metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m942-m943

Di­chloridobis[2-(2-chloro­ethyl)-1,2,3,4-tetra­hydro­pyrazino[1,2-a]benzimidazole-κN]cobalt(II)

aCoordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: zzkltl@163.com

(Received 10 May 2008; accepted 13 June 2008; online 19 June 2008)

In the title compound, [CoCl2(C12H14ClN3)2], the central CoII ion lies on a twofold rotation axis and adopts a distorted tetra­hedral coordination geometry defined by two N atoms from two 2-(2-chloro­ethyl)-1,2,3,4-tetra­hydro­pyrazino[1,2-a]benzimidazole ligands and two chloride anions. The Cl atom located in the side chain of the ligand is involved in inter­molecular C—H⋯Cl hydrogen bonding, which links neutral complex units into a one-dimensional right-handed helical chain running along a crystallographic 41 axis. Such hydrogen-bonded helical chains are connected to each other to form a homochiral three-dimensional supra­molecular network. One C atom of the 2-chloro­ethyl chain is disordered over two positions, with site-occupancy factors of 0.52 and 0.48.

Related literature

For related literature, see: Balamurugan et al. (2004[Balamurugan, V., Hundal, M. S. & Mukherjee, R. (2004). Chem. Eur. J. 10, 1683-1690.]); Matrick & Day (1961[Matrick, H. & Day, A. R. (1961). J. Org. Chem. 26, 1511-1514.]); Parker et al. (2004[Parker, L. L., Lacy, S. M., Farrugia, L. J., Evans, C., Robins, D. J., O'Hare, C. C., Hartley, J. A., Jaffar, M. & Stratford, I. J. (2004). J. Med. Chem. 47, 5683-5689.]); Sundberg et al. (1977[Sundberg, R. J., Yilmaz, I. & Mente, D. C. (1977). Inorg. Chem. 16, 1470-1476.]).

[Scheme 1]

Experimental

Crystal data
  • [CoCl2(C12H14ClN3)2]

  • Mr = 601.25

  • Tetragonal, P 41 21 2

  • a = 9.5706 (8) Å

  • c = 29.911 (4) Å

  • V = 2739.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 293 (2) K

  • 0.32 × 0.21 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.763, Tmax = 0.829

  • 14573 measured reflections

  • 2703 independent reflections

  • 2219 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.131

  • S = 1.01

  • 2703 reflections

  • 169 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.80 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1274 Friedel pairs

  • Flack parameter: 0.07 (5)

Table 1
Selected geometric parameters (Å, °)

Co1—N2 2.026 (4)
Co1—Cl2 2.2423 (13)
N2i—Co1—N2 103.8 (2)
N2—Co1—Cl2 109.08 (12)
Cl2—Co1—Cl2i 110.64 (7)
Symmetry code: (i) y, x, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯Cl1ii 0.97 2.87 3.812 (5) 164
C5—H5⋯Cl2iii 0.93 2.79 3.709 (5) 171
Symmetry codes: (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 4}}]; (iii) [y-{\script{1\over 2}}, -x+{\script{5\over 2}}, z-{\script{1\over 4}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. University of Bonn, Germany.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nitrogen mustards that contain a reactive N,N-bis-(2-chloroethyl)amine group are widely used as alkylating agents in cancer chemotherapy. However, these nitrogen mustards exhibit high chemical reactivity and usually show no selectivity of DNA alkylation. Recently, it has been proved that complexation of macrocyclic nitrogen mustards with metals may be an effective strategy in the design of hypoxia-selective antitumor prodrugs (Parker et al., 2004). As part of our work, some metal complexes of a monofunctional mustard, 2-(2-chloroethyl)-l,2,3,4-tetrahydropyrazino[1,2-a]benzimidazole (L), were prepared in order to evaluate their antitumor and antimalarial activities. Here, we report the crystal structure of a novel Co(II) mustard complex.

As depicted in Fig. 1, the complete complex molecule is generated by a twofold symmetry operation, with the CoII ion located on the rotation axis. The distorted tetrahedral coordination sphere around the CoII center consists of two benzimidazole N atoms from two L ligands and two chloride anions. The Co—N distance of 2.026 (4) Å and Co—Cl length of 2.2423 (13) Å (Table 1) are comparable to those reported in the literature (Sundberg et al., 1977).

In the crystal packing, intermolecular C—H···Cl hydrogen bonding play a key role. Fig. 2 illustrates that adjacent neutral complex units are connected by C1—H1A···Cl1 interactions into a one-dimensional right-handed helical architecture running along a crystallographic 41 screw axis in the c direction. Five complex fragments form a helix turn with a long pitch of 29.911 (4) Å. The shortest intrachain Co—Co distance is 10.072 Å. Further C—H···Cl hydrogen bond linkages (Table 2) extend such one-dimensional helical chains into a homochiral three-dimensional hydrogen-bonded network (Balamurugan et al., 2004).

Related literature top

For related literature, see: Balamurugan et al. (2004); Matrick & Day (1961); Parker et al. (2004); Sundberg et al. (1977).

Experimental top

The ligand 2-(2-chloroethyl)-l,2,3,4-tetrahydropyrazino[1,2-a]benzimidazole was synthesized according to a literature method (Matrick & Day, 1961).

The title compound was prepared by adding a methanol solution (10 ml) of CoCl2.6H2O (1 mmol) into a methanol solution (10 ml) of 2-(2-chloroethyl)-l,2,3,4-tetrahydropyrazino[1,2-a]benzimidazole (2 mmol). The resulting mixture was refluxed for two hours and filtered after cooling to room temperature. Blue single crystals of the title compound suitable for X-ray diffraction analysis were obtained by slow diffusion of diethyl ether into the filtrate. Elemental analysis found: C 47.80; H 4.60; N 14.03%; calculated for C24H28Cl4CoN6: C 47.94; H 4.69; N 13.98%.

Refinement top

The 2-chloroethyl chain attached to N atom displays rotational disorder and its C12 atom was split into two positions (C12A and C12B) with site-occupancy factors of 0.52 and 0.48. A l l H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.93 - 0.97 Å and with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure with atom labels and 30% probability displacement ellipsoids for non-H atoms. Both disordered components of the 2-chloroethyl chain are shown. [Symmetry code: (i) y, x, -z]
[Figure 2] Fig. 2. Fragment of a one-dimensional right-handed helical chain with the intermolecular C—H···Cl hydrogen bond indicated by dashed line. For clarity only the major disordered component is shown. [Symmetry code: (ii) 3/2 - x, -1/2 + y, 1/4 - z]
dichloridobis[2-(2-chloroethyl)-1,2,3,4- tetrahydropyrazino[1,2-a]benzimidazole-κN]cobalt(II) top
Crystal data top
[CoCl2(C12H14ClN3)2]Dx = 1.458 Mg m3
Mr = 601.25Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212Cell parameters from 835 reflections
Hall symbol: P 4abw 2nwθ = 2.5–16.9°
a = 9.5706 (8) ŵ = 1.04 mm1
c = 29.911 (4) ÅT = 293 K
V = 2739.7 (5) Å3Prism, blue
Z = 40.32 × 0.21 × 0.18 mm
F(000) = 1236
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2703 independent reflections
Radiation source: sealed tube2219 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ϕ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 117
Tmin = 0.763, Tmax = 0.829k = 1111
14573 measured reflectionsl = 3635
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0877P)2 + 1.82P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2703 reflectionsΔρmax = 0.54 e Å3
169 parametersΔρmin = 0.80 e Å3
2 restraintsAbsolute structure: Flack (1983), 1274 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (5)
Crystal data top
[CoCl2(C12H14ClN3)2]Z = 4
Mr = 601.25Mo Kα radiation
Tetragonal, P41212µ = 1.04 mm1
a = 9.5706 (8) ÅT = 293 K
c = 29.911 (4) Å0.32 × 0.21 × 0.18 mm
V = 2739.7 (5) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2703 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2219 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 0.829Rint = 0.061
14573 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.131Δρmax = 0.54 e Å3
S = 1.01Δρmin = 0.80 e Å3
2703 reflectionsAbsolute structure: Flack (1983), 1274 Friedel pairs
169 parametersAbsolute structure parameter: 0.07 (5)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.99857 (7)0.99857 (7)0.00000.0305 (2)
C10.7722 (5)0.8869 (5)0.07778 (15)0.0312 (10)
H1A0.78250.79090.06790.037*
H1B0.86350.92110.08660.037*
C20.7177 (5)0.9724 (5)0.04111 (16)0.0327 (11)
C30.6905 (5)1.0950 (5)0.01903 (17)0.0336 (11)
C40.7080 (5)1.1677 (5)0.05859 (18)0.0332 (11)
H40.79451.17500.07260.040*
C50.5873 (5)1.2300 (5)0.07639 (16)0.0339 (11)
H50.59401.27750.10340.041*
C60.4595 (6)1.2234 (5)0.05550 (17)0.0368 (12)
H60.38261.26930.06750.044*
C70.4469 (5)1.1478 (5)0.01639 (16)0.0317 (11)
H70.36041.13980.00240.038*
C80.5617 (5)1.0847 (5)0.00170 (18)0.0335 (11)
C90.4822 (5)0.9696 (5)0.07306 (16)0.0325 (11)
H9A0.39640.93990.05870.039*
H9B0.46121.04960.09180.039*
C100.5382 (5)0.8555 (5)0.10051 (16)0.0354 (12)
H10A0.47800.83970.12610.042*
H10B0.54180.77010.08310.042*
C110.7325 (6)0.8092 (5)0.15130 (16)0.0348 (11)
H11A0.77240.72470.13870.042*0.520 (13)
H11B0.65580.78160.17060.042*0.520 (13)
H11C0.83350.81740.15150.042*0.480 (13)
H11D0.70950.71200.14580.042*0.480 (13)
C12A0.8428 (10)0.8809 (9)0.1796 (3)0.033 (3)0.520 (13)
H12A0.91320.92120.16010.039*0.520 (13)
H12B0.88830.81210.19840.039*0.520 (13)
C12B0.6908 (11)0.8567 (10)0.1978 (3)0.034 (3)0.480 (13)
H12C0.71540.78450.21920.040*0.480 (13)
H12D0.59030.86910.19880.040*0.480 (13)
N10.6779 (4)0.8924 (5)0.11560 (13)0.0345 (9)
N20.7894 (4)1.0231 (4)0.00683 (13)0.0341 (9)
N30.5833 (4)1.0082 (5)0.03979 (13)0.0359 (9)
Cl10.77153 (12)1.01254 (13)0.21326 (4)0.0341 (3)
Cl21.10525 (13)1.08043 (13)0.06139 (4)0.0345 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0302 (3)0.0302 (3)0.0311 (4)0.0010 (4)0.0031 (3)0.0031 (3)
C10.033 (3)0.030 (2)0.030 (2)0.004 (2)0.003 (2)0.001 (2)
C20.036 (3)0.032 (3)0.031 (2)0.003 (2)0.012 (2)0.005 (2)
C30.035 (3)0.028 (3)0.038 (3)0.000 (2)0.009 (2)0.007 (2)
C40.029 (3)0.032 (3)0.039 (3)0.001 (2)0.005 (2)0.007 (2)
C50.036 (3)0.028 (3)0.037 (3)0.006 (2)0.002 (2)0.017 (2)
C60.038 (3)0.032 (3)0.040 (3)0.005 (2)0.002 (2)0.003 (2)
C70.032 (3)0.032 (3)0.031 (2)0.005 (2)0.000 (2)0.0074 (19)
C80.031 (3)0.035 (3)0.035 (2)0.005 (2)0.009 (2)0.007 (2)
C90.031 (3)0.035 (3)0.031 (2)0.005 (2)0.002 (2)0.0002 (19)
C100.036 (3)0.041 (3)0.029 (2)0.001 (2)0.003 (2)0.016 (2)
C110.040 (3)0.036 (3)0.029 (3)0.002 (2)0.002 (2)0.003 (2)
C12A0.036 (5)0.031 (5)0.031 (5)0.000 (4)0.002 (4)0.007 (4)
C12B0.032 (6)0.032 (6)0.036 (6)0.001 (4)0.003 (4)0.002 (4)
N10.039 (2)0.035 (2)0.030 (2)0.0055 (19)0.0004 (18)0.0035 (18)
N20.035 (2)0.037 (2)0.0303 (19)0.0010 (18)0.0003 (17)0.0028 (17)
N30.036 (2)0.035 (2)0.037 (2)0.0003 (19)0.0060 (18)0.005 (2)
Cl10.0330 (6)0.0355 (6)0.0339 (6)0.0082 (5)0.0012 (5)0.0007 (5)
Cl20.0367 (7)0.0333 (7)0.0336 (6)0.0011 (5)0.0071 (5)0.0038 (5)
Geometric parameters (Å, º) top
Co1—N2i2.026 (4)C9—N31.436 (6)
Co1—N22.026 (4)C9—C101.468 (6)
Co1—Cl22.2423 (13)C9—H9A0.9700
Co1—Cl2i2.2423 (13)C9—H9B0.9700
C1—N11.448 (6)C10—N11.454 (7)
C1—C21.465 (6)C10—H10A0.9700
C1—H1A0.9700C10—H10B0.9700
C1—H1B0.9700C11—N11.431 (6)
C2—N21.325 (6)C11—C12A1.517 (10)
C2—N31.332 (6)C11—C12B1.517 (10)
C3—C41.383 (7)C11—H11A0.9700
C3—C81.383 (7)C11—H11B0.9700
C3—N21.403 (6)C11—H11C0.9700
C4—C51.405 (7)C11—H11D0.9700
C4—H40.9300C12A—Cl11.752 (9)
C5—C61.374 (7)C12A—H11C1.0395
C5—H50.9300C12A—H12A0.9700
C6—C71.381 (7)C12A—H12B0.9700
C6—H60.9300C12B—Cl11.742 (9)
C7—C81.366 (7)C12B—H12C0.9700
C7—H70.9300C12B—H12D0.9700
C8—N31.370 (7)
N2i—Co1—N2103.8 (2)N1—C10—C9109.2 (4)
N2i—Co1—Cl2112.03 (12)N1—C10—H10A109.8
N2—Co1—Cl2109.08 (12)C9—C10—H10A109.8
N2i—Co1—Cl2i109.08 (12)N1—C10—H10B109.8
N2—Co1—Cl2i112.03 (12)C9—C10—H10B109.8
Cl2—Co1—Cl2i110.64 (7)H10A—C10—H10B108.3
N1—C1—C2110.0 (4)N1—C11—C12A114.8 (5)
N1—C1—H1A109.7N1—C11—C12B114.9 (5)
C2—C1—H1A109.7N1—C11—H11A108.6
N1—C1—H1B109.7C12A—C11—H11A108.6
C2—C1—H1B109.7N1—C11—H11B108.6
H1A—C1—H1B108.2C12A—C11—H11B108.6
N2—C2—N3112.5 (4)H11A—C11—H11B107.6
N2—C2—C1126.8 (5)N1—C11—H11C109.0
N3—C2—C1120.6 (4)C12B—C11—H11C103.4
C4—C3—C8121.8 (5)N1—C11—H11D109.0
C4—C3—N2129.6 (5)C12B—C11—H11D112.5
C8—C3—N2108.6 (4)H11C—C11—H11D107.8
C3—C4—C5116.0 (5)C11—C12A—Cl1112.0 (6)
C3—C4—H4122.0C11—C12A—H12A109.2
C5—C4—H4122.0Cl1—C12A—H12A109.2
C6—C5—C4122.7 (4)C11—C12A—H12B109.2
C6—C5—H5118.7Cl1—C12A—H12B109.2
C4—C5—H5118.7H12A—C12A—H12B107.9
C5—C6—C7119.2 (5)C11—C12B—Cl1112.5 (6)
C5—C6—H6120.4C11—C12B—H12C109.1
C7—C6—H6120.4Cl1—C12B—H12C109.1
C8—C7—C6119.8 (5)C11—C12B—H12D109.1
C8—C7—H7120.1Cl1—C12B—H12D109.1
C6—C7—H7120.1H12C—C12B—H12D107.8
C7—C8—N3133.4 (5)C11—N1—C1109.6 (4)
C7—C8—C3120.5 (5)C11—N1—C10115.6 (4)
N3—C8—C3106.1 (4)C1—N1—C10108.8 (4)
N3—C9—C10109.4 (4)C2—N2—C3104.9 (4)
N3—C9—H9A109.8C2—N2—Co1123.2 (3)
C10—C9—H9A109.8C3—N2—Co1131.9 (3)
N3—C9—H9B109.8C2—N3—C8107.9 (4)
C10—C9—H9B109.8C2—N3—C9124.4 (4)
H9A—C9—H9B108.2C8—N3—C9127.7 (4)
Symmetry code: (i) y, x, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cl1ii0.972.873.812 (5)164
C5—H5···Cl2iii0.932.793.709 (5)171
Symmetry codes: (ii) x+3/2, y1/2, z+1/4; (iii) y1/2, x+5/2, z1/4.

Experimental details

Crystal data
Chemical formula[CoCl2(C12H14ClN3)2]
Mr601.25
Crystal system, space groupTetragonal, P41212
Temperature (K)293
a, c (Å)9.5706 (8), 29.911 (4)
V3)2739.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.32 × 0.21 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.763, 0.829
No. of measured, independent and
observed [I > 2σ(I)] reflections
14573, 2703, 2219
Rint0.061
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.131, 1.01
No. of reflections2703
No. of parameters169
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.80
Absolute structureFlack (1983), 1274 Friedel pairs
Absolute structure parameter0.07 (5)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 1998) and ORTEP-3 (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Co1—N22.026 (4)Co1—Cl22.2423 (13)
N2i—Co1—N2103.8 (2)Cl2—Co1—Cl2i110.64 (7)
N2—Co1—Cl2109.08 (12)
Symmetry code: (i) y, x, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cl1ii0.972.873.812 (5)164
C5—H5···Cl2iii0.932.793.709 (5)171
Symmetry codes: (ii) x+3/2, y1/2, z+1/4; (iii) y1/2, x+5/2, z1/4.
 

Acknowledgements

This project was supported by the Nature Science Foundation of China (grant No. 20475026).

References

First citationBalamurugan, V., Hundal, M. S. & Mukherjee, R. (2004). Chem. Eur. J. 10, 1683–1690.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. University of Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMatrick, H. & Day, A. R. (1961). J. Org. Chem. 26, 1511–1514.  CrossRef CAS Web of Science Google Scholar
First citationParker, L. L., Lacy, S. M., Farrugia, L. J., Evans, C., Robins, D. J., O'Hare, C. C., Hartley, J. A., Jaffar, M. & Stratford, I. J. (2004). J. Med. Chem. 47, 5683–5689.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSundberg, R. J., Yilmaz, I. & Mente, D. C. (1977). Inorg. Chem. 16, 1470–1476.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m942-m943
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds