metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2,2′-Dihy­dr­oxy-N2,N2′-(3-hy­dr­oxy­imino­pentane-2,4-di­yl)dibenzo­hydra­zid­ato]copper(II)

aCollege of Materials Science & Engineering, Huaqiao University, Quanzhou 362021, People's Republic of China
*Correspondence e-mail: xzj@hqu.edu.cn

(Received 10 August 2010; accepted 11 October 2010; online 20 October 2010)

The CuII atom in the title complex, [Cu(C19H17N5O5)], is coordinated by two N atoms and two O atoms of one 2,2′-dihy­droxy-N2,N2'-(3-hy­droxy­imino­pentane-2,4-di­yl)dibenzo­hydrazidate ligand, exhibiting a distorted square-planar geometry. The dihedral angle between the two benzene rings in the oxime hydrazone is 7.62 (15)°. The molecular configuration is stabilized by intramolecular O—H⋯N hydrogen bonds. Pairs of centrosymmetrically related molecules are linked into dimers by two inter­molecular C—H⋯O hydrogen bonds. Each dimer is further connected to four neighboring dimers via four O—H⋯O hydrogen bonds, forming an extended two-dimensional structure. The oxime O atom is disordered over two orientations in a 2:1 ratio.

Related literature

For the structural versatility and biological activity of oxime hydrazone compounds and their metal complexes, see: Marmion et al. (2004[Marmion, C. J., Griffith, D. & Nolan, K. B. (2004). Eur. J. Inorg. Chem. pp. 3003-3016.]); Song et al. (2000[Song, Y., Xu, Y., Zhu, D.-R. & You, X.-Z. (2000). Acta Cryst. C56, 430-431.]); Xiao et al. (2004[Xiao, Z.-J., Liu, S.-X. & Lin, C.-C. (2004). Chin. J. Inorg. Chem. 20, 513-518.]). For similar copper(II) complexes with Schiff bases, see: Suleiman Gwaram et al. (2010[Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2010). Acta Cryst. E66, m813.]); Qin et al. (2010[Qin, D.-D., Yang, Z.-Y., Zhang, F.-H., Du, B., Wang, P. & Li, T.-R. (2010). Inorg. Chem. Commun. 13, 727-729]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C19H17N5O5)]

  • Mr = 458.92

  • Monoclinic, P 21 /n

  • a = 8.7672 (5) Å

  • b = 19.0262 (11) Å

  • c = 11.6118 (6) Å

  • β = 91.437 (2)°

  • V = 1936.31 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.17 mm−1

  • T = 293 K

  • 0.52 × 0.22 × 0.15 mm

Data collection
  • Rigaku Weissenberg IP diffractometer

  • Absorption correction: multi-scan (TEXRAY; Molecular Structure Corporation, 1999[Molecular Structure Corporation (1999). TEXRAY and TEXSAN. MSC, The Woodlands, Texas, USA.]) Tmin = 0.715, Tmax = 0.833

  • 17167 measured reflections

  • 4436 independent reflections

  • 3065 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.079

  • S = 0.91

  • 4436 reflections

  • 282 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.82 1.86 2.586 (2) 147
O5—H5B⋯N5 0.82 1.79 2.519 (2) 148
C19—H19A⋯O2i 0.96 2.58 3.525 (3) 170
O3A⋯O5ii     2.643 (3)  
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: TEXRAY (Molecular Structure Corporation, 1999[Molecular Structure Corporation (1999). TEXRAY and TEXSAN. MSC, The Woodlands, Texas, USA.]); cell refinement: TEXRAY; data reduction: TEXSAN (Mol­ecular Structure Corporation, 1999[Molecular Structure Corporation (1999). TEXRAY and TEXSAN. MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEX (McArdle, 1995[McArdle, P. (1995). J. Appl. Cryst. 28, 65.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, much attention has been focused on oxime compounds and their complexes, due to their biological activities, chemical and industrial versatility, and excellent chelating capability (Marmion, et al., 2004; Song et al., 2000; Xiao, et al., 2004). Oxime hydrazone and hydroxamic acids are the two kinds of oxime compounds. Herein, we present the synthesis and structure of copper complex with 2,2'-dihydroxy-N2,N2'-(3-hydroxyiminopentane- 2,4-diyl)dibenzohydrazide.

As shown in Figure 1, the copper atom in the title complex has a square-planar coordination geometry, the four donors are two hydrazine nitrogen atoms and two carboxyl oxygen atoms in the oxime hydrazone ligand. The bond lengths of Cu-N and Cu-O in the square planar complex are similar to those in this type of copper complex (Suleiman Gwaram et al., 2010; Qin et al., 2010). The whole oxime hydrazone ligand is not planar; the dihedral angle between the two benzene rings in the oxime hydrazone ligand is 7.62 (15)°.

There are intramolecular O-H ···N hydrogen bonds, and intermolecular oxime-phenol O-H···O hydrogen bonds and intermolecular C-H···O hydrogen bonds in the title complex. The interatomic distance of O3A – O5ii (symmetry code ii, 1/2+x, 1/2-y, 1/2+z) is 2.643 (3)Å. It means that there may exist O-H (oxime group) ···O (phenol) hydrogen bonds, although the hydrogen atom in N-O-H has not been found. These intermolecular O-H···O and C-H···O hydrogen bonds result in an extended two-dimensional layer structure (see Figure 2).

Related literature top

For the structural versatility and biological activity of oxime hydrazone compounds and their metal complexes, see: Marmion et al. (2004); Song et al. (2000); Xiao et al. (2004). For similar copper(II) complexes with Schiff bases, see: Suleiman Gwaram et al. (2010); Qin et al. (2010).

Experimental top

Solid CuBr2 (0.0477g, 0.2 mmol) was dissolved in 12 mL of methanol to get solution A. 2, 3, 4-pentanetrione-3-oxime (0.0258g, 0.2 mmol) and salicyloyl hydrazine (0.0304g, 0.2 mmol) were dissolved in 12 mL of methanol to get solution B. To the solution B was added the solution A slowly. The reaction mixture was stirred and refluxed for 2 hours to give a green solution. The deep blue crystals of the title complex were formed upon slow evaporation at about 297 K after 20 d.

Refinement top

On the residial density there is one peak, 2.24 e Å3, corresponding to a second position for the O3 atom. The treatment of the disorder shows that the O3 atom in the N3-O3 oxime group is disordered over two postions as O3A and O3B in ratio 2/1. The oxime group-bound H atom was not found in the difference Fourier map. All other H atoms were placed in calculated positions and refined using a riding model [C-H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, C-H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and O-H = 0.82 Å and Uiso(H) = 1.2Ueq(O)].

Structure description top

Recently, much attention has been focused on oxime compounds and their complexes, due to their biological activities, chemical and industrial versatility, and excellent chelating capability (Marmion, et al., 2004; Song et al., 2000; Xiao, et al., 2004). Oxime hydrazone and hydroxamic acids are the two kinds of oxime compounds. Herein, we present the synthesis and structure of copper complex with 2,2'-dihydroxy-N2,N2'-(3-hydroxyiminopentane- 2,4-diyl)dibenzohydrazide.

As shown in Figure 1, the copper atom in the title complex has a square-planar coordination geometry, the four donors are two hydrazine nitrogen atoms and two carboxyl oxygen atoms in the oxime hydrazone ligand. The bond lengths of Cu-N and Cu-O in the square planar complex are similar to those in this type of copper complex (Suleiman Gwaram et al., 2010; Qin et al., 2010). The whole oxime hydrazone ligand is not planar; the dihedral angle between the two benzene rings in the oxime hydrazone ligand is 7.62 (15)°.

There are intramolecular O-H ···N hydrogen bonds, and intermolecular oxime-phenol O-H···O hydrogen bonds and intermolecular C-H···O hydrogen bonds in the title complex. The interatomic distance of O3A – O5ii (symmetry code ii, 1/2+x, 1/2-y, 1/2+z) is 2.643 (3)Å. It means that there may exist O-H (oxime group) ···O (phenol) hydrogen bonds, although the hydrogen atom in N-O-H has not been found. These intermolecular O-H···O and C-H···O hydrogen bonds result in an extended two-dimensional layer structure (see Figure 2).

For the structural versatility and biological activity of oxime hydrazone compounds and their metal complexes, see: Marmion et al. (2004); Song et al. (2000); Xiao et al. (2004). For similar copper(II) complexes with Schiff bases, see: Suleiman Gwaram et al. (2010); Qin et al. (2010).

Computing details top

Data collection: TEXRAY (Molecular Structure Corporation, 1999); cell refinement: TEXRAY (Molecular Structure Corporation, 1999); data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate intramolecular hydrogen bonding.
[Figure 2] Fig. 2. The extended two-dimensional layer of the title complex, dotted green lines represent intermolecular hydrogen bonding. Only H atoms participating in hydrogen bonds are shown.
[2,2'-Dihydroxy-N2,N2'-(3-hydroxyiminopentane- 2,4-diyl)dibenzohydrazidato]copper(II) top
Crystal data top
[Cu(C19H17N5O5)]F(000) = 940
Mr = 458.92Dx = 1.574 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4577 reflections
a = 8.7672 (5) Åθ = 2.1–27.5°
b = 19.0262 (11) ŵ = 1.17 mm1
c = 11.6118 (6) ÅT = 293 K
β = 91.437 (2)°Prism, blue
V = 1936.31 (19) Å30.52 × 0.22 × 0.15 mm
Z = 4
Data collection top
Rigaku Weissenberg IP
diffractometer
4436 independent reflections
Radiation source: fine-focus sealed tube3065 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(TEXRAY; Molecular Structure Corporation, 1999)
h = 011
Tmin = 0.715, Tmax = 0.833k = 2424
17167 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.040P)2]
where P = (Fo2 + 2Fc2)/3
4436 reflections(Δ/σ)max = 0.002
282 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Cu(C19H17N5O5)]V = 1936.31 (19) Å3
Mr = 458.92Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.7672 (5) ŵ = 1.17 mm1
b = 19.0262 (11) ÅT = 293 K
c = 11.6118 (6) Å0.52 × 0.22 × 0.15 mm
β = 91.437 (2)°
Data collection top
Rigaku Weissenberg IP
diffractometer
4436 independent reflections
Absorption correction: multi-scan
(TEXRAY; Molecular Structure Corporation, 1999)
3065 reflections with I > 2σ(I)
Tmin = 0.715, Tmax = 0.833Rint = 0.037
17167 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 0.91Δρmax = 0.39 e Å3
4436 reflectionsΔρmin = 0.40 e Å3
282 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.24832 (3)0.508624 (12)0.47601 (2)0.03770 (9)
N10.46486 (19)0.53298 (9)0.64875 (15)0.0428 (4)
N20.36561 (18)0.48024 (9)0.61023 (14)0.0380 (4)
N30.2905 (3)0.30306 (12)0.6725 (2)0.0735 (7)
N40.13118 (18)0.42316 (8)0.47217 (14)0.0364 (4)
N50.01862 (18)0.42494 (9)0.38607 (15)0.0401 (4)
O10.6627 (2)0.59621 (11)0.78120 (17)0.0805 (6)
H1A0.60740.56400.75870.097*
O20.34881 (15)0.59685 (7)0.50147 (13)0.0414 (3)
O3A0.2209 (4)0.24814 (15)0.6492 (3)0.0749 (8)0.67
O3B0.3899 (6)0.2757 (2)0.7190 (5)0.0635 (15)0.33
O40.12933 (16)0.53067 (7)0.33856 (12)0.0414 (3)
O50.16592 (19)0.36688 (8)0.24617 (14)0.0604 (5)
H5B0.10700.37030.30190.072*
C10.6346 (3)0.65344 (14)0.7173 (2)0.0581 (7)
C20.5294 (2)0.65449 (12)0.6241 (2)0.0461 (5)
C30.5081 (3)0.71686 (12)0.5633 (2)0.0594 (7)
H3A0.43760.71820.50220.071*
C40.5894 (3)0.77687 (15)0.5916 (3)0.0784 (9)
H4A0.57430.81810.54980.094*
C50.6921 (4)0.77491 (18)0.6816 (3)0.0911 (11)
H5A0.74670.81530.70110.109*
C60.7166 (3)0.71460 (19)0.7439 (3)0.0849 (10)
H6A0.78820.71440.80440.102*
C70.4416 (2)0.59175 (11)0.58840 (18)0.0386 (5)
C80.3669 (2)0.42120 (11)0.66539 (18)0.0409 (5)
C90.2605 (2)0.36376 (11)0.62829 (19)0.0405 (5)
C100.1317 (2)0.37065 (10)0.54304 (19)0.0394 (5)
C110.0336 (2)0.48128 (10)0.31893 (17)0.0355 (4)
C120.0688 (2)0.48412 (11)0.21619 (17)0.0402 (5)
C130.1615 (3)0.42678 (13)0.1830 (2)0.0485 (5)
C140.2529 (3)0.43151 (16)0.0835 (2)0.0647 (7)
H14A0.31460.39390.06130.078*
C150.2519 (3)0.49149 (17)0.0182 (2)0.0718 (8)
H15A0.31260.49390.04850.086*
C160.1628 (3)0.54807 (16)0.0496 (2)0.0679 (7)
H16A0.16370.58860.00470.082*
C170.0720 (3)0.54442 (13)0.14814 (19)0.0510 (6)
H17A0.01200.58280.16950.061*
C180.4736 (3)0.41084 (14)0.7671 (2)0.0635 (7)
H18A0.46470.44980.81900.095*
H18B0.57650.40790.74120.095*
H18C0.44780.36820.80620.095*
C190.0055 (3)0.31770 (13)0.5377 (3)0.0628 (7)
H19A0.08860.34070.51670.094*
H19B0.00380.29580.61170.094*
H19C0.02780.28260.48120.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03850 (14)0.03025 (14)0.04393 (15)0.00304 (11)0.00734 (9)0.00278 (11)
N10.0401 (9)0.0385 (10)0.0495 (11)0.0008 (8)0.0091 (8)0.0045 (8)
N20.0340 (8)0.0354 (10)0.0443 (10)0.0032 (7)0.0031 (7)0.0007 (8)
N30.0906 (18)0.0425 (13)0.0885 (18)0.0125 (12)0.0220 (14)0.0210 (12)
N40.0365 (9)0.0305 (9)0.0418 (10)0.0005 (7)0.0045 (7)0.0002 (7)
N50.0402 (9)0.0339 (9)0.0459 (10)0.0028 (7)0.0059 (8)0.0011 (8)
O10.0776 (13)0.0845 (15)0.0776 (14)0.0080 (11)0.0329 (11)0.0108 (11)
O20.0395 (8)0.0317 (8)0.0527 (9)0.0020 (6)0.0074 (7)0.0017 (6)
O3A0.093 (2)0.0467 (17)0.084 (2)0.0043 (15)0.0252 (17)0.0092 (14)
O3B0.072 (3)0.037 (3)0.079 (4)0.012 (2)0.045 (3)0.014 (2)
O40.0468 (8)0.0340 (8)0.0430 (8)0.0071 (7)0.0071 (6)0.0029 (6)
O50.0683 (11)0.0463 (10)0.0655 (11)0.0133 (8)0.0179 (9)0.0114 (8)
C10.0483 (14)0.0602 (17)0.0656 (17)0.0051 (12)0.0011 (12)0.0208 (13)
C20.0377 (11)0.0423 (13)0.0586 (14)0.0036 (10)0.0049 (10)0.0157 (11)
C30.0614 (16)0.0400 (14)0.0772 (18)0.0083 (12)0.0089 (13)0.0106 (12)
C40.083 (2)0.0457 (16)0.107 (3)0.0180 (15)0.0168 (19)0.0154 (16)
C50.083 (2)0.068 (2)0.123 (3)0.0347 (18)0.013 (2)0.040 (2)
C60.0618 (19)0.094 (3)0.098 (2)0.0187 (18)0.0068 (17)0.044 (2)
C70.0328 (10)0.0360 (11)0.0471 (13)0.0016 (8)0.0023 (9)0.0067 (9)
C80.0383 (11)0.0382 (11)0.0461 (13)0.0094 (9)0.0020 (9)0.0026 (9)
C90.0414 (11)0.0332 (11)0.0468 (12)0.0057 (9)0.0012 (9)0.0072 (9)
C100.0377 (11)0.0288 (10)0.0517 (13)0.0036 (8)0.0040 (9)0.0010 (9)
C110.0362 (10)0.0325 (10)0.0377 (11)0.0030 (8)0.0009 (8)0.0051 (8)
C120.0394 (11)0.0439 (12)0.0370 (11)0.0012 (9)0.0011 (8)0.0068 (9)
C130.0475 (13)0.0499 (14)0.0479 (13)0.0009 (10)0.0040 (10)0.0118 (11)
C140.0592 (15)0.076 (2)0.0583 (16)0.0082 (14)0.0143 (12)0.0202 (15)
C150.0670 (17)0.098 (2)0.0495 (14)0.0008 (17)0.0213 (12)0.0039 (16)
C160.0711 (17)0.082 (2)0.0497 (15)0.0027 (16)0.0104 (13)0.0140 (14)
C170.0506 (13)0.0555 (15)0.0466 (13)0.0031 (11)0.0061 (10)0.0035 (11)
C180.0716 (17)0.0571 (16)0.0605 (16)0.0002 (13)0.0220 (13)0.0119 (13)
C190.0526 (14)0.0424 (14)0.093 (2)0.0080 (11)0.0113 (14)0.0233 (13)
Geometric parameters (Å, º) top
Cu1—O21.9153 (13)C4—C51.362 (4)
Cu1—N21.9230 (16)C4—H4A0.9300
Cu1—N41.9231 (16)C5—C61.371 (5)
Cu1—O41.9308 (14)C5—H5A0.9300
N1—C71.333 (3)C6—H6A0.9300
N1—N21.395 (2)C8—C91.493 (3)
N2—C81.293 (3)C8—C181.501 (3)
N3—O3B1.140 (4)C9—C101.489 (3)
N3—O3A1.236 (3)C10—C191.497 (3)
N3—C91.288 (3)C11—C121.476 (3)
N4—C101.294 (3)C12—C171.393 (3)
N4—N51.388 (2)C12—C131.408 (3)
N5—C111.334 (3)C13—C141.392 (3)
O1—C11.337 (3)C14—C151.370 (4)
O1—H1A0.8200C14—H14A0.9300
O2—C71.284 (2)C15—C161.374 (4)
O3A—O3B1.752 (5)C15—H15A0.9300
O4—C111.277 (2)C16—C171.379 (3)
O5—C131.356 (3)C16—H16A0.9300
O5—H5B0.8200C17—H17A0.9300
C1—C61.398 (4)C18—H18A0.9600
C1—C21.404 (3)C18—H18B0.9600
C2—C31.391 (3)C18—H18C0.9600
C2—C71.474 (3)C19—H19A0.9600
C3—C41.381 (3)C19—H19B0.9600
C3—H3A0.9300C19—H19C0.9600
O2—Cu1—N283.48 (6)N2—C8—C9119.70 (18)
O2—Cu1—N4171.09 (7)N2—C8—C18120.1 (2)
N2—Cu1—N493.19 (7)C9—C8—C18120.22 (19)
O2—Cu1—O4100.02 (6)N3—C9—C10119.2 (2)
N2—Cu1—O4176.23 (6)N3—C9—C8114.9 (2)
N4—Cu1—O483.54 (6)C10—C9—C8125.81 (18)
C7—N1—N2110.44 (16)N4—C10—C9118.78 (18)
C8—N2—N1117.96 (17)N4—C10—C19120.15 (19)
C8—N2—Cu1130.03 (15)C9—C10—C19121.07 (19)
N1—N2—Cu1111.99 (13)O4—C11—N5124.12 (18)
O3B—N3—O3A94.9 (3)O4—C11—C12120.09 (18)
O3B—N3—C9138.1 (4)N5—C11—C12115.79 (18)
O3A—N3—C9125.1 (3)C17—C12—C13118.7 (2)
C10—N4—N5117.91 (17)C17—C12—C11119.46 (19)
C10—N4—Cu1130.13 (14)C13—C12—C11121.9 (2)
N5—N4—Cu1111.46 (12)O5—C13—C14118.6 (2)
C11—N5—N4111.23 (16)O5—C13—C12121.8 (2)
C1—O1—H1A109.5C14—C13—C12119.5 (2)
C7—O2—Cu1109.58 (13)C15—C14—C13120.1 (2)
C11—O4—Cu1109.08 (13)C15—C14—H14A119.9
C13—O5—H5B109.5C13—C14—H14A119.9
O1—C1—C6117.9 (3)C14—C15—C16121.1 (2)
O1—C1—C2123.2 (2)C14—C15—H15A119.4
C6—C1—C2118.9 (3)C16—C15—H15A119.4
C3—C2—C1118.7 (2)C15—C16—C17119.6 (3)
C3—C2—C7119.0 (2)C15—C16—H16A120.2
C1—C2—C7122.2 (2)C17—C16—H16A120.2
C4—C3—C2121.5 (3)C16—C17—C12121.0 (2)
C4—C3—H3A119.2C16—C17—H17A119.5
C2—C3—H3A119.2C12—C17—H17A119.5
C5—C4—C3119.1 (3)C8—C18—H18A109.5
C5—C4—H4A120.4C8—C18—H18B109.5
C3—C4—H4A120.4H18A—C18—H18B109.5
C4—C5—C6121.3 (3)C8—C18—H18C109.5
C4—C5—H5A119.3H18A—C18—H18C109.5
C6—C5—H5A119.3H18B—C18—H18C109.5
C5—C6—C1120.5 (3)C10—C19—H19A109.5
C5—C6—H6A119.8C10—C19—H19B109.5
C1—C6—H6A119.8H19A—C19—H19B109.5
O2—C7—N1124.22 (19)C10—C19—H19C109.5
O2—C7—C2118.43 (19)H19A—C19—H19C109.5
N1—C7—C2117.36 (19)H19B—C19—H19C109.5
C7—N1—N2—C8175.43 (18)Cu1—N2—C8—C92.6 (3)
C7—N1—N2—Cu15.9 (2)N1—N2—C8—C180.3 (3)
O2—Cu1—N2—C8177.17 (19)Cu1—N2—C8—C18178.08 (16)
N4—Cu1—N2—C85.46 (19)O3B—N3—C9—C10160.8 (5)
O2—Cu1—N2—N14.33 (12)O3A—N3—C9—C100.8 (4)
N4—Cu1—N2—N1176.04 (13)O3B—N3—C9—C816.5 (6)
N2—Cu1—N4—C104.20 (19)O3A—N3—C9—C8176.5 (3)
O4—Cu1—N4—C10177.69 (19)N2—C8—C9—N3166.7 (2)
N2—Cu1—N4—N5175.78 (13)C18—C8—C9—N314.0 (3)
O4—Cu1—N4—N56.10 (12)N2—C8—C9—C1010.4 (3)
C10—N4—N5—C11179.12 (18)C18—C8—C9—C10168.9 (2)
Cu1—N4—N5—C118.1 (2)N5—N4—C10—C9173.72 (17)
N2—Cu1—O2—C71.81 (13)Cu1—N4—C10—C915.1 (3)
O4—Cu1—O2—C7176.79 (13)N5—N4—C10—C195.6 (3)
C9—N3—O3A—O3B166.8 (5)Cu1—N4—C10—C19165.55 (17)
C9—N3—O3B—O3A163.7 (6)N3—C9—C10—N4157.7 (2)
O2—Cu1—O4—C11169.01 (12)C8—C9—C10—N419.3 (3)
N4—Cu1—O4—C112.74 (13)N3—C9—C10—C1921.6 (3)
O1—C1—C2—C3179.8 (2)C8—C9—C10—C19161.4 (2)
C6—C1—C2—C31.4 (4)Cu1—O4—C11—N51.5 (2)
O1—C1—C2—C70.6 (4)Cu1—O4—C11—C12178.11 (14)
C6—C1—C2—C7178.3 (2)N4—N5—C11—O46.6 (3)
C1—C2—C3—C40.9 (4)N4—N5—C11—C12172.98 (16)
C7—C2—C3—C4178.7 (2)O4—C11—C12—C177.1 (3)
C2—C3—C4—C50.4 (4)N5—C11—C12—C17173.30 (19)
C3—C4—C5—C60.3 (5)O4—C11—C12—C13171.42 (19)
C4—C5—C6—C10.8 (5)N5—C11—C12—C138.2 (3)
O1—C1—C6—C5179.8 (3)C17—C12—C13—O5178.9 (2)
C2—C1—C6—C51.3 (4)C11—C12—C13—O52.6 (3)
Cu1—O2—C7—N11.3 (2)C17—C12—C13—C140.3 (3)
Cu1—O2—C7—C2179.02 (15)C11—C12—C13—C14178.2 (2)
N2—N1—C7—O24.9 (3)O5—C13—C14—C15179.5 (2)
N2—N1—C7—C2175.42 (17)C12—C13—C14—C150.3 (4)
C3—C2—C7—O20.4 (3)C13—C14—C15—C160.6 (4)
C1—C2—C7—O2179.2 (2)C14—C15—C16—C170.4 (4)
C3—C2—C7—N1179.9 (2)C15—C16—C17—C120.2 (4)
C1—C2—C7—N10.4 (3)C13—C12—C17—C160.5 (3)
N1—N2—C8—C9178.94 (17)C11—C12—C17—C16178.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.862.586 (2)147
O5—H5B···N50.821.792.519 (2)148
C19—H19A···O2i0.962.583.525 (3)170
O3A—H···O5ii2.643 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C19H17N5O5)]
Mr458.92
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.7672 (5), 19.0262 (11), 11.6118 (6)
β (°) 91.437 (2)
V3)1936.31 (19)
Z4
Radiation typeMo Kα
µ (mm1)1.17
Crystal size (mm)0.52 × 0.22 × 0.15
Data collection
DiffractometerRigaku Weissenberg IP
Absorption correctionMulti-scan
(TEXRAY; Molecular Structure Corporation, 1999)
Tmin, Tmax0.715, 0.833
No. of measured, independent and
observed [I > 2σ(I)] reflections
17167, 4436, 3065
Rint0.037
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.079, 0.91
No. of reflections4436
No. of parameters282
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.40

Computer programs: TEXRAY (Molecular Structure Corporation, 1999), TEXSAN (Molecular Structure Corporation, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEX (McArdle, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.862.586 (2)146.8
O5—H5B···N50.821.792.519 (2)147.7
C19—H19A···O2i0.962.583.525 (3)170.0
O3A—H···O5ii..2.643 (3).
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We are grateful for financial support from the Natural Science Foundation of Fujian Province of China (No. E0640006).

References

First citationMarmion, C. J., Griffith, D. & Nolan, K. B. (2004). Eur. J. Inorg. Chem. pp. 3003–3016.  Web of Science CrossRef Google Scholar
First citationMcArdle, P. (1995). J. Appl. Cryst. 28, 65.  CrossRef IUCr Journals Google Scholar
First citationMolecular Structure Corporation (1999). TEXRAY and TEXSAN. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationQin, D.-D., Yang, Z.-Y., Zhang, F.-H., Du, B., Wang, P. & Li, T.-R. (2010). Inorg. Chem. Commun. 13, 727–729  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, Y., Xu, Y., Zhu, D.-R. & You, X.-Z. (2000). Acta Cryst. C56, 430–431.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSuleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2010). Acta Cryst. E66, m813.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, Z.-J., Liu, S.-X. & Lin, C.-C. (2004). Chin. J. Inorg. Chem. 20, 513–518.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds