Download citation
Download citation
link to html
In the title compound, C3H8NO2+·C4H3O4-, the alanine mol­ecule exists in the cationic form and the maleic acid mol­ecule in the mono-ionized state. A head-to-tail hydrogen bond is observed between the amino acid mol­ecules. There are no direct hydrogen-bonded interactions between the semimaleate anions. The overall aggregation pattern is similar to that observed in the L-alanine-oxalic acid complex.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801013149/om6040sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801013149/om6040Isup2.hkl
Contains datablock I

CCDC reference: 172211

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.035
  • wR factor = 0.106
  • Data-to-parameter ratio = 7.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 67.88 From the CIF: _reflns_number_total 1024 From the CIF: _diffrn_reflns_limit_ max hkl 6. 8. 25. From the CIF: _diffrn_reflns_limit_ min hkl 0. 0. 0. TEST1: Expected hkl limits for theta max Calculated maximum hkl 6. 8. 28. Calculated minimum hkl -6. -8. -28. ALERT: Expected hkl max differ from CIF values REFLT_03 From the CIF: _diffrn_reflns_theta_max 67.88 From the CIF: _reflns_number_total 1024 Count of symmetry unique reflns 1066 Completeness (_total/calc) 96.06% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.

Comment top

X-ray studies on crystalline complexes of amino acids with simple carboxylic acids, which are believed to have existed in the prebiotic earth (Miller & Orgel, 1974; Kvenvolden et al., 1971), are expected to throw light on the nature of intermolecular interactions and biomolecular aggregation patterns (Vijayan, 1988; Prasad & Vijayan, 1993). The crystal structures of complexes of oxalic acid with glycine (Subha Nandhini et al., 2001a), sarcosine (Krishnakumar et al., 1999), L-alanine (Subha Nandhini et al., 2001b) and DL-alanine (Subha Nandhini et al., 2001c) were elucidated recently. The present study reports the crystal structure of L-alaninium maleate, as part of a series of investigations being carried out, at atomic resolution, on amino acid–carboxylic acid complexes, in our laboratory.

Fig. 1 shows the molecular structure with the numbering scheme. The alanine molecule exists in the cationic form with a positively charged amino group and an uncharged carboxylic acid group. The maleic acid molecule exists in the mono-ionized state (i.e. as a semimaleate). A common feature observed among the crystal structures of L-alaninium oxalate, DL-alaninium oxalate and (I) is that their cell dimensions are almost similar. However, the crystals of the racemate are monoclinic and those of the isomers are orthorhombic. The semimaleate ion is essentially planar and the intramolecular hydrogen bond between atoms O3 and O5 is found to be asymmetric as in the crystal structure of maleic acid (James & Williams, 1974).

Fig. 2 shows the packing of molecules of (I) viewed down the a axis. The alaninium and semimaleate ions form alternate columns parallel to the b axis. There are no direct hydrogen-bond interactions between the semimaleate anions. They link the alaninium ions into a linear chain running parallel to the longer c axis. The overall aggregation pattern is similar to that observed in the L-alanine–oxalic acid complex. A comparison of the crystal structure of (I) with those of complexes of maleic acid with glycine (Rajagopal et al., 2001), DL– and L-arginine (Ravishankar et al., 1998) and L-histidine and L-lysine (Pratap et al., 2000) show that the intrinsic aggregation properties of individual molecules in a particular amino acid–carboxylic acid complex seem to largely depend on the nature of the amino acid.

Experimental top

Colorless single crystals of (I) were grown as transparent needles, from a saturated aqueous solution containing L-alanine and maleic acid in a 1:1 stoichiometric ratio. The density was determined by flotation method using a liquid mixture of xylene and bromoform.

Refinement top

The absolute configuration of L-alaninium maleate was not established by the analysis but is known from the configuration of the starting reagents. The H atoms were placed at calculated positions and were allowed to ride on their respective parent atoms with HFIX instructions using SHELXL97 (Sheldrick, 1997) defaults.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the molecules of (I) viewed down tha a axis.
L-alaninium maleate top
Crystal data top
C3H8O2N+·C4H3O4Dx = 1.394 Mg m3
Dm = 1.40 (2) Mg m3
Dm measured by flotation in a liquid mixture of xylene and bromoform
Mr = 205.17Cu Kα radiation, λ = 1.54180 Å
Orthorhombic, P212121Cell parameters from 25 reflections
a = 5.5873 (11) Åθ = 18–27°
b = 7.3864 (17) ŵ = 1.08 mm1
c = 23.688 (3) ÅT = 293 K
V = 977.6 (3) Å3Needle, colorless
Z = 40.30 × 0.20 × 0.10 mm
F(000) = 432
Data collection top
Enraf-Nonius CAD-4
diffractometer
977 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 67.9°, θmin = 3.7°
ω–2θ scansh = 06
Absorption correction: ψ scan
(North et al., 1968)
k = 08
Tmin = 0.76, Tmax = 0.90l = 025
1024 measured reflections2 standard reflections every 200 reflections
1024 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0739P)2 + 0.1453P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1024 reflectionsΔρmax = 0.16 e Å3
130 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.018 (2)
Crystal data top
C3H8O2N+·C4H3O4V = 977.6 (3) Å3
Mr = 205.17Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 5.5873 (11) ŵ = 1.08 mm1
b = 7.3864 (17) ÅT = 293 K
c = 23.688 (3) Å0.30 × 0.20 × 0.10 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
977 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.76, Tmax = 0.902 standard reflections every 200 reflections
1024 measured reflections intensity decay: 2%
1024 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.10Δρmax = 0.16 e Å3
1024 reflectionsΔρmin = 0.16 e Å3
130 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8011 (3)0.4977 (3)0.05688 (7)0.0578 (6)
H10.89170.51140.08380.087*
O21.1022 (3)0.6213 (2)0.00888 (6)0.0434 (4)
O30.1268 (3)0.4926 (5)0.79094 (8)0.0725 (8)
H30.11570.46090.75790.109*
O40.1121 (3)0.5327 (3)0.86261 (7)0.0519 (5)
O50.0899 (3)0.4591 (4)0.68949 (8)0.0638 (7)
O60.1962 (3)0.4362 (4)0.62659 (8)0.0640 (6)
N10.8367 (4)0.6369 (3)0.08669 (7)0.0379 (5)
H1A0.75450.61320.11800.057*
H1B0.80630.74960.07550.057*
H1C0.99250.62510.09360.057*
C10.9067 (4)0.5515 (3)0.01082 (9)0.0358 (5)
C20.7648 (4)0.5082 (3)0.04164 (9)0.0377 (5)
H2A0.59340.52130.03380.045*
C30.8171 (7)0.3151 (4)0.06115 (13)0.0621 (9)
H3A0.72580.28920.09450.093*
H3B0.98460.30320.06940.093*
H3C0.77390.23150.03180.093*
C40.0808 (4)0.5129 (3)0.81158 (10)0.0422 (6)
C50.2939 (4)0.5150 (6)0.77490 (12)0.0609 (9)
H50.43790.53420.79360.073*
C60.3133 (4)0.4940 (6)0.71949 (12)0.0660 (10)
H60.46930.50120.70600.079*
C70.1314 (4)0.4614 (4)0.67550 (10)0.0482 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0535 (11)0.0857 (14)0.0341 (10)0.0231 (12)0.0043 (8)0.0119 (9)
O20.0419 (9)0.0564 (9)0.0319 (9)0.0125 (8)0.0064 (7)0.0009 (7)
O30.0314 (9)0.150 (2)0.0362 (11)0.0095 (13)0.0043 (7)0.0252 (13)
O40.0540 (10)0.0730 (11)0.0286 (9)0.0020 (10)0.0005 (8)0.0059 (8)
O50.0292 (8)0.1244 (18)0.0378 (11)0.0002 (11)0.0022 (7)0.0211 (11)
O60.0415 (10)0.1157 (17)0.0347 (11)0.0010 (11)0.0015 (8)0.0116 (11)
N10.0382 (10)0.0485 (10)0.0270 (10)0.0039 (9)0.0042 (8)0.0021 (8)
C10.0384 (11)0.0383 (9)0.0308 (12)0.0026 (10)0.0017 (9)0.0002 (8)
C20.0346 (10)0.0462 (12)0.0323 (12)0.0037 (10)0.0018 (9)0.0032 (9)
C30.083 (2)0.0442 (12)0.0597 (17)0.0093 (15)0.0104 (17)0.0123 (12)
C40.0372 (11)0.0568 (13)0.0327 (14)0.0015 (12)0.0015 (10)0.0065 (10)
C50.0266 (12)0.118 (3)0.0385 (15)0.0019 (16)0.0040 (10)0.0193 (16)
C60.0268 (12)0.132 (3)0.0388 (14)0.0023 (17)0.0022 (10)0.0191 (18)
C70.0320 (11)0.0828 (18)0.0298 (12)0.0021 (13)0.0012 (10)0.0104 (12)
Geometric parameters (Å, º) top
O1—C11.303 (3)C1—C21.509 (3)
O1—H10.8200C2—C31.527 (3)
O2—C11.209 (3)C2—H2A0.9800
O3—C41.267 (3)C3—H3A0.9600
O3—H30.8200C3—H3B0.9600
O4—C41.230 (3)C3—H3C0.9600
O5—C71.281 (3)C4—C51.474 (3)
O6—C71.228 (3)C5—C61.326 (4)
N1—C21.485 (3)C5—H50.9300
N1—H1A0.8900C6—C71.475 (4)
N1—H1B0.8900C6—H60.9300
N1—H1C0.8900
C1—O1—H1109.5C2—C3—H3B109.5
C4—O3—H3109.5H3A—C3—H3B109.5
C2—N1—H1A109.5C2—C3—H3C109.5
C2—N1—H1B109.5H3A—C3—H3C109.5
H1A—N1—H1B109.5H3B—C3—H3C109.5
C2—N1—H1C109.5O4—C4—O3121.6 (2)
H1A—N1—H1C109.5O4—C4—C5117.6 (2)
H1B—N1—H1C109.5O3—C4—C5120.8 (2)
O2—C1—O1124.8 (2)C6—C5—C4130.4 (2)
O2—C1—C2122.3 (2)C6—C5—H5114.8
O1—C1—C2112.8 (2)C4—C5—H5114.8
N1—C2—C1108.28 (18)C5—C6—C7131.4 (2)
N1—C2—C3109.2 (2)C5—C6—H6114.3
C1—C2—C3110.3 (2)C7—C6—H6114.3
N1—C2—H2A109.7O6—C7—O5121.8 (2)
C1—C2—H2A109.7O6—C7—C6119.2 (2)
C3—C2—H2A109.7O5—C7—C6119.0 (2)
C2—C3—H3A109.5
O2—C1—C2—N127.4 (3)O3—C4—C5—C61.8 (6)
O1—C1—C2—N1155.8 (2)C4—C5—C6—C70.1 (8)
O2—C1—C2—C392.0 (3)C5—C6—C7—O6175.9 (5)
O1—C1—C2—C384.8 (3)C5—C6—C7—O53.7 (7)
O4—C4—C5—C6178.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.821.782.593 (2)174
O3—H3···O50.821.632.425 (3)164
N1—H1A···O5ii0.892.002.887 (3)175
N1—H1B···O2iii0.892.172.881 (2)137
N1—H1B···O4iv0.892.432.996 (3)122
N1—H1C···O6v0.891.962.828 (3)165
C5—H5···O3vi0.932.453.264 (3)146
C6—H6···O5vi0.932.513.419 (3)165
Symmetry codes: (i) x+1, y, z1; (ii) x+1/2, y+1, z1/2; (iii) x1/2, y+3/2, z; (iv) x+1/2, y+3/2, z+1; (v) x+3/2, y+1, z1/2; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC3H8O2N+·C4H3O4
Mr205.17
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)5.5873 (11), 7.3864 (17), 23.688 (3)
V3)977.6 (3)
Z4
Radiation typeCu Kα
µ (mm1)1.08
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.76, 0.90
No. of measured, independent and
observed [I > 2σ(I)] reflections
1024, 1024, 977
Rint0.000
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.106, 1.10
No. of reflections1024
No. of parameters130
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.16

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1999), SHELXL97.

Selected geometric parameters (Å, º) top
O1—C11.303 (3)N1—C21.485 (3)
O2—C11.209 (3)C1—C21.509 (3)
O3—C41.267 (3)C2—C31.527 (3)
O4—C41.230 (3)C4—C51.474 (3)
O5—C71.281 (3)C5—C61.326 (4)
O6—C71.228 (3)C6—C71.475 (4)
O2—C1—O1124.8 (2)O4—C4—C5117.6 (2)
O2—C1—C2122.3 (2)O3—C4—C5120.8 (2)
O1—C1—C2112.8 (2)C6—C5—C4130.4 (2)
N1—C2—C1108.28 (18)C5—C6—C7131.4 (2)
N1—C2—C3109.2 (2)O6—C7—O5121.8 (2)
C1—C2—C3110.3 (2)O6—C7—C6119.2 (2)
O4—C4—O3121.6 (2)O5—C7—C6119.0 (2)
O2—C1—C2—N127.4 (3)O3—C4—C5—C61.8 (6)
O1—C1—C2—N1155.8 (2)C4—C5—C6—C70.1 (8)
O2—C1—C2—C392.0 (3)C5—C6—C7—O6175.9 (5)
O1—C1—C2—C384.8 (3)C5—C6—C7—O53.7 (7)
O4—C4—C5—C6178.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.821.782.593 (2)174.0
O3—H3···O50.821.632.425 (3)163.8
N1—H1A···O5ii0.892.002.887 (3)174.8
N1—H1B···O2iii0.892.172.881 (2)136.8
N1—H1B···O4iv0.892.432.996 (3)121.6
N1—H1C···O6v0.891.962.828 (3)164.5
C5—H5···O3vi0.932.453.264 (3)145.8
C6—H6···O5vi0.932.513.419 (3)164.8
Symmetry codes: (i) x+1, y, z1; (ii) x+1/2, y+1, z1/2; (iii) x1/2, y+3/2, z; (iv) x+1/2, y+3/2, z+1; (v) x+3/2, y+1, z1/2; (vi) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds