.23 (13)C11—C12—Br1120.3 (2)
C41—Si1—C4107.65 (13)C13—C12—Br1119.9 (2)
C21—Si1—C4111.88 (12)C12—C13—C14119.0 (3)
N2—O1—C5110.5 (2)C15—C14—C13121.3 (3)
N3—N2—O1103.8 (2)C14—C15—C16120.3 (3)
N2—N3—C4117.3 (2)C15—C16—C11118.1 (3)
N2—N3—C11114.6 (2)C23—C21—C22109.0 (2)
C4—N3—C11128.0 (2)C23—C21—Si1112.35 (19)
N3—C4—C5102.9 (2)C22—C21—Si1115.16 (19)
N3—C4—Si1132.69 (19)C32—C31—C33110.2 (3)
C5—C4—Si1124.4 (2)C32—C31—Si1114.7 (2)
O5—C5—O1119.1 (3)C33—C31—Si1112.3 (2)
O5—C5—C4135.4 (3)C43—C41—C42110.2 (3)
O1—C5—C4105.5 (2)C43—C41—Si1114.4 (2)
C12—C11—C16121.4 (3)C42—C41—Si1112.5 (2)
C31—Si1—C4—N3137.1 (3)C5—O1—N2—N30.9 (3)
C41—Si1—C4—N3106.5 (3)C4—N3—N2—O10.6 (3)
C21—Si1—C4—N312.7 (3)C11—N3—N2—O1178.5 (2)
C31—Si1—C4—C544.2 (3)N2—N3—C4—C50.1 (3)
C41—Si1—C4—C572.2 (3)C11—N3—C4—C5177.6 (2)
C21—Si1—C4—C5168.6 (2)N2—N3—C4—Si1179.0 (2)
C31—Si1—C21—C2380.4 (2)C11—N3—C4—Si13.5 (4)
C41—Si1—C21—C2342.6 (2)N2—N3—C11—C1279.4 (3)
C4—Si1—C21—C23161.2 (2)C4—N3—C11—C1298.1 (3)
C31—Si1—C21—C2245.2 (3)N2—N3—C11—C16100.9 (3)
C41—Si1—C21—C22168.2 (2)C4—N3—C11—C1681.5 (3)
C4—Si1—C21—C2273.2 (2)N3—C4—C5—O5178.2 (3)
C41—Si1—C31—C32169.7 (2)Si1—C4—C5—O52.7 (5)
C21—Si1—C31—C3267.9 (3)N3—C4—C5—O10.4 (3)
C4—Si1—C31—C3254.7 (3)Si1—C4—C5—O1178.62 (18)
C41—Si1—C31—C3363.4 (3)C16—C11—C12—C132.4 (4)
C21—Si1—C31—C3359.0 (3)N3—C11—C12—C13177.2 (3)
C4—Si1—C31—C33178.4 (2)C16—C11—C12—Br1178.1 (2)
C31—Si1—C41—C4349.4 (3)N3—C11—C12—Br12.2 (4)
C21—Si1—C41—C43175.3 (2)C11—C12—C13—C141.5 (4)
C4—Si1—C41—C4363.4 (3)Br1—C12—C13—C14179.1 (2)
C31—Si1—C41—C42176.2 (2)C12—C13—C14—C150.5 (5)
C21—Si1—C41—C4257.8 (3)C13—C14—C15—C161.6 (5)
C4—Si1—C41—C4263.4 (3)C14—C15—C16—C110.7 (5)
N2—O1—C5—O5178.1 (3)C12—C11—C16—C151.3 (4)
N2—O1—C5—C40.8 (3)N3—C11—C16—C15178.3 (3)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds