Download citation
Download citation
link to html
The five-membered ring of the title compound, C14H15NO3, has a flattened envelope conformation, while the eight-membered ring can be described as a highly distorted boat. Weak C—H...O hydrogen bonds and van der Waals interactions determine the crystal packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680100558X/om6011sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680100558X/om6011Isup2.hkl
Contains datablock I

CCDC reference: 165648

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.063
  • wR factor = 0.137
  • Data-to-parameter ratio = 9.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 74.96 From the CIF: _reflns_number_total 1472 Count of symmetry unique reflns 1497 Completeness (_total/calc) 98.33% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.

Comment top

Bicyclic imides with a bridgehead N atom were proposed by Smissman as potential stereoselective anticonvulsants (Smissman et al., 1964) and the synthesis of the first examples of this class of compounds (nicknamed `smissmanones') was reported in 1984 (Brouillette & Einspahr, 1984). The title compound, (I), has significant biological activity and acts as a good antimaximal electroshock anticonvulsant as well as a relatively good binder to a sodium channel (Brouillette et al., 1988). The crystal structure of 1-aza-8,9-dioxo-7-oxa-6-phenylbicyclo[4.2.1]nonane was reported earlier (Brouillette & Einspahr, 1984). We report here the results of X-ray crystallographic studies of the compound with an additional CH2 group in the bicyclic system, namely 8-oxa-1-aza-7-phenylbicyclo[5.2.1]decane-9,10-dione.

Fig. 1 shows the title molecule. The conformation of the five-membered ring is close to a flattened envelope with a relatively small value of the asymmetry parameter (Duax & Norton, 1975) ΔC27 = 4.4°. The four atoms O8, C9, N1 and C10 are close to coplanarity [maximum deviation from the least-squares plane of 0.015 (3) Å], while the fifth atom, C7, is 0.314 (3) Å out of this plane. The conformation of eight-membered ring can be described as a highly distorted boat (approximate point group 222, D2). The phenyl ring is planar within experimental error, with a maximum deviation from the least-squares plane of 0.011 (4) Å. Relatively large values of displacement parameters, especially in the phenyl fragment, can be connected with the low melting point of this compound, 319–320 K (Brouillette & Einspahr, 1984).

A comparison of the cyclononane and cyclodecane derivatives (Fig. 2) shows that an additional atom in the ring does not significantly change the overall shape of the molecule.

The crystal packing is determined by van der Waals interactions and weak C—H···O hydrogen bonds, which connect the molecules into infinite chains and three-molecule rings.

Experimental top

Colourless prismatic crystals were grown from hexane solution by slow evaporation.

Computing details top

Data collection: CAD-4 Software; cell refinement: CAD-4 Software; data reduction: ENPROC (Rettig, 1978); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989).

Figures top
[Figure 1] Fig. 1. A perspective view of the title molecule with the numbering scheme (Siemens, 1989). Displacement ellipsoids are drawn at the 50% probability level and H atoms are depicted as spheres of arbitrary radii.
[Figure 2] Fig. 2. A comparison of the title compound (dashed lines) with 1-aza-8,9-dioxo-7-oxa-6-phenylbicyclo[4.2.1]nonane (Brouillette & Einspahr, 1984; shown with solid lins). The five-membered rings are fitted to one another (Siemens, 1989).
8-Oxa-1-aza-7-phenylbicyclo[5.2.1]decane-9,10-dione top
Crystal data top
C14H15NO3Dx = 1.314 Mg m3
Mr = 245.27Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 25 reflections
a = 6.7112 (8) Åθ = 10–25°
b = 10.4414 (8) ŵ = 0.76 mm1
c = 17.687 (2) ÅT = 293 K
V = 1239.4 (2) Å3Plate, colourless
Z = 40.25 × 0.2 × 0.1 mm
F(000) = 520
Data collection top
CAD-4F four-circle
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 75.0°, θmin = 4.9°
Ni-filter monochromatorh = 80
ω/2θ scansk = 013
1472 measured reflectionsl = 022
1472 independent reflections2 standard reflections every 33 min
1199 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters not refined
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.01P)2 + 0.6P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1472 reflectionsΔρmax = 0.18 e Å3
164 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0043 (8)
Crystal data top
C14H15NO3V = 1239.4 (2) Å3
Mr = 245.27Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 6.7112 (8) ŵ = 0.76 mm1
b = 10.4414 (8) ÅT = 293 K
c = 17.687 (2) Å0.25 × 0.2 × 0.1 mm
Data collection top
CAD-4F four-circle
diffractometer
Rint = 0.000
1472 measured reflections2 standard reflections every 33 min
1472 independent reflections intensity decay: 3%
1199 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.137H-atom parameters not refined
S = 1.10Δρmax = 0.18 e Å3
1472 reflectionsΔρmin = 0.18 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0144 (5)0.2640 (3)0.86377 (19)0.0510 (8)
C20.0850 (7)0.3872 (4)0.8327 (3)0.0621 (12)
H210.11030.44700.87350.081*
H220.01610.42360.79990.081*
C30.2745 (8)0.3645 (4)0.7883 (2)0.0652 (12)
H310.33500.44680.77730.085*
H320.23990.32500.74040.085*
C40.4287 (7)0.2803 (4)0.8280 (3)0.0658 (12)
H410.42840.30230.88130.086*
H420.55910.30230.80820.086*
C50.4021 (8)0.1332 (4)0.8212 (2)0.0630 (12)
H510.30670.11720.78110.082*
H520.52850.09750.80490.082*
C60.3337 (8)0.0574 (4)0.8913 (2)0.0575 (11)
H610.35620.03290.88150.075*
H620.41850.08150.93340.075*
C70.1171 (7)0.0740 (3)0.9160 (2)0.0474 (10)
C710.0491 (8)0.0121 (3)0.9802 (2)0.0578 (12)
C720.1773 (11)0.0245 (5)1.0421 (2)0.0839 (18)
H720.29830.01881.04320.101*
C730.1203 (15)0.1031 (5)1.1023 (3)0.112 (3)
H730.20410.11371.14370.134*
C740.0623 (13)0.1653 (5)1.0998 (3)0.104 (3)
H740.10220.21581.14040.125*
C750.1825 (10)0.1531 (5)1.0391 (3)0.0907 (18)
H750.30320.19681.03760.109*
C760.1271 (9)0.0759 (4)0.9791 (3)0.0734 (14)
H760.21140.06760.93770.088*
O80.0105 (5)0.0538 (2)0.85033 (15)0.0568 (8)
C90.0398 (6)0.1662 (4)0.8152 (2)0.0555 (10)
O90.1123 (6)0.1764 (3)0.75395 (17)0.0788 (11)
C100.0909 (6)0.2164 (3)0.9297 (2)0.0468 (9)
O100.1485 (5)0.2767 (2)0.98398 (14)0.0628 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.054 (2)0.0398 (16)0.0598 (19)0.0039 (16)0.0046 (18)0.0027 (14)
C20.073 (3)0.038 (2)0.076 (3)0.003 (2)0.012 (3)0.0095 (19)
C30.076 (3)0.052 (2)0.068 (3)0.005 (2)0.014 (3)0.011 (2)
C40.066 (3)0.057 (2)0.075 (3)0.003 (2)0.016 (3)0.001 (2)
C50.063 (3)0.064 (3)0.062 (2)0.005 (2)0.018 (2)0.007 (2)
C60.075 (3)0.0380 (19)0.059 (2)0.005 (2)0.001 (2)0.0045 (19)
C70.061 (3)0.0311 (16)0.050 (2)0.0066 (19)0.002 (2)0.0066 (15)
C710.086 (3)0.0314 (17)0.056 (2)0.002 (2)0.009 (2)0.0048 (17)
C720.138 (5)0.060 (3)0.054 (2)0.031 (3)0.004 (3)0.001 (2)
C730.209 (8)0.070 (3)0.056 (3)0.026 (5)0.000 (4)0.006 (3)
C740.181 (8)0.045 (3)0.085 (4)0.014 (4)0.046 (5)0.003 (3)
C750.114 (5)0.052 (3)0.107 (4)0.019 (3)0.030 (4)0.009 (3)
C760.083 (3)0.049 (2)0.088 (3)0.008 (3)0.012 (3)0.007 (2)
O80.074 (2)0.0420 (14)0.0538 (15)0.0129 (15)0.0095 (16)0.0033 (12)
C90.051 (2)0.055 (2)0.061 (2)0.004 (2)0.004 (2)0.001 (2)
O90.083 (2)0.084 (2)0.0691 (18)0.009 (2)0.0246 (19)0.0089 (18)
C100.054 (2)0.0374 (17)0.0495 (19)0.0019 (18)0.0110 (19)0.0051 (17)
O100.095 (2)0.0393 (14)0.0540 (16)0.0084 (17)0.0121 (17)0.0108 (13)
Geometric parameters (Å, º) top
N1—C101.368 (5)C7—O81.459 (4)
N1—C91.383 (5)C7—C101.517 (5)
N1—C21.477 (5)C7—C711.519 (5)
C2—C31.513 (6)C71—C761.357 (7)
C2—H210.9700C71—C721.398 (7)
C2—H220.9700C72—C731.398 (7)
C3—C41.529 (6)C72—H720.9300
C3—H310.9700C73—C741.387 (11)
C3—H320.9700C73—H730.9300
C4—C51.551 (6)C74—C751.349 (8)
C4—H410.9700C74—H740.9300
C4—H420.9700C75—C761.384 (7)
C5—C61.541 (5)C75—H750.9300
C5—H510.9700C76—H760.9300
C5—H520.9700O8—C91.342 (5)
C6—C71.528 (6)C9—O91.193 (5)
C6—H610.9700C10—O101.211 (4)
C6—H620.9700
C10—N1—C9111.1 (3)H61—C6—H62107.3
C10—N1—C2120.9 (4)O8—C7—C10101.6 (3)
C9—N1—C2119.8 (3)O8—C7—C71109.5 (3)
N1—C2—C3109.1 (3)C10—C7—C71115.2 (3)
N1—C2—H21109.9O8—C7—C6108.3 (3)
C3—C2—H21109.9C10—C7—C6105.5 (3)
N1—C2—H22109.9C71—C7—C6115.6 (4)
C3—C2—H22109.9C76—C71—C72120.1 (4)
H21—C2—H22108.3C76—C71—C7122.8 (4)
C2—C3—C4114.9 (3)C72—C71—C7117.1 (4)
C2—C3—H31108.5C73—C72—C71118.8 (6)
C4—C3—H31108.5C73—C72—H72120.6
C2—C3—H32108.5C71—C72—H72120.6
C4—C3—H32108.5C74—C73—C72119.5 (7)
H31—C3—H32107.5C74—C73—H73120.2
C3—C4—C5117.1 (4)C72—C73—H73120.2
C3—C4—H41108.0C75—C74—C73120.6 (5)
C5—C4—H41108.0C75—C74—H74119.7
C3—C4—H42108.0C73—C74—H74119.7
C5—C4—H42108.0C74—C75—C76120.3 (6)
H41—C4—H42107.3C74—C75—H75119.8
C6—C5—C4118.7 (4)C76—C75—H75119.8
C6—C5—H51107.6C71—C76—C75120.6 (5)
C4—C5—H51107.6C71—C76—H76119.7
C6—C5—H52107.6C75—C76—H76119.7
C4—C5—H52107.6C9—O8—C7109.2 (3)
H51—C5—H52107.1O9—C9—O8123.9 (4)
C7—C6—C5117.1 (4)O9—C9—N1127.3 (4)
C7—C6—H61108.0O8—C9—N1108.7 (3)
C5—C6—H61108.0O10—C10—N1127.3 (3)
C7—C6—H62108.0O10—C10—C7126.8 (4)
C5—C6—H62108.0N1—C10—C7105.3 (3)
C10—N1—C2—C383.1 (4)C7—C71—C76—C75179.9 (4)
C9—N1—C2—C362.5 (5)C74—C75—C76—C710.4 (8)
N1—C2—C3—C446.3 (5)C10—C7—O8—C920.6 (4)
C2—C3—C4—C583.4 (5)C71—C7—O8—C9142.9 (3)
C3—C4—C5—C6108.2 (5)C6—C7—O8—C990.2 (4)
C4—C5—C6—C771.8 (6)C7—O8—C9—O9168.2 (4)
C5—C6—C7—O850.7 (4)C7—O8—C9—N115.9 (5)
C5—C6—C7—C1057.4 (4)C10—N1—C9—O9179.3 (4)
C5—C6—C7—C71174.0 (3)C2—N1—C9—O932.0 (7)
O8—C7—C71—C7612.2 (5)C10—N1—C9—O83.5 (5)
C10—C7—C71—C76101.5 (5)C2—N1—C9—O8152.3 (4)
C6—C7—C71—C76134.9 (4)C9—N1—C10—O10178.6 (4)
O8—C7—C71—C72167.6 (4)C2—N1—C10—O1033.1 (6)
C10—C7—C71—C7278.7 (5)C9—N1—C10—C79.6 (5)
C6—C7—C71—C7244.9 (5)C2—N1—C10—C7138.7 (4)
C76—C71—C72—C730.1 (7)O8—C7—C10—O10170.4 (4)
C7—C71—C72—C73179.9 (5)C71—C7—C10—O1052.2 (6)
C71—C72—C73—C741.0 (8)C6—C7—C10—O1076.7 (5)
C72—C73—C74—C751.7 (9)O8—C7—C10—N117.8 (4)
C73—C74—C75—C761.5 (9)C71—C7—C10—N1136.0 (4)
C72—C71—C76—C750.3 (7)C6—C7—C10—N195.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H62···O10i0.972.593.512 (5)159
C74—H74···O9ii0.932.813.495 (7)132
C4—H42···O9iii0.972.743.519 (6)138
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x1/2, y, z+1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H15NO3
Mr245.27
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)6.7112 (8), 10.4414 (8), 17.687 (2)
V3)1239.4 (2)
Z4
Radiation typeCu Kα
µ (mm1)0.76
Crystal size (mm)0.25 × 0.2 × 0.1
Data collection
DiffractometerCAD-4F four-circle
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1472, 1472, 1199
Rint0.000
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.137, 1.10
No. of reflections1472
No. of parameters164
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.18, 0.18

Computer programs: CAD-4 Software, ENPROC (Rettig, 1978), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), Stereochemical Workstation Operation Manual (Siemens, 1989).

Selected geometric parameters (Å, º) top
N1—C101.368 (5)C7—C711.519 (5)
N1—C91.383 (5)O8—C91.342 (5)
N1—C21.477 (5)C9—O91.193 (5)
C7—O81.459 (4)C10—O101.211 (4)
C10—N1—C9111.1 (3)C9—N1—C2119.8 (3)
C10—N1—C2120.9 (4)C9—O8—C7109.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H62···O10i0.972.593.512 (5)158.5
C74—H74···O9ii0.932.813.495 (7)131.7
C4—H42···O9iii0.972.743.519 (6)137.7
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x1/2, y, z+1/2; (iii) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds