organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4′-Chloro­bi­phenyl-3-yl 2,2,2-tri­chloro­ethyl sulfate

aThe University of Iowa, Department of Occupational and Environmental Health, UI Research Campus, 124 IREH, Iowa City, IA 52242-5000, USA, bUniversity of Kentucky, Department of Chemistry, Lexington, KY 40506-0055, USA, and cDivision of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
*Correspondence e-mail: hans-joachim-lehmler@uiowa.edu

(Received 21 July 2010; accepted 4 August 2010; online 18 August 2010)

The title compound, C14H10Cl4O4S, is a 2,2,2-trichloro­ethyl-protected precursor of 4′-chloro­biphenyl-3-yl sulfate, a sulfuric acid ester of 4′-chloro­biphenyl-3-ol. The Caromatic—O and O—S bond lengths of the Caromatic—O—S unit are comparable to those in structurally analogous biphenyl-4-yl 2,2,2-trichloro­ethyl sulfates with no electro­negative chlorine substituent in the benzene ring with the sulfate ester group. The dihedral angle between the aromatic rings is 27.47 (6)°.

Related literature

For similar structures of sulfuric acid biphenyl-4-yl ester 2,2,2-trichloro-ethyl esters, see: Li et al. (2008[Li, X., Parkin, S., Robertson, L. W. & Lehmler, H.-J. (2008). Acta Cryst. E64, o2464.], 2010a[Li, X., Parkin, S., Duffel, M. W., Robertson, L. W. & Lehmler, H.-J. (2010a). Acta Cryst. E66, o1615-o1616.],b[Li, X., Parkin, S., Duffel, M. W., Robertson, L. W. & Lehmler, H.-J. (2010b). Acta Cryst. E66, o1073.],c[Li, X., Parkin, S., Duffel, M. W., Robertson, L. W. & Lehmler, H.-J. (2010c). Environ. Int. doi:10.1016/j.envint.2009.1002.1005.]). For a review of structures of sulfuric acid aryl mono esters, see: Brandao et al. (2005[Brandao, T. A. S., Priebe, J. P., Damasceno, A. S., Bortoluzzi, A. J., Kirby, A. J. & Nome, F. (2005). J. Mol. Struct. 734, 205-209.]). For further discussion of dihedral angles in chlorinated biphenyl derivatives, see: Lehmler et al. (2002[Lehmler, H.-J., Parkin, S. & Robertson, L. W. (2002). Chemosphere, 46, 485-488.]); Shaikh et al. (2008[Shaikh, N. S., Parkin, S., Luthe, G. & Lehmler, H. J. (2008). Chemosphere, 70, 1694-1698.]); Vyas et al. (2006[Vyas, S. M., Parkin, S. & Lehmler, H.-J. (2006). Acta Cryst. E62, o2905-o2906.]). For additional background to hy­droxy­lated polychlorinated biphenyls, see: Bergman et al. (1994[Bergman, Å., Klasson-Wehler, E. & Kuroki, H. (1994). Environ. Health Perspect. 102, 464-469.]); Buckman et al. (2006[Buckman, A. H., Wong, C. S., Chow, E. A., Brown, S. B., Solomon, K. R. & Fisk, A. T. (2006). Aquat. Toxicol. 78, 176-185.]); Dirtu et al. (2010[Dirtu, A. C., Jaspers, V. L. B., Cernat, R., Neels, H. & Covaci, A. (2010). Environ. Sci. Technol. 44, 2876-2883.]); Liu et al. (2006[Liu, Y., Apak, T. I., Lehmler, H.-J., Robertson, L. W. & Duffel, M. W. (2006). Chem. Res. Toxicol. 19, 1420-1425.], 2009[Liu, Y., Smart, J. T., Song, Y., Lehmler, H.-J., Robertson, L. W. & Duffel, M. W. (2009). Drug Metab. Dispos. 37, 1065-1072.]); Nomiyama et al. (2010[Nomiyama, K., Murata, S., Kunisue, T., Yamada, T. K., Mizukawa, H., Takahashi, S. & Tanabe, S. (2010). Environ. Sci. Technol. 44, 3732-3738.]); Wang et al. (2006[Wang, L.-Q., Lehmler, H.-J., Robertson, L. W. & James, M. O. (2006). Chem. Biol. Interact. 159, 235-246.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10Cl4O4S

  • Mr = 416.08

  • Monoclinic, I 2/a

  • a = 21.1900 (3) Å

  • b = 5.8543 (1) Å

  • c = 26.6803 (5) Å

  • β = 98.304 (1)°

  • V = 3275.06 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 90 K

  • 0.41 × 0.22 × 0.06 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.718, Tmax = 0.950

  • 30021 measured reflections

  • 3759 independent reflections

  • 3242 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.067

  • S = 1.05

  • 3759 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and local procedures.

Supporting information


Comment top

Hydroxylated metabolites of polychlorinated biphenyls (OHPCBs) are present in the serum of humans (Bergman et al., 1994; Dirtu et al., 2010) and other animals (Buckman et al., 2006; Nomiyama et al., 2010). Recent studies also indicate that the mammalian cytosolic sulfotransferases catalyze the formation of sulfuric acid esters from OHPCBs (Liu et al., 2006; Liu et al., 2009; Wang et al., 2006). However, our knowledge of the metabolic and toxicologic significance of these sulfation reactions has been hindered by a lack of information on the structural and chemical properties of the sulfuric acid ester products. As one component of our continuing studies on the properties of the sulfuric acid esters of OHPCBs, we report here the structure of 4'-chloro-biphenyl-3-yl 2,2,2-trichloroethyl sulfate.

Several authors have proposed that the Caromatic—O and the corresponding O—S bond lengths are correlated with the stability of sulfuric acid conjugates (Brandao et al., 2005; Li et al., 2010a-c; Li et al., 2008). The Caromatic—O (i.e., C3'-O1) and O—S (i.e., O1—S1) bond lengths of the title compound are 1.4338 (17) Å and 1.5685 (11) Å, respectively. These values are comparable to the corresponding bond lengths reported for analogous biphenyl-4-yl 2,2,2-trichloroethyl sulfates with no electronegative chlorine substituent in the sulfated benzene ring (Li et al., 2010a-c; Li et al., 2008), which suggest that, analogous to biphenyl-4-yl sulfates, the 4'-chloro-biphenyl-3-yl sulfate corresponding to the title compound may be stable under physiological conditions (Brandao et al., 2005; Li et al., 2010c).

The dihedral angle of the biphenyl moiety of OHPCBs and, consequently, their sulfuric acid conjugates is associated with their affinity for cellular target molecules and, therefore, may correlate with their toxicity. The title compound adopts a solid state dihedral angle of 27.47 (6)°. The solid state dihedral angles of structurally related biphenyl-4-yl 2,2,2-trichloroethyl sulfates without ortho chlorine substituents ranges from 4.9 (2)° to 41.84 (16)° (Li et al., 2010a,b; Li et al., 2008). This large range of dihedral angles suggests, similar to the parent PCBs (Lehmler et al., 2002; Shaikh et al., 2008; Vyas et al., 2006), a conformational flexibility of the biphenyl moiety that allows the title compound and analogous biphenyl-4-yl sulfates to adopt an energetically less favorable conformation in the solid state due to crystal packing effects.

Related literature top

For similar structures of sulfuric acid biphenyl-4-yl ester 2,2,2-trichloro-ethyl esters, see: Li et al. (2008, 2010a,b,c). For a review of structures of sulfuric acid aryl mono esters, see: Brandao et al. (2005). For further discussion of dihedral angles in chlorinated biphenyl derivatives, see: Lehmler et al. (2002); Shaikh et al. (2008); Vyas et al. (2006). For additional background to hydroxylated polychlorinated biphenyls, see: Bergman et al. (1994); Buckman et al. (2006); Dirtu et al. (2010); Liu et al. (2006, 2009); Nomiyama et al. (2010); Wang et al. (2006).

Experimental top

The title compound was synthesized from 3',4'-dichlorobiphenyl-4-ol by sulfation with 2,2,2-trichloroethyl sulfonyl chloride using 4-dimethylaminopyridine as catalyst (Li et al., 2010c). Crystals suitable for crystal structure analysis were obtained by slowly evaporating a methanolic solution of the title compound.

Refinement top

H atoms were placed in idealized positions and were constrained with distances of 0.99 Å for CH2 and 0.95 Å for CarH, and with Uiso(H) = 1.2Ueq of their attached C atom.

Structure description top

Hydroxylated metabolites of polychlorinated biphenyls (OHPCBs) are present in the serum of humans (Bergman et al., 1994; Dirtu et al., 2010) and other animals (Buckman et al., 2006; Nomiyama et al., 2010). Recent studies also indicate that the mammalian cytosolic sulfotransferases catalyze the formation of sulfuric acid esters from OHPCBs (Liu et al., 2006; Liu et al., 2009; Wang et al., 2006). However, our knowledge of the metabolic and toxicologic significance of these sulfation reactions has been hindered by a lack of information on the structural and chemical properties of the sulfuric acid ester products. As one component of our continuing studies on the properties of the sulfuric acid esters of OHPCBs, we report here the structure of 4'-chloro-biphenyl-3-yl 2,2,2-trichloroethyl sulfate.

Several authors have proposed that the Caromatic—O and the corresponding O—S bond lengths are correlated with the stability of sulfuric acid conjugates (Brandao et al., 2005; Li et al., 2010a-c; Li et al., 2008). The Caromatic—O (i.e., C3'-O1) and O—S (i.e., O1—S1) bond lengths of the title compound are 1.4338 (17) Å and 1.5685 (11) Å, respectively. These values are comparable to the corresponding bond lengths reported for analogous biphenyl-4-yl 2,2,2-trichloroethyl sulfates with no electronegative chlorine substituent in the sulfated benzene ring (Li et al., 2010a-c; Li et al., 2008), which suggest that, analogous to biphenyl-4-yl sulfates, the 4'-chloro-biphenyl-3-yl sulfate corresponding to the title compound may be stable under physiological conditions (Brandao et al., 2005; Li et al., 2010c).

The dihedral angle of the biphenyl moiety of OHPCBs and, consequently, their sulfuric acid conjugates is associated with their affinity for cellular target molecules and, therefore, may correlate with their toxicity. The title compound adopts a solid state dihedral angle of 27.47 (6)°. The solid state dihedral angles of structurally related biphenyl-4-yl 2,2,2-trichloroethyl sulfates without ortho chlorine substituents ranges from 4.9 (2)° to 41.84 (16)° (Li et al., 2010a,b; Li et al., 2008). This large range of dihedral angles suggests, similar to the parent PCBs (Lehmler et al., 2002; Shaikh et al., 2008; Vyas et al., 2006), a conformational flexibility of the biphenyl moiety that allows the title compound and analogous biphenyl-4-yl sulfates to adopt an energetically less favorable conformation in the solid state due to crystal packing effects.

For similar structures of sulfuric acid biphenyl-4-yl ester 2,2,2-trichloro-ethyl esters, see: Li et al. (2008, 2010a,b,c). For a review of structures of sulfuric acid aryl mono esters, see: Brandao et al. (2005). For further discussion of dihedral angles in chlorinated biphenyl derivatives, see: Lehmler et al. (2002); Shaikh et al. (2008); Vyas et al. (2006). For additional background to hydroxylated polychlorinated biphenyls, see: Bergman et al. (1994); Buckman et al. (2006); Dirtu et al. (2010); Liu et al. (2006, 2009); Nomiyama et al. (2010); Wang et al. (2006).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and local procedures.

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
4'-Chlorobiphenyl-3-yl 2,2,2-trichloroethyl sulfate top
Crystal data top
C14H10Cl4O4SF(000) = 1680
Mr = 416.08Dx = 1.688 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 2yaCell parameters from 4127 reflections
a = 21.1900 (3) Åθ = 1.0–27.5°
b = 5.8543 (1) ŵ = 0.87 mm1
c = 26.6803 (5) ÅT = 90 K
β = 98.304 (1)°Plate, colourless
V = 3275.06 (10) Å30.41 × 0.22 × 0.06 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
3759 independent reflections
Radiation source: fine-focus sealed tube3242 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 18 pixels mm-1θmax = 27.5°, θmin = 1.5°
ω scans at fixed χ = 55°h = 2727
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 77
Tmin = 0.718, Tmax = 0.950l = 3434
30021 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0294P)2 + 3.9224P]
where P = (Fo2 + 2Fc2)/3
3759 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C14H10Cl4O4SV = 3275.06 (10) Å3
Mr = 416.08Z = 8
Monoclinic, I2/aMo Kα radiation
a = 21.1900 (3) ŵ = 0.87 mm1
b = 5.8543 (1) ÅT = 90 K
c = 26.6803 (5) Å0.41 × 0.22 × 0.06 mm
β = 98.304 (1)°
Data collection top
Nonius KappaCCD
diffractometer
3759 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
3242 reflections with I > 2σ(I)
Tmin = 0.718, Tmax = 0.950Rint = 0.041
30021 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.05Δρmax = 0.39 e Å3
3759 reflectionsΔρmin = 0.38 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.205499 (17)0.54226 (7)0.300571 (14)0.01597 (9)
O10.18726 (5)0.4208 (2)0.24808 (4)0.0172 (2)
O20.19895 (5)0.3440 (2)0.33919 (4)0.0183 (2)
O30.15849 (5)0.7045 (2)0.30865 (4)0.0221 (2)
O40.27060 (5)0.6040 (2)0.30274 (4)0.0248 (3)
Cl10.064775 (19)1.32997 (7)0.026719 (15)0.02388 (10)
Cl20.279773 (19)0.45519 (7)0.437358 (15)0.02180 (10)
Cl30.333188 (17)0.00690 (7)0.427046 (15)0.02125 (10)
Cl40.199083 (17)0.05436 (7)0.434813 (14)0.01980 (10)
C10.01131 (7)0.7573 (3)0.13260 (5)0.0141 (3)
C20.05371 (7)0.8102 (3)0.12421 (6)0.0169 (3)
H20.08230.72550.14140.020*
C30.07744 (7)0.9834 (3)0.09145 (6)0.0182 (3)
H30.12171.01760.08630.022*
C40.03566 (7)1.1058 (3)0.06635 (6)0.0173 (3)
C50.02901 (7)1.0572 (3)0.07324 (6)0.0179 (3)
H50.05711.14120.05550.021*
C60.05201 (7)0.8843 (3)0.10634 (6)0.0169 (3)
H60.09640.85120.11140.020*
C1'0.03627 (7)0.5740 (3)0.16854 (5)0.0139 (3)
C2'0.09909 (7)0.5839 (3)0.19354 (5)0.0147 (3)
H2'0.12590.70900.18810.018*
C3'0.12148 (7)0.4097 (3)0.22605 (5)0.0150 (3)
C4'0.08533 (7)0.2238 (3)0.23630 (6)0.0169 (3)
H4'0.10250.10620.25880.020*
C5'0.02240 (7)0.2170 (3)0.21209 (6)0.0175 (3)
H5'0.00440.09350.21860.021*
C6'0.00152 (7)0.3877 (3)0.17880 (5)0.0155 (3)
H6'0.04440.37850.16250.019*
C70.25272 (7)0.1927 (3)0.35354 (6)0.0166 (3)
H7A0.29100.25220.34060.020*
H7B0.24310.03870.33910.020*
C80.26470 (7)0.1800 (3)0.41106 (6)0.0153 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01324 (17)0.0176 (2)0.01656 (19)0.00114 (14)0.00035 (13)0.00386 (14)
O10.0119 (5)0.0242 (6)0.0157 (5)0.0030 (4)0.0023 (4)0.0016 (5)
O20.0130 (5)0.0241 (6)0.0179 (5)0.0007 (4)0.0025 (4)0.0087 (5)
O30.0221 (6)0.0204 (6)0.0228 (6)0.0036 (5)0.0000 (4)0.0015 (5)
O40.0158 (5)0.0291 (7)0.0282 (6)0.0073 (5)0.0011 (4)0.0095 (5)
Cl10.0251 (2)0.0248 (2)0.0220 (2)0.00861 (17)0.00412 (15)0.00689 (16)
Cl20.0263 (2)0.0171 (2)0.0219 (2)0.00104 (15)0.00333 (15)0.00356 (15)
Cl30.01544 (17)0.0210 (2)0.0267 (2)0.00532 (15)0.00114 (14)0.00543 (16)
Cl40.01582 (17)0.0237 (2)0.02059 (19)0.00115 (15)0.00512 (14)0.00656 (15)
C10.0139 (7)0.0161 (7)0.0124 (7)0.0002 (6)0.0017 (5)0.0024 (6)
C20.0122 (7)0.0210 (8)0.0178 (7)0.0024 (6)0.0032 (5)0.0008 (6)
C30.0115 (7)0.0231 (8)0.0196 (8)0.0011 (6)0.0003 (6)0.0021 (6)
C40.0196 (7)0.0177 (8)0.0137 (7)0.0047 (6)0.0000 (6)0.0007 (6)
C50.0179 (7)0.0195 (8)0.0175 (8)0.0004 (6)0.0066 (6)0.0017 (6)
C60.0120 (7)0.0203 (8)0.0190 (7)0.0020 (6)0.0048 (5)0.0003 (6)
C1'0.0127 (6)0.0173 (8)0.0123 (7)0.0005 (6)0.0034 (5)0.0017 (6)
C2'0.0132 (7)0.0170 (8)0.0149 (7)0.0011 (6)0.0050 (5)0.0005 (6)
C3'0.0109 (6)0.0199 (8)0.0144 (7)0.0023 (6)0.0027 (5)0.0021 (6)
C4'0.0213 (7)0.0158 (8)0.0143 (7)0.0018 (6)0.0051 (6)0.0006 (6)
C5'0.0215 (8)0.0166 (8)0.0155 (7)0.0053 (6)0.0067 (6)0.0028 (6)
C6'0.0145 (7)0.0186 (8)0.0138 (7)0.0019 (6)0.0034 (5)0.0033 (6)
C70.0168 (7)0.0180 (8)0.0152 (7)0.0029 (6)0.0030 (5)0.0024 (6)
C80.0136 (7)0.0145 (7)0.0180 (7)0.0016 (6)0.0031 (5)0.0009 (6)
Geometric parameters (Å, º) top
S1—O31.4153 (12)C4—C51.386 (2)
S1—O41.4191 (11)C5—C61.385 (2)
S1—O11.5685 (11)C5—H50.9500
S1—O21.5714 (11)C6—H60.9500
O1—C3'1.4338 (17)C1'—C2'1.401 (2)
O2—C71.4503 (18)C1'—C6'1.403 (2)
Cl1—C41.7412 (16)C2'—C3'1.378 (2)
Cl2—C81.7677 (16)C2'—H2'0.9500
Cl3—C81.7710 (15)C3'—C4'1.381 (2)
Cl4—C81.7693 (15)C4'—C5'1.396 (2)
C1—C21.398 (2)C4'—H4'0.9500
C1—C61.401 (2)C5'—C6'1.384 (2)
C1—C1'1.485 (2)C5'—H5'0.9500
C2—C31.385 (2)C6'—H6'0.9500
C2—H20.9500C7—C81.521 (2)
C3—C41.385 (2)C7—H7A0.9900
C3—H30.9500C7—H7B0.9900
O3—S1—O4121.62 (8)C6'—C1'—C1121.85 (13)
O3—S1—O1110.62 (6)C3'—C2'—C1'119.08 (14)
O4—S1—O1105.34 (7)C3'—C2'—H2'120.5
O3—S1—O2105.39 (7)C1'—C2'—H2'120.5
O4—S1—O2109.79 (6)C2'—C3'—C4'123.88 (14)
O1—S1—O2102.53 (6)C2'—C3'—O1116.77 (13)
C3'—O1—S1119.08 (9)C4'—C3'—O1119.27 (14)
C7—O2—S1118.95 (9)C3'—C4'—C5'116.82 (14)
C2—C1—C6117.78 (14)C3'—C4'—H4'121.6
C2—C1—C1'120.96 (13)C5'—C4'—H4'121.6
C6—C1—C1'121.26 (13)C6'—C5'—C4'120.90 (14)
C3—C2—C1121.53 (14)C6'—C5'—H5'119.6
C3—C2—H2119.2C4'—C5'—H5'119.6
C1—C2—H2119.2C5'—C6'—C1'121.33 (14)
C2—C3—C4119.01 (14)C5'—C6'—H6'119.3
C2—C3—H3120.5C1'—C6'—H6'119.3
C4—C3—H3120.5O2—C7—C8107.85 (12)
C3—C4—C5121.24 (15)O2—C7—H7A110.1
C3—C4—Cl1119.25 (12)C8—C7—H7A110.1
C5—C4—Cl1119.48 (12)O2—C7—H7B110.1
C6—C5—C4119.01 (14)C8—C7—H7B110.1
C6—C5—H5120.5H7A—C7—H7B108.5
C4—C5—H5120.5C7—C8—Cl2110.51 (11)
C5—C6—C1121.43 (14)C7—C8—Cl4110.88 (11)
C5—C6—H6119.3Cl2—C8—Cl4110.07 (8)
C1—C6—H6119.3C7—C8—Cl3106.40 (10)
C2'—C1'—C6'117.97 (14)Cl2—C8—Cl3109.34 (8)
C2'—C1'—C1120.18 (13)Cl4—C8—Cl3109.56 (8)
O3—S1—O1—C3'24.84 (13)C2—C1—C1'—C6'27.7 (2)
O4—S1—O1—C3'158.01 (11)C6—C1—C1'—C6'152.88 (15)
O2—S1—O1—C3'87.12 (11)C6'—C1'—C2'—C3'1.4 (2)
O3—S1—O2—C7158.44 (11)C1—C1'—C2'—C3'178.90 (13)
O4—S1—O2—C725.84 (13)C1'—C2'—C3'—C4'0.8 (2)
O1—S1—O2—C785.75 (11)C1'—C2'—C3'—O1176.06 (13)
C6—C1—C2—C30.5 (2)S1—O1—C3'—C2'91.88 (14)
C1'—C1—C2—C3178.90 (14)S1—O1—C3'—C4'91.13 (15)
C1—C2—C3—C40.2 (2)C2'—C3'—C4'—C5'0.5 (2)
C2—C3—C4—C50.4 (2)O1—C3'—C4'—C5'177.25 (13)
C2—C3—C4—Cl1177.88 (12)C3'—C4'—C5'—C6'1.2 (2)
C3—C4—C5—C60.7 (2)C4'—C5'—C6'—C1'0.6 (2)
Cl1—C4—C5—C6177.54 (12)C2'—C1'—C6'—C5'0.7 (2)
C4—C5—C6—C10.4 (2)C1—C1'—C6'—C5'179.55 (14)
C2—C1—C6—C50.2 (2)S1—O2—C7—C8129.66 (11)
C1'—C1—C6—C5179.25 (14)O2—C7—C8—Cl258.24 (14)
C2—C1—C1'—C2'152.01 (15)O2—C7—C8—Cl464.09 (14)
C6—C1—C1'—C2'27.4 (2)O2—C7—C8—Cl3176.84 (10)

Experimental details

Crystal data
Chemical formulaC14H10Cl4O4S
Mr416.08
Crystal system, space groupMonoclinic, I2/a
Temperature (K)90
a, b, c (Å)21.1900 (3), 5.8543 (1), 26.6803 (5)
β (°) 98.304 (1)
V3)3275.06 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.41 × 0.22 × 0.06
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.718, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
30021, 3759, 3242
Rint0.041
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.067, 1.05
No. of reflections3759
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.38

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and local procedures.

 

Acknowledgements

This research was supported by grants ES05605, ES013661 and ES017425 from the National Institute of Environmental Health Sciences, NIH.

References

First citationBergman, Å., Klasson-Wehler, E. & Kuroki, H. (1994). Environ. Health Perspect. 102, 464–469.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBrandao, T. A. S., Priebe, J. P., Damasceno, A. S., Bortoluzzi, A. J., Kirby, A. J. & Nome, F. (2005). J. Mol. Struct. 734, 205–209.  Web of Science CSD CrossRef CAS Google Scholar
First citationBuckman, A. H., Wong, C. S., Chow, E. A., Brown, S. B., Solomon, K. R. & Fisk, A. T. (2006). Aquat. Toxicol. 78, 176–185.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDirtu, A. C., Jaspers, V. L. B., Cernat, R., Neels, H. & Covaci, A. (2010). Environ. Sci. Technol. 44, 2876–2883.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLehmler, H.-J., Parkin, S. & Robertson, L. W. (2002). Chemosphere, 46, 485–488.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, X., Parkin, S., Duffel, M. W., Robertson, L. W. & Lehmler, H.-J. (2010a). Acta Cryst. E66, o1615–o1616.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, X., Parkin, S., Duffel, M. W., Robertson, L. W. & Lehmler, H.-J. (2010b). Acta Cryst. E66, o1073.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, X., Parkin, S., Duffel, M. W., Robertson, L. W. & Lehmler, H.-J. (2010c). Environ. Int. doi:10.1016/j.envint.2009.1002.1005.  Google Scholar
First citationLi, X., Parkin, S., Robertson, L. W. & Lehmler, H.-J. (2008). Acta Cryst. E64, o2464.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLiu, Y., Apak, T. I., Lehmler, H.-J., Robertson, L. W. & Duffel, M. W. (2006). Chem. Res. Toxicol. 19, 1420–1425.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, Y., Smart, J. T., Song, Y., Lehmler, H.-J., Robertson, L. W. & Duffel, M. W. (2009). Drug Metab. Dispos. 37, 1065–1072.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNomiyama, K., Murata, S., Kunisue, T., Yamada, T. K., Mizukawa, H., Takahashi, S. & Tanabe, S. (2010). Environ. Sci. Technol. 44, 3732–3738.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationShaikh, N. S., Parkin, S., Luthe, G. & Lehmler, H. J. (2008). Chemosphere, 70, 1694–1698.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVyas, S. M., Parkin, S. & Lehmler, H.-J. (2006). Acta Cryst. E62, o2905–o2906.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWang, L.-Q., Lehmler, H.-J., Robertson, L. W. & James, M. O. (2006). Chem. Biol. Interact. 159, 235–246.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds