Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The purine fragment of the title compound, C14H21N5, is planar and the di­methyl­amino group is almost coplanar with it. The cyclo­hexyl fragment (in a chair conformation) is disordered between two positions. C—H...N hydrogen bonds determine the crystal packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801004329/om6012sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801004329/om6012Isup2.hkl
Contains datablock I

CCDC reference: 162820

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • Disorder in main residue
  • R factor = 0.057
  • wR factor = 0.124
  • Data-to-parameter ratio = 15.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_301 Alert C Main Residue Disorder ........................ 24.00 Perc.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The title compound, (I), was synthesized as part of a series of potential anticonvulsants. Its activity against maximum electroshock-induced seizures was evaluated as moderate. An effective dose, ED50, is 25 mg kg-1 for an ip admission in rats (Kelley et al., 1988). The compound was also tested for an activity against apomorphine-induced aggresive behavior (Kelley et al., 1997), but the results were negative.

Fig. 1 shows a perspective view of the molecule. The purine fragment is almost perfectly planar; the maximum deviation from the least-squares plane through the nine ring atoms is 0.025 (3) Å. The dihedral angle between this plane and the dimethylamino plane is small [3.2 (3)°] and indicates significant conjugation. The bond lengths and angles pattern is quite typical, including the large value of the N1—C2—N3 angle [129.9 (2)°; for 244 similar fragments in CSD (Allen & Kennard, 1993), the mean value is 129 (1)°].

The cyclohexyl fragment is disordered, and the site-occupation factors for two alternative positions (hereinafter referred to as A and B) are 0.841 (3) and 0.159 (3). In both positions, the cyclohexane ring adopts a chair conformation. This conformation is close to an ideal one for molecule A; the largest value of the asymmetry parameter (Duax & Norton, 1976) is 1.10°. A view of disordered fragment is shown in Fig. 2, the dihedral angle between least-squares planes of `seats' of both chairs is 64.3 (5)°.

The molecules are connected into infinite chains along the [010] direction by C—H···N hydrogen bonds. This interaction determines the crystal packing, and therefore can not be treated as an artifact. The linearity of this bond as well as short H···N and C···N distances allow to classify this hydrogen bond as a relatively strong one (cf. Taylor & Kennard, 1982; Reddy et al., 1993; Kubicki, Borowiak, Suwiński & Wagner, 2001). Also, the results of charge–density studies of 1-phenyl-4-nitroimidazole suggest that the C—H···N hydrogen bond of similar geometry has topological features comparable with well defined C—H···O hydrogen bonds (Kubicki, Borowiak, Dutkiewicz et al., 2001).

There are three potential hydrogen-bond acceptors (N1, N3 and N7), but the in-plane access to N1 and N7 is partially hindered by the C61 and C62 methyl groups. In the crystal structure, there are alternate hydrophobic (dimethylamine and cyclohexylmethyl) and hydrophilic (purine) layers (Fig. 3).

Experimental top

Colourless crystals of (I) were grown from ethanol by slow evaporation.

Refinement top

The sum of site-occupancy factors for the disordered fragment was constrained to unity. The C atoms in the less occupied cyclohexane ring were refined isotropically and the Uiso value of C94 was fixed; bond lengths and angles in this fragment were constrained to typical values.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: ENPROC (Rettig, 1978); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Stereochemical Workstation (Siemens, 1989).

Figures top
[Figure 1] Fig. 1. A perspective view of the molecule with the numbering scheme (Siemens, 1989). Displacement ellipsoids are drawn at the 33% probability level and H atoms are depicted as spheres of arbitrary radii. Only the molecule of higher occupancy is shown.
[Figure 2] Fig. 2. A comparison of disordered cyclohexyl fragments (Siemens, 1989). The bonds in the less occupied part are shown as dashed lines. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. The crystal-packing scheme (Siemens, 1989). Hydrogen bonds are drawn as dashed lines and the view is approximately along the [001] direction.
9-(Cyclohexylmethyl)-6-(dimethylamino)-9H-purine top
Crystal data top
C14H21N5F(000) = 560
Mr = 259.36Dx = 1.178 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 5.7702 (5) ÅCell parameters from 25 reflections
b = 11.321 (1) Åθ = 11–37°
c = 22.390 (1) ŵ = 0.59 mm1
β = 91.47 (1)°T = 293 K
V = 1462.1 (2) Å3Block, colourless
Z = 40.25 × 0.2 × 0.1 mm
Data collection top
CAD-4F four-circle
diffractometer
Rint = 0.043
Radiation source: fine-focus sealed tubeθmax = 74.8°, θmin = 4.0°
Ni-filter monochromatorh = 07
ω/2θ scansk = 1414
6589 measured reflectionsl = 2828
2992 independent reflections2 standard reflections every 33 min
2162 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.01P)2 + 0.5P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2992 reflectionsΔρmax = 0.24 e Å3
197 parametersΔρmin = 0.17 e Å3
12 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0173 (10)
Crystal data top
C14H21N5V = 1462.1 (2) Å3
Mr = 259.36Z = 4
Monoclinic, P21/nCu Kα radiation
a = 5.7702 (5) ŵ = 0.59 mm1
b = 11.321 (1) ÅT = 293 K
c = 22.390 (1) Å0.25 × 0.2 × 0.1 mm
β = 91.47 (1)°
Data collection top
CAD-4F four-circle
diffractometer
Rint = 0.043
6589 measured reflections2 standard reflections every 33 min
2992 independent reflections intensity decay: 3%
2162 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.05712 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.03Δρmax = 0.24 e Å3
2992 reflectionsΔρmin = 0.17 e Å3
197 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.1431 (3)0.66126 (15)0.16416 (7)0.0711 (5)
C20.2735 (4)0.60225 (18)0.20362 (10)0.0728 (6)
H20.22920.52430.20980.087*
N30.4571 (3)0.63731 (14)0.23547 (7)0.0680 (5)
C40.5077 (3)0.75039 (16)0.22279 (8)0.0573 (4)
C50.3897 (3)0.82457 (16)0.18354 (8)0.0590 (5)
C60.1953 (3)0.77528 (18)0.15283 (8)0.0638 (5)
N60.0565 (3)0.83347 (17)0.11345 (8)0.0817 (5)
C610.1364 (4)0.7738 (3)0.08395 (11)0.1008 (8)
H61A0.21640.82800.05770.141*
H61B0.24110.74540.11330.141*
H61C0.07980.70840.06130.141*
C620.0878 (5)0.9563 (2)0.09911 (11)0.1073 (9)
H62A0.02920.98040.07040.150*
H62B0.23830.96760.08270.150*
H62C0.07501.00300.13470.150*
N70.5010 (3)0.93380 (14)0.18187 (7)0.0717 (5)
C80.6753 (4)0.92211 (18)0.21938 (9)0.0713 (6)
H80.78050.98260.22750.086*
N90.6909 (3)0.81419 (14)0.24574 (7)0.0625 (4)
C90.8640 (3)0.77403 (19)0.28973 (9)0.0713 (6)
H9A1.00090.82320.28670.086*0.843 (3)
H9B0.90830.69380.27990.086*0.843 (3)
H9C1.01830.78970.27550.086*0.157 (3)
H9D0.84890.68960.29580.086*0.157 (3)
C91A0.7850 (4)0.7771 (2)0.35435 (10)0.0629 (6)0.843 (3)
H91A0.63770.73430.35610.075*0.843 (3)
C92A0.7449 (6)0.9017 (2)0.37642 (11)0.0886 (10)0.843 (3)
H92A0.62440.93830.35170.106*0.843 (3)
H92B0.88590.94720.37190.106*0.843 (3)
C93A0.6745 (8)0.9063 (3)0.44153 (13)0.1041 (11)0.843 (3)
H93A0.66120.98810.45400.125*0.843 (3)
H93B0.52420.86920.44550.125*0.843 (3)
C94A0.8493 (7)0.8443 (3)0.48122 (13)0.1027 (12)0.843 (3)
H94A0.79570.84380.52190.123*0.843 (3)
H94B0.99530.88680.48080.123*0.843 (3)
C95A0.8862 (7)0.7190 (3)0.46047 (14)0.1185 (14)0.843 (3)
H95A0.74360.67460.46450.142*0.843 (3)
H95B1.00480.68190.48560.142*0.843 (3)
C96A0.9590 (6)0.7154 (3)0.39590 (13)0.0969 (11)0.843 (3)
H96A0.97500.63380.38350.116*0.843 (3)
H96B1.10910.75320.39270.116*0.843 (3)
C91B0.8324 (18)0.8399 (14)0.3453 (4)0.065 (4)*0.157 (3)
H91B0.83950.92470.33700.078*0.157 (3)
C92B0.6039 (17)0.8115 (14)0.3726 (5)0.085 (4)*0.157 (3)
H92C0.58180.72660.37220.102*0.157 (3)
H92D0.48040.84650.34830.102*0.157 (3)
C93B0.586 (2)0.8558 (19)0.4360 (6)0.115 (9)*0.157 (3)
H93C0.44590.82520.45320.137*0.157 (3)
H93D0.57650.94130.43570.137*0.157 (3)
C94B0.796 (3)0.818 (2)0.4746 (5)0.120*0.157 (3)
H94C0.80080.73210.47730.144*0.157 (3)
H94D0.78250.84910.51470.144*0.157 (3)
C95B1.019 (2)0.8635 (16)0.4467 (6)0.120 (7)*0.157 (3)
H95C1.15230.84360.47200.144*0.157 (3)
H95D1.01240.94870.44250.144*0.157 (3)
C96B1.0406 (17)0.8049 (14)0.3848 (5)0.086 (4)*0.157 (3)
H96C1.18260.83050.36650.103*0.157 (3)
H96D1.04610.71970.38920.103*0.157 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0694 (10)0.0694 (11)0.0742 (11)0.0018 (9)0.0039 (8)0.0095 (8)
C20.0715 (13)0.0604 (12)0.0863 (14)0.0050 (10)0.0014 (11)0.0020 (10)
N30.0696 (10)0.0574 (9)0.0769 (10)0.0002 (8)0.0031 (8)0.0029 (8)
C40.0611 (10)0.0560 (10)0.0548 (10)0.0018 (8)0.0029 (8)0.0060 (8)
C50.0679 (11)0.0565 (10)0.0527 (9)0.0046 (9)0.0035 (8)0.0043 (8)
C60.0666 (11)0.0703 (12)0.0543 (10)0.0087 (10)0.0006 (9)0.0074 (9)
N60.0879 (13)0.0860 (13)0.0700 (10)0.0132 (10)0.0181 (9)0.0046 (9)
C610.0844 (16)0.136 (2)0.0814 (15)0.0163 (16)0.0202 (13)0.0213 (15)
C620.128 (2)0.102 (2)0.0907 (17)0.0200 (17)0.0180 (16)0.0232 (15)
N70.0905 (12)0.0561 (9)0.0683 (10)0.0017 (9)0.0005 (9)0.0006 (8)
C80.0824 (14)0.0597 (11)0.0717 (12)0.0095 (10)0.0011 (11)0.0081 (10)
N90.0659 (10)0.0602 (9)0.0613 (9)0.0012 (8)0.0014 (7)0.0071 (7)
C90.0615 (11)0.0750 (13)0.0769 (13)0.0077 (10)0.0088 (10)0.0177 (10)
C91A0.0641 (14)0.0585 (14)0.0652 (14)0.0007 (11)0.0127 (11)0.0012 (11)
C92A0.119 (2)0.0758 (18)0.0714 (16)0.0312 (17)0.0126 (15)0.0003 (13)
C93A0.135 (3)0.104 (3)0.0747 (19)0.017 (3)0.0218 (19)0.0086 (17)
C94A0.132 (3)0.111 (3)0.0644 (16)0.032 (2)0.0079 (18)0.0121 (16)
C95A0.171 (4)0.096 (2)0.085 (2)0.005 (2)0.064 (2)0.0058 (17)
C96A0.115 (2)0.0776 (19)0.096 (2)0.0256 (17)0.0452 (18)0.0200 (15)
Geometric parameters (Å, º) top
N1—C21.326 (2)C92A—C93A1.524 (4)
N1—C61.351 (2)C92A—H92A0.9700
C2—N31.323 (2)C92A—H92B0.9700
C2—H20.9300C93A—C94A1.501 (5)
N3—C41.345 (2)C93A—H93A0.9700
C4—N91.370 (2)C93A—H93B0.9700
C4—C51.382 (2)C94A—C95A1.510 (5)
C5—N71.394 (2)C94A—H94A0.9700
C5—C61.416 (3)C94A—H94B0.9700
C6—N61.348 (2)C95A—C96A1.516 (5)
N6—C621.440 (3)C95A—H95A0.9700
N6—C611.447 (3)C95A—H95B0.9700
C61—H61A0.9600C96A—H96A0.9700
C61—H61B0.9600C96A—H96B0.9700
C61—H61C0.9600C91B—C92B1.501 (9)
C62—H62A0.9600C91B—C96B1.525 (9)
C62—H62B0.9600C91B—H91B0.9800
C62—H62C0.9600C92B—C93B1.511 (9)
N7—C81.300 (3)C92B—H92C0.9700
C8—N91.359 (2)C92B—H92D0.9700
C8—H80.9300C93B—C94B1.53 (1)
N9—C91.458 (2)C93B—H93C0.9700
C9—C91B1.47 (1)C93B—H93D0.9700
C9—C91A1.529 (3)C94B—C95B1.54 (1)
C9—H9A0.9701C94B—H94C0.9700
C9—H9B0.9700C94B—H94D0.9700
C9—H9C0.9700C95B—C96B1.544 (9)
C9—H9D0.9700C95B—H95C0.9700
C91A—C92A1.514 (3)C95B—H95D0.9700
C91A—C96A1.521 (3)C96B—H96C0.9700
C91A—H91A0.9800C96B—H96D0.9700
C2—N1—C6118.7 (2)C94A—C93A—H93A109.4
N3—C2—N1129.9 (2)C92A—C93A—H93A109.4
N3—C2—H2115.1C94A—C93A—H93B109.4
N1—C2—H2115.1C92A—C93A—H93B109.4
C2—N3—C4110.3 (2)H93A—C93A—H93B108.0
N3—C4—N9126.3 (2)C93A—C94A—C95A110.8 (3)
N3—C4—C5127.4 (2)C93A—C94A—H94A109.5
N9—C4—C5106.3 (2)C95A—C94A—H94A109.5
C4—C5—N7109.7 (2)C93A—C94A—H94B109.5
C4—C5—C6116.1 (2)C95A—C94A—H94B109.5
N7—C5—C6134.1 (2)H94A—C94A—H94B108.1
N6—C6—N1117.3 (2)C94A—C95A—C96A111.3 (3)
N6—C6—C5125.1 (2)C94A—C95A—H95A109.4
N1—C6—C5117.6 (2)C96A—C95A—H95A109.4
C6—N6—C62122.8 (2)C94A—C95A—H95B109.4
C6—N6—C61120.5 (2)C96A—C95A—H95B109.4
C62—N6—C61116.6 (2)H95A—C95A—H95B108.0
N6—C61—H61A109.5C95A—C96A—C91A112.1 (3)
N6—C61—H61B109.5C95A—C96A—H96A109.2
H61A—C61—H61B109.5C91A—C96A—H96A109.2
N6—C61—H61C109.5C95A—C96A—H96B109.2
H61A—C61—H61C109.5C91A—C96A—H96B109.2
H61B—C61—H61C109.5H96A—C96A—H96B107.9
N6—C62—H62A109.5C9—C91B—C92B111 (1)
N6—C62—H62B109.5C9—C91B—C96B104.3 (8)
H62A—C62—H62B109.5C92B—C91B—C96B113.3 (8)
N6—C62—H62C109.5C9—C91B—H91B109.2
H62A—C62—H62C109.5C92B—C91B—H91B109.2
H62B—C62—H62C109.5C96B—C91B—H91B109.2
C8—N7—C5104.0 (2)C91B—C92B—C93B113.0 (8)
N7—C8—N9114.4 (2)C91B—C92B—H92C109.0
N7—C8—H8122.8C93B—C92B—H92C109.0
N9—C8—H8122.8C91B—C92B—H92D109.0
C8—N9—C4105.6 (2)C93B—C92B—H92D109.0
C8—N9—C9127.6 (2)H92C—C92B—H92D107.8
C4—N9—C9126.7 (2)C92B—C93B—C94B111.5 (9)
N9—C9—C91B108.5 (5)C92B—C93B—H93C109.3
N9—C9—C91A114.6 (2)C94B—C93B—H93C109.3
N9—C9—H9A108.6C92B—C93B—H93D109.3
C91A—C9—H9A108.5C94B—C93B—H93D109.3
N9—C9—H9B108.6H93C—C93B—H93D108.0
C91A—C9—H9B108.8C93B—C94B—C95B109.4 (9)
H9A—C9—H9B107.6C93B—C94B—H94C109.8
N9—C9—H9C109.8C95B—C94B—H94C109.8
C91B—C9—H9C108.8C93B—C94B—H94D109.8
N9—C9—H9D109.9C95B—C94B—H94D109.8
H9C—C9—H9D108.3H94C—C94B—H94D108.2
C92A—C91A—C96A109.4 (2)C94B—C95B—C96B107.9 (8)
C92A—C91A—C9112.5 (2)C94B—C95B—H95C110.1
C96A—C91A—C9111.1 (2)C96B—C95B—H95C110.1
C92A—C91A—H91A107.9C94B—C95B—H95D110.1
C96A—C91A—H91A107.9C96B—C95B—H95D110.1
C9—C91A—H91A107.9H95C—C95B—H95D108.4
C91A—C92A—C93A113.0 (2)C91B—C96B—C95B109.2 (7)
C91A—C92A—H92A109.0C91B—C96B—H96C109.8
C93A—C92A—H92A109.0C95B—C96B—H96C109.8
C91A—C92A—H92B109.0C91B—C96B—H96D109.8
C93A—C92A—H92B109.0C95B—C96B—H96D109.8
H92A—C92A—H92B107.8H96C—C96B—H96D108.3
C94A—C93A—C92A111.0 (3)
C6—N1—C2—N30.4 (3)C4—N9—C9—C91B112.0 (6)
N1—C2—N3—C40.6 (3)C8—N9—C9—C91A99.4 (2)
C2—N3—C4—N9177.5 (2)C4—N9—C9—C91A79.9 (2)
C2—N3—C4—C51.1 (3)N9—C9—C91A—C92A66.4 (3)
N3—C4—C5—N7178.4 (2)C91B—C9—C91A—C92A18.4 (8)
N9—C4—C5—N70.5 (2)N9—C9—C91A—C96A170.6 (2)
N3—C4—C5—C60.7 (3)C91B—C9—C91A—C96A104.6 (9)
N9—C4—C5—C6178.1 (1)C96A—C91A—C92A—C93A53.9 (4)
C2—N1—C6—N6178.6 (2)C9—C91A—C92A—C93A177.9 (3)
C2—N1—C6—C50.8 (3)C91A—C92A—C93A—C94A55.4 (4)
C4—C5—C6—N6179.1 (2)C92A—C93A—C94A—C95A55.3 (4)
N7—C5—C6—N64.0 (3)C93A—C94A—C95A—C96A56.4 (4)
C4—C5—C6—N10.3 (3)C94A—C95A—C96A—C91A56.6 (4)
N7—C5—C6—N1176.6 (2)C92A—C91A—C96A—C95A54.4 (3)
N1—C6—N6—C62177.6 (2)C9—C91A—C96A—C95A179.1 (2)
C5—C6—N6—C621.8 (3)N9—C9—C91B—C92B65 (1)
N1—C6—N6—C611.4 (3)C91A—C9—C91B—C92B42.0 (8)
C5—C6—N6—C61179.2 (2)N9—C9—C91B—C96B172.1 (7)
C4—C5—N7—C80.5 (2)C91A—C9—C91B—C96B81 (1)
C6—C5—N7—C8177.6 (2)C9—C91B—C92B—C93B167 (1)
C5—N7—C8—N90.4 (2)C96B—C91B—C92B—C93B50 (2)
N7—C8—N9—C40.1 (2)C91B—C92B—C93B—C94B51 (2)
N7—C8—N9—C9179.5 (2)C92B—C93B—C94B—C95B58 (2)
N3—C4—N9—C8178.6 (2)C93B—C94B—C95B—C96B63 (2)
C5—C4—N9—C80.2 (2)C9—C91B—C96B—C95B177 (1)
N3—C4—N9—C91.9 (3)C92B—C91B—C96B—C95B55 (1)
C5—C4—N9—C9179.2 (2)C94B—C95B—C96B—C91B61 (1)
C8—N9—C9—C91B67.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···N3i0.932.453.369 (3)171
Symmetry code: (i) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H21N5
Mr259.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)5.7702 (5), 11.321 (1), 22.390 (1)
β (°) 91.47 (1)
V3)1462.1 (2)
Z4
Radiation typeCu Kα
µ (mm1)0.59
Crystal size (mm)0.25 × 0.2 × 0.1
Data collection
DiffractometerCAD-4F four-circle
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6589, 2992, 2162
Rint0.043
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.124, 1.03
No. of reflections2992
No. of parameters197
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.17

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, ENPROC (Rettig, 1978), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), Stereochemical Workstation (Siemens, 1989).

Selected geometric parameters (Å, º) top
N1—C21.326 (2)C5—N71.394 (2)
N1—C61.351 (2)C5—C61.416 (3)
C2—N31.323 (2)C6—N61.348 (2)
N3—C41.345 (2)N7—C81.300 (3)
C4—N91.370 (2)C8—N91.359 (2)
C4—C51.382 (2)N9—C91.458 (2)
C2—N1—C6118.7 (2)N7—C5—C6134.1 (2)
N3—C2—N1129.9 (2)N6—C6—N1117.3 (2)
C2—N3—C4110.3 (2)N6—C6—C5125.1 (2)
N3—C4—N9126.3 (2)N1—C6—C5117.6 (2)
N3—C4—C5127.4 (2)C8—N7—C5104.0 (2)
N9—C4—C5106.3 (2)N7—C8—N9114.4 (2)
C4—C5—N7109.7 (2)C8—N9—C4105.6 (2)
C4—C5—C6116.1 (2)
C8—N9—C9—C91B67.3 (6)N9—C9—C91A—C92A66.4 (3)
C4—N9—C9—C91B112.0 (6)N9—C9—C91A—C96A170.6 (2)
C8—N9—C9—C91A99.4 (2)N9—C9—C91B—C92B65 (1)
C4—N9—C9—C91A79.9 (2)C91A—C9—C91B—C92B42.0 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···N3i0.932.453.369 (3)171.4
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds