metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A binuclear vanadium oxyfluoride: di-μ-oxido-bis­­[(2,2′-bipyrid­yl)fluorido­oxidovanadium(V)]

aDepartment of Chemistry, Syracuse University, Syracuse, New York 13244, USA
*Correspondence e-mail: jazubiet@syr.edu

(Received 21 July 2010; accepted 4 August 2010; online 11 August 2010)

The title compound, [V2F2O4(C10H8N)2], is a centrosymmetric binuclear vanadium(V) species with the metal ions in a distorted octa­hedral environment. The coordination geometries of the symmetry-equivalent VV atoms are defined by cis-terminal fluoride and oxide groups, unsymmetrically bridging oxide groups and the N-atom donors of the bipyridyl ligand. The crystal packing is stabilized by weak inter­molecular C—H⋯O and C—H⋯F hydrogen bonds.

Related literature

For oxyfluorido­molybdates and -­vanadates, see: Adil et al. (2010[Adil, K., Leblanc, M., Maisonneuve, V. & Lightfoot, P. (2010). Dalton Trans. pp. 5983-5993.]); Burkholder & Zubieta (2004[Burkholder, E. & Zubieta, J. (2004). Inorg. Chim. Acta, 357, 279-284.]); DeBurgomaster & Zubieta (2010[DeBurgomaster, P. & Zubieta, J. (2010). Acta Cryst. E66, m909.]); Jones et al. (2010[Jones, S., Liu, H., Ouellette, W., Schmidtke, K., O'Connor, C. J. & Zubieta, J. (2010). Inorg. Chem. Commun. 13, 491-494.]); Michailovski et al. (2006[Michailovski, A., Rüegger, H., Skeptzakov, D. & Patzke, G. R. (2006). Inorg. Chem. 45, 5641-5652.], 2009[Michailovski, A., Hussain, F., Springler, B., Wagler, J. & Patzke, G. R. (2009). Cryst. Growth Des. 9, 755-765.]).

[Scheme 1]

Experimental

Crystal data
  • [V2F2O4(C10H8N)2]

  • Mr = 516.25

  • Monoclinic, C 2/c

  • a = 9.7526 (6) Å

  • b = 12.6499 (8) Å

  • c = 16.023 (5) Å

  • β = 92.631 (5)°

  • V = 1974.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.00 mm−1

  • T = 90 K

  • 0.22 × 0.12 × 0.10 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.866, Tmax = 0.905

  • 9692 measured reflections

  • 2406 independent reflections

  • 2357 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.079

  • S = 1.13

  • 2406 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯F1i 0.95 2.59 3.493 (2) 160
C2—H2⋯O1ii 0.95 2.42 3.161 (2) 134
C3—H3⋯F1iii 0.95 2.43 3.050 (2) 123
C3—H3⋯F1ii 0.95 2.86 3.760 (2) 159
C4—H4⋯O2iv 0.95 2.52 3.407 (2) 155
C4—H4⋯F1iii 0.95 2.60 3.131 (2) 116
C7—H7⋯O2iv 0.95 2.53 3.366 (2) 147
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (Palmer, 2006[Palmer, D. (2006). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Metal oxyfluorides have attracted considerable contemporary interest as a consequence of their compositional range and structural versatility and for properties such as magnetism, catalysis and non-linear optical behavior (Adil, et al. (2010); Burkholder & Zubieta (2004); DeBurgomaster & Zubieta (2010); Jones, et al. (2010); Michailovski, et al. (2006 and 2009). One approach to the preparation of novel metal oxyfluorides is the exploitation of hydrothermal chemistry where the complexity of the synthetic domain allows incorporation of fluoride into metal oxide frameworks, providing unusual and often unprecedented structures. Furthermore, the metal-oxyfluoride core can be stabilized or modified by the introduction of appropriate coligands, such as organonitrogen donors of the pyridyl family. In the course of our investigations of the hydrothermal chemistry of metal oxides in the presence of fluoride anion, the title compound [V2F2O4(2,2'-bpy)2] was isolated.

The compound crystallizes in the monoclinic space group C2/c with four binuclear molecules per unit cell. The two halves of the binuclear unit are related by a center of symmetry at the mid-point of the V···V vector. The coordination geometry is distorted octahedral with {VFO3N} coordination (Fig. 1). The µ-bis-oxo bridging mode produces a V2O2 rhombus with alternating short-long V—O bond distances of 1.705 (1) Å and 2.293 (1) Å, respectively. The terminal oxo-groups rest in the plane of the V2O2 rhombus and exhibit a pronounced trans-influence on the elongated bridging oxo-group-vanadium distance, V1—O2. The coordination geometry at the vanadium sites also exhibits a fluoride ligand with V—F of 1.806 (1) Å with the V—F vector approximately normal to the V2O2 rhombus. The V—F vectors of the binuclear unit adopt an anti-orientation with respect to the V2O2 rhombus. The geometry is completed by the nitrogen donors of the 2,2'-bipyridine ligand, which occupy positions trans to the short V—O bond of the rhombus and trans to the terminal fluoride ligand. The crystal packing is stabilized by weak intermolecular C—H···O and C—H···F hydrogen bonding.

Related literature top

For oxyfluoromolybdates and oxyfluorovanadates, see: Adil et al. (2010); Burkholder & Zubieta (2004); DeBurgomaster & Zubieta (2010); Jones et al. (2010); Michailovski et al. (2006, 2009).

Experimental top

A mixture of V2O5 (0.062 g, 0.34 mmol), 2,2'-bipyridine (0.320 g, 2.05 mmol), H2O (5 ml, 277.5 mmol) and HF (0.200 ml, 5.80 mmol) in the mole ratio 1.00:6.03:1620:17.06 was stirred briefly before heating to 170 °C for 48 h (initial and final pH values of 2.5 and 2.0, respectively). Yellow rods suitable for X-ray diffraction were isolated in 65% yield. Anal. Calcd. for C20H16F2N4O4V2: C, 46.5; H, 3.10; N, 10.8. Found: C, 46.3; H, 3.01; N, 11.0.

Refinement top

All hydrogen atoms were discernable in the difference Fourier map. The hydrogen atoms were placed in calculated positions with C—H = 0.95 Å and included in the riding model approximation with Uiso(H) = 1.2Ueq(C).

Structure description top

Metal oxyfluorides have attracted considerable contemporary interest as a consequence of their compositional range and structural versatility and for properties such as magnetism, catalysis and non-linear optical behavior (Adil, et al. (2010); Burkholder & Zubieta (2004); DeBurgomaster & Zubieta (2010); Jones, et al. (2010); Michailovski, et al. (2006 and 2009). One approach to the preparation of novel metal oxyfluorides is the exploitation of hydrothermal chemistry where the complexity of the synthetic domain allows incorporation of fluoride into metal oxide frameworks, providing unusual and often unprecedented structures. Furthermore, the metal-oxyfluoride core can be stabilized or modified by the introduction of appropriate coligands, such as organonitrogen donors of the pyridyl family. In the course of our investigations of the hydrothermal chemistry of metal oxides in the presence of fluoride anion, the title compound [V2F2O4(2,2'-bpy)2] was isolated.

The compound crystallizes in the monoclinic space group C2/c with four binuclear molecules per unit cell. The two halves of the binuclear unit are related by a center of symmetry at the mid-point of the V···V vector. The coordination geometry is distorted octahedral with {VFO3N} coordination (Fig. 1). The µ-bis-oxo bridging mode produces a V2O2 rhombus with alternating short-long V—O bond distances of 1.705 (1) Å and 2.293 (1) Å, respectively. The terminal oxo-groups rest in the plane of the V2O2 rhombus and exhibit a pronounced trans-influence on the elongated bridging oxo-group-vanadium distance, V1—O2. The coordination geometry at the vanadium sites also exhibits a fluoride ligand with V—F of 1.806 (1) Å with the V—F vector approximately normal to the V2O2 rhombus. The V—F vectors of the binuclear unit adopt an anti-orientation with respect to the V2O2 rhombus. The geometry is completed by the nitrogen donors of the 2,2'-bipyridine ligand, which occupy positions trans to the short V—O bond of the rhombus and trans to the terminal fluoride ligand. The crystal packing is stabilized by weak intermolecular C—H···O and C—H···F hydrogen bonding.

For oxyfluoromolybdates and oxyfluorovanadates, see: Adil et al. (2010); Burkholder & Zubieta (2004); DeBurgomaster & Zubieta (2010); Jones et al. (2010); Michailovski et al. (2006, 2009).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular dimer of the title compound, with the atom-labeling scheme and the displacement ellipsoids drawn at the 50% probability level. Color scheme: vanadium, orange; oxygen, red; fluorine, green; nitrogen, light blue; carbon, black; hydrogen, pink.
di-µ-oxido-bis[(2,2'-bipyridyl)fluoridooxidovanadium(V)] top
Crystal data top
[V2F2O4(C10H8N)2]F(000) = 1040.0
Mr = 516.25Dx = 1.737 Mg m3
Dm = 1.74 (2) Mg m3
Dm measured by flotation
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5752 reflections
a = 9.7526 (6) Åθ = 2.6–28.3°
b = 12.6499 (8) ŵ = 1.00 mm1
c = 16.023 (5) ÅT = 90 K
β = 92.631 (5)°Rod, yellow
V = 1974.7 (6) Å30.22 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
2406 independent reflections
Radiation source: fine-focus sealed tube2357 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 512 pixels mm-1θmax = 28.1°, θmin = 2.5°
φ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 1616
Tmin = 0.866, Tmax = 0.905l = 2021
9692 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0314P)2 + 4.0741P]
where P = (Fo2 + 2Fc2)/3
2406 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[V2F2O4(C10H8N)2]V = 1974.7 (6) Å3
Mr = 516.25Z = 4
Monoclinic, C2/cMo Kα radiation
a = 9.7526 (6) ŵ = 1.00 mm1
b = 12.6499 (8) ÅT = 90 K
c = 16.023 (5) Å0.22 × 0.12 × 0.10 mm
β = 92.631 (5)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
2406 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2357 reflections with I > 2σ(I)
Tmin = 0.866, Tmax = 0.905Rint = 0.018
9692 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.13Δρmax = 0.38 e Å3
2406 reflectionsΔρmin = 0.38 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.10805 (3)1.04160 (2)0.066763 (17)0.01424 (10)
F10.01010 (11)1.03518 (8)0.15020 (6)0.0199 (2)
O10.21267 (13)1.13285 (10)0.10042 (8)0.0205 (3)
O20.01453 (12)0.90041 (9)0.01329 (7)0.0133 (2)
N10.20945 (14)0.90735 (11)0.13175 (9)0.0144 (3)
N20.25791 (14)0.97955 (11)0.01525 (9)0.0142 (3)
C10.17578 (18)0.87555 (14)0.20780 (11)0.0176 (3)
H10.11060.91560.23670.021*
C20.23257 (18)0.78627 (14)0.24593 (11)0.0183 (3)
H20.20560.76500.29960.022*
C30.32950 (18)0.72849 (13)0.20438 (11)0.0185 (3)
H30.36960.66690.22900.022*
C40.36682 (18)0.76235 (14)0.12620 (11)0.0180 (3)
H40.43390.72480.09690.022*
C50.30457 (16)0.85198 (13)0.09144 (10)0.0137 (3)
C60.33609 (17)0.89567 (13)0.00892 (10)0.0144 (3)
C70.44046 (17)0.85774 (14)0.03932 (11)0.0183 (3)
H70.49400.79850.02140.022*
C80.46484 (17)0.90815 (15)0.11414 (11)0.0199 (4)
H80.53570.88390.14810.024*
C90.38475 (18)0.99419 (15)0.13875 (11)0.0204 (4)
H90.40021.02990.18960.024*
C100.28181 (18)1.02718 (14)0.08794 (11)0.0178 (3)
H100.22621.08560.10520.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.01400 (15)0.01331 (15)0.01525 (16)0.00446 (10)0.00118 (10)0.00316 (10)
F10.0225 (5)0.0227 (5)0.0148 (5)0.0086 (4)0.0030 (4)0.0001 (4)
O10.0197 (6)0.0188 (6)0.0226 (6)0.0028 (5)0.0028 (5)0.0063 (5)
O20.0146 (5)0.0124 (5)0.0129 (5)0.0035 (4)0.0002 (4)0.0001 (4)
N10.0134 (6)0.0154 (6)0.0140 (6)0.0032 (5)0.0016 (5)0.0015 (5)
N20.0132 (6)0.0160 (6)0.0134 (7)0.0011 (5)0.0001 (5)0.0018 (5)
C10.0180 (8)0.0197 (8)0.0150 (8)0.0044 (6)0.0000 (6)0.0017 (6)
C20.0207 (8)0.0193 (8)0.0145 (8)0.0009 (6)0.0010 (6)0.0004 (6)
C30.0218 (8)0.0130 (7)0.0201 (8)0.0030 (6)0.0037 (7)0.0003 (6)
C40.0183 (8)0.0151 (8)0.0207 (8)0.0049 (6)0.0006 (6)0.0015 (6)
C50.0128 (7)0.0140 (7)0.0139 (7)0.0009 (6)0.0022 (6)0.0028 (6)
C60.0140 (7)0.0140 (7)0.0150 (8)0.0002 (6)0.0014 (6)0.0033 (6)
C70.0152 (8)0.0188 (8)0.0208 (8)0.0032 (6)0.0011 (6)0.0033 (6)
C80.0151 (8)0.0257 (9)0.0192 (8)0.0012 (7)0.0040 (6)0.0050 (7)
C90.0182 (8)0.0258 (9)0.0173 (8)0.0005 (7)0.0031 (6)0.0015 (7)
C100.0161 (8)0.0194 (8)0.0178 (8)0.0023 (6)0.0001 (6)0.0009 (6)
Geometric parameters (Å, º) top
V1—O11.6167 (13)C2—H20.9500
V1—O2i1.7052 (12)C3—C41.388 (3)
V1—F11.8064 (11)C3—H30.9500
V1—N22.1576 (14)C4—C51.390 (2)
V1—N12.2027 (14)C4—H40.9500
V1—O22.2934 (12)C5—C61.478 (2)
V1—V1i3.1165 (6)C6—C71.391 (2)
N1—C11.338 (2)C7—C81.388 (3)
N1—C51.350 (2)C7—H70.9500
N2—C101.341 (2)C8—C91.386 (3)
N2—C61.353 (2)C8—H80.9500
C1—C21.387 (2)C9—C101.386 (2)
C1—H10.9500C9—H90.9500
C2—C31.389 (2)C10—H100.9500
O1—V1—O2i104.55 (6)N1—C1—H1118.8
O1—V1—F1101.51 (6)C2—C1—H1118.8
O2i—V1—F1103.81 (5)C1—C2—C3118.95 (16)
O1—V1—N291.61 (6)C1—C2—H2120.5
O2i—V1—N293.00 (5)C3—C2—H2120.5
F1—V1—N2155.14 (5)C4—C3—C2118.86 (16)
O1—V1—N197.47 (6)C4—C3—H3120.6
O2i—V1—N1154.20 (5)C2—C3—H3120.6
F1—V1—N184.45 (5)C3—C4—C5119.03 (16)
N2—V1—N172.87 (5)C3—C4—H4120.5
O1—V1—O2172.25 (6)C5—C4—H4120.5
O2i—V1—O278.60 (5)N1—C5—C4121.90 (16)
F1—V1—O284.39 (5)N1—C5—C6114.17 (14)
N2—V1—O281.09 (5)C4—C5—C6123.93 (15)
N1—V1—O277.95 (5)N2—C6—C7121.90 (16)
O1—V1—V1i150.07 (5)N2—C6—C5114.31 (14)
O2i—V1—V1i46.17 (4)C7—C6—C5123.74 (15)
F1—V1—V1i93.36 (4)C8—C7—C6118.69 (16)
N2—V1—V1i85.11 (4)C8—C7—H7120.7
N1—V1—V1i109.81 (4)C6—C7—H7120.7
O2—V1—V1i32.44 (3)C9—C8—C7119.33 (16)
V1i—O2—V1101.40 (5)C9—C8—H8120.3
C1—N1—C5118.83 (15)C7—C8—H8120.3
C1—N1—V1122.59 (11)C10—C9—C8118.90 (17)
C5—N1—V1118.50 (11)C10—C9—H9120.5
C10—N2—C6118.87 (15)C8—C9—H9120.5
C10—N2—V1121.00 (11)N2—C10—C9122.31 (16)
C6—N2—V1119.98 (11)N2—C10—H10118.8
N1—C1—C2122.42 (16)C9—C10—H10118.8
O2i—V1—O2—V1i0.0V1i—V1—N2—C6112.39 (12)
F1—V1—O2—V1i105.34 (6)C5—N1—C1—C21.6 (3)
N2—V1—O2—V1i94.91 (6)V1—N1—C1—C2175.09 (13)
N1—V1—O2—V1i169.16 (6)N1—C1—C2—C31.0 (3)
O1—V1—N1—C191.27 (14)C1—C2—C3—C40.3 (3)
O2i—V1—N1—C1120.14 (16)C2—C3—C4—C51.0 (3)
F1—V1—N1—C19.65 (13)C1—N1—C5—C40.9 (2)
N2—V1—N1—C1179.35 (14)V1—N1—C5—C4175.93 (12)
O2—V1—N1—C195.08 (13)C1—N1—C5—C6178.60 (14)
V1i—V1—N1—C1101.23 (13)V1—N1—C5—C64.58 (18)
O1—V1—N1—C592.04 (13)C3—C4—C5—N10.4 (3)
O2i—V1—N1—C556.55 (19)C3—C4—C5—C6179.83 (15)
F1—V1—N1—C5167.04 (12)C10—N2—C6—C70.1 (2)
N2—V1—N1—C52.66 (11)V1—N2—C6—C7175.39 (12)
O2—V1—N1—C581.61 (12)C10—N2—C6—C5177.71 (14)
V1i—V1—N1—C575.46 (12)V1—N2—C6—C52.18 (18)
O1—V1—N2—C1078.03 (14)N1—C5—C6—N24.3 (2)
O2i—V1—N2—C1026.64 (13)C4—C5—C6—N2176.19 (15)
F1—V1—N2—C10159.61 (13)N1—C5—C6—C7173.19 (15)
N1—V1—N2—C10175.34 (14)C4—C5—C6—C76.3 (3)
O2—V1—N2—C10104.61 (13)N2—C6—C7—C80.3 (3)
V1i—V1—N2—C1072.17 (13)C5—C6—C7—C8177.03 (15)
O1—V1—N2—C697.41 (13)C6—C7—C8—C90.2 (3)
O2i—V1—N2—C6157.93 (12)C7—C8—C9—C100.3 (3)
F1—V1—N2—C625.0 (2)C6—N2—C10—C90.7 (3)
N1—V1—N2—C60.09 (12)V1—N2—C10—C9174.79 (13)
O2—V1—N2—C679.96 (12)C8—C9—C10—N20.8 (3)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···F1ii0.952.593.493 (2)160
C2—H2···O1iii0.952.423.161 (2)134
C3—H3···F1iv0.952.433.050 (2)123
C3—H3···F1iii0.952.863.760 (2)159
C4—H4···O2v0.952.523.407 (2)155
C4—H4···F1iv0.952.603.131 (2)116
C7—H7···O2v0.952.533.366 (2)147
Symmetry codes: (ii) x, y, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y1/2, z; (v) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formula[V2F2O4(C10H8N)2]
Mr516.25
Crystal system, space groupMonoclinic, C2/c
Temperature (K)90
a, b, c (Å)9.7526 (6), 12.6499 (8), 16.023 (5)
β (°) 92.631 (5)
V3)1974.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.22 × 0.12 × 0.10
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.866, 0.905
No. of measured, independent and
observed [I > 2σ(I)] reflections
9692, 2406, 2357
Rint0.018
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.079, 1.13
No. of reflections2406
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.38

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···F1i0.952.593.493 (2)159.5
C2—H2···O1ii0.952.423.161 (2)134.2
C3—H3···F1iii0.952.433.050 (2)123.1
C3—H3···F1ii0.952.863.760 (2)159.4
C4—H4···O2iv0.952.523.407 (2)154.6
C4—H4···F1iii0.952.603.131 (2)116.0
C7—H7···O2iv0.952.533.366 (2)147.4
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y1/2, z; (iv) x+1/2, y+3/2, z.
 

Acknowledgements

This work was supported by a grant from the National Science Foundation (CHE-0907787).

References

First citationAdil, K., Leblanc, M., Maisonneuve, V. & Lightfoot, P. (2010). Dalton Trans. pp. 5983–5993.  Web of Science CrossRef Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurkholder, E. & Zubieta, J. (2004). Inorg. Chim. Acta, 357, 279–284.  Web of Science CSD CrossRef CAS Google Scholar
First citationDeBurgomaster, P. & Zubieta, J. (2010). Acta Cryst. E66, m909.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJones, S., Liu, H., Ouellette, W., Schmidtke, K., O'Connor, C. J. & Zubieta, J. (2010). Inorg. Chem. Commun. 13, 491–494.  Web of Science CSD CrossRef CAS Google Scholar
First citationMichailovski, A., Hussain, F., Springler, B., Wagler, J. & Patzke, G. R. (2009). Cryst. Growth Des. 9, 755–765.  Web of Science CSD CrossRef CAS Google Scholar
First citationMichailovski, A., Rüegger, H., Skeptzakov, D. & Patzke, G. R. (2006). Inorg. Chem. 45, 5641–5652.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPalmer, D. (2006). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds