Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure of the title compound, C8H12N2O4S2, resembles those of other aryl­sulfonamides. The mol­ecules in the title compound are packed into an infinite three-dimensional mol­ecular network stabilized by hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807031297/om2140sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807031297/om2140Isup2.hkl
Contains datablock I

CCDC reference: 657655

Key indicators

  • Single-crystal X-ray study
  • T = 297 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.032
  • wR factor = 0.099
  • Data-to-parameter ratio = 13.7

checkCIF/PLATON results

No syntax errors found



Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 4
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 0 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Arylsulfonamides and their N-halo compounds are of interest in synthetic, mechanistic, analytical and biological chemistry. In the present work, the structure of 4,6-dimethyl-benzene-1,3-disulfonamide has been determined to explore the effect of substituents on the solid state structures of sulfonamides and N-halo-arylsulfonamides (Gowda et al., 2007a, b, c). The structure of the title compound (Fig. 1) resembles those of other arylsulfonamides (Gowda et al., 2007a, b, c, d; Kumar et al., 1992). It crystallizes in the orthorhombic space group Pbca, in contrast to the monoclinic space group P21/c observed for both 3,4-dimethylbenzenesulfonamide (Gowda et al., 2007b) and 3,4-dichlorobenzenesulfonamide (Gowda et al., 2007c), and the triclinic space group P1 with 2-methyl-4-chloro-benzenesulfonamide (Gowda et al., 2007d), and monoclinic space group Pc with the parent benzenesulfonamide (Gowda et al., 2007a) and 4-methyl-benzenesulfonamide (Kumar et al., 1992). The bond parameters are similar to those in other arylsulfonamides. The molecules in the title compound are packed into infinite 3-D molecular network stabilized by hydrogen bonding (Table 1 and Fig. 2).

Related literature top

For related literature, see: Gowda et al. (2002, 2007a,b,c,d); Kumar et al. (1992).

Experimental top

The title compound was prepared according to the literature method (Gowda et al., 2002). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from a slow evaporation of its ethanolic solution.

Refinement top

H atoms of methyl groups and benzene ring were placed geometrically and refined using a riding model with C—H distances 0.96Å (methyl) and 0.93Å (ring). H atoms of amide groups were visible in the difference map and have been subsequently treated as riding with N—H bond length restrained to 0.83 (2) Å. All H atoms have isotropic thermal displacements with Uiso(H) = 1.5Ueq(C) for methyl and Uiso(H) = 1.2Ueq(C,N) for benzene and amide H atoms. No restraints were applied to non-hydrogen atoms.

Structure description top

Arylsulfonamides and their N-halo compounds are of interest in synthetic, mechanistic, analytical and biological chemistry. In the present work, the structure of 4,6-dimethyl-benzene-1,3-disulfonamide has been determined to explore the effect of substituents on the solid state structures of sulfonamides and N-halo-arylsulfonamides (Gowda et al., 2007a, b, c). The structure of the title compound (Fig. 1) resembles those of other arylsulfonamides (Gowda et al., 2007a, b, c, d; Kumar et al., 1992). It crystallizes in the orthorhombic space group Pbca, in contrast to the monoclinic space group P21/c observed for both 3,4-dimethylbenzenesulfonamide (Gowda et al., 2007b) and 3,4-dichlorobenzenesulfonamide (Gowda et al., 2007c), and the triclinic space group P1 with 2-methyl-4-chloro-benzenesulfonamide (Gowda et al., 2007d), and monoclinic space group Pc with the parent benzenesulfonamide (Gowda et al., 2007a) and 4-methyl-benzenesulfonamide (Kumar et al., 1992). The bond parameters are similar to those in other arylsulfonamides. The molecules in the title compound are packed into infinite 3-D molecular network stabilized by hydrogen bonding (Table 1 and Fig. 2).

For related literature, see: Gowda et al. (2002, 2007a,b,c,d); Kumar et al. (1992).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Crystal structure of the title compound stabilized by hydrogen bonds N1—H1A···O1(i), N1—H1B···O2(ii), N2—H2A···O4(iii), N2—H2B···O1(iv). Symmetry codes: (i) -x + 1/2,y + 1/2,z; (ii) -x + 1/2,y - 1/2,z; (iii) -x + 1,y - 1/2,-z + 1/2; (iv) x + 1/2,-y + 1/2,-z + 1. H atoms not involved in hydrogen bonds have been omitted.
4,6-Dimethylbenzene-1,3-disulfonamide top
Crystal data top
C8H12N2O4S2F(000) = 1104
Mr = 264.32Dx = 1.569 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 14260 reflections
a = 14.4793 (2) Åθ = 3.0–29.5°
b = 8.0520 (1) ŵ = 0.48 mm1
c = 19.1935 (4) ÅT = 297 K
V = 2237.72 (6) Å3Block, colourless
Z = 80.31 × 0.18 × 0.14 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
1693 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ scans, and ω scans with κ offsetsθmax = 26.0°, θmin = 5.1°
Absorption correction: analytical
(Clark & Reid, 1995)
h = 1717
Tmin = 0.868, Tmax = 0.942k = 99
33751 measured reflectionsl = 2323
2183 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0661P)2 + 0.0106P]
where P = (Fo2 + 2Fc2)/3
2183 reflections(Δ/σ)max = 0.003
159 parametersΔρmax = 0.27 e Å3
4 restraintsΔρmin = 0.28 e Å3
Crystal data top
C8H12N2O4S2V = 2237.72 (6) Å3
Mr = 264.32Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.4793 (2) ŵ = 0.48 mm1
b = 8.0520 (1) ÅT = 297 K
c = 19.1935 (4) Å0.31 × 0.18 × 0.14 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2183 independent reflections
Absorption correction: analytical
(Clark & Reid, 1995)
1693 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 0.942Rint = 0.034
33751 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0324 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.27 e Å3
2183 reflectionsΔρmin = 0.28 e Å3
159 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.23215 (12)0.4353 (2)0.44644 (10)0.0325 (4)
C20.32502 (12)0.4435 (2)0.42955 (10)0.0320 (4)
H20.36830.46920.46370.038*
C30.35327 (13)0.4134 (2)0.36175 (10)0.0337 (4)
C40.28991 (14)0.3696 (2)0.30997 (11)0.0421 (5)
C50.19745 (14)0.3675 (3)0.32909 (12)0.0470 (5)
H50.15410.3420.2950.056*
C60.16569 (12)0.4010 (2)0.39580 (11)0.0376 (5)
C70.31541 (17)0.3244 (3)0.23612 (12)0.0656 (7)
H7A0.35750.23230.23660.098*
H7B0.34430.41790.2140.098*
H7C0.26070.29430.21090.098*
C80.06333 (14)0.3980 (3)0.41059 (13)0.0535 (6)
H8A0.04660.49470.4370.08*
H8B0.04840.30010.43680.08*
H8C0.02990.39720.36740.08*
N10.28772 (11)0.4730 (2)0.58211 (9)0.0397 (4)
H1A0.3209 (14)0.556 (2)0.5760 (12)0.048*
H1B0.3178 (13)0.387 (2)0.5829 (12)0.048*
N20.51984 (14)0.2642 (3)0.33063 (11)0.0569 (5)
H2A0.5078 (17)0.213 (3)0.2941 (11)0.068*
H2B0.5402 (18)0.217 (3)0.3656 (11)0.068*
O10.14493 (9)0.32605 (15)0.55488 (7)0.0451 (4)
O20.15455 (9)0.62787 (16)0.53936 (7)0.0440 (4)
O30.51437 (10)0.50240 (18)0.40649 (8)0.0507 (4)
O40.48035 (12)0.5335 (2)0.28186 (9)0.0664 (5)
S10.19779 (3)0.46871 (5)0.53417 (2)0.03266 (18)
S20.47313 (3)0.43915 (6)0.34460 (3)0.03907 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0319 (10)0.0292 (10)0.0362 (11)0.0005 (7)0.0009 (8)0.0020 (8)
C20.0296 (10)0.0330 (9)0.0335 (11)0.0026 (7)0.0023 (8)0.0013 (8)
C30.0324 (10)0.0358 (10)0.0329 (11)0.0002 (8)0.0003 (8)0.0036 (8)
C40.0436 (11)0.0496 (11)0.0332 (11)0.0054 (9)0.0055 (9)0.0021 (9)
C50.0418 (12)0.0534 (12)0.0456 (13)0.0028 (9)0.0150 (10)0.0040 (10)
C60.0307 (10)0.0364 (10)0.0457 (13)0.0004 (8)0.0048 (9)0.0003 (9)
C70.0620 (15)0.0968 (19)0.0379 (13)0.0059 (14)0.0054 (11)0.0141 (13)
C80.0317 (11)0.0664 (14)0.0623 (15)0.0024 (10)0.0058 (10)0.0029 (12)
N10.0381 (10)0.0435 (10)0.0376 (10)0.0002 (7)0.0025 (8)0.0004 (8)
N20.0646 (13)0.0638 (13)0.0422 (12)0.0225 (10)0.0098 (10)0.0131 (10)
O10.0397 (8)0.0394 (8)0.0562 (9)0.0069 (6)0.0116 (7)0.0065 (6)
O20.0384 (8)0.0340 (7)0.0595 (9)0.0050 (6)0.0051 (6)0.0057 (6)
O30.0345 (8)0.0660 (9)0.0516 (10)0.0064 (7)0.0038 (7)0.0163 (8)
O40.0598 (10)0.0812 (12)0.0581 (11)0.0013 (8)0.0130 (8)0.0347 (9)
S10.0287 (3)0.0316 (3)0.0376 (3)0.00196 (18)0.00553 (19)0.00020 (19)
S20.0347 (3)0.0463 (3)0.0362 (3)0.0016 (2)0.0054 (2)0.0042 (2)
Geometric parameters (Å, º) top
C1—C21.385 (2)C7—H7C0.96
C1—C61.395 (3)C8—H8A0.96
C1—S11.776 (2)C8—H8B0.96
C2—C31.386 (3)C8—H8C0.96
C2—H20.93N1—S11.5949 (18)
C3—C41.398 (3)N1—H1A0.829 (15)
C3—S21.7785 (19)N1—H1B0.821 (15)
C4—C51.388 (3)N2—S21.586 (2)
C4—C71.509 (3)N2—H2A0.830 (17)
C5—C61.387 (3)N2—H2B0.825 (17)
C5—H50.93O1—S11.4364 (13)
C6—C81.509 (3)O2—S11.4297 (13)
C7—H7A0.96O3—S21.4236 (15)
C7—H7B0.96O4—S21.4275 (16)
C2—C1—C6121.07 (18)C6—C8—H8A109.5
C2—C1—S1119.12 (15)C6—C8—H8B109.5
C6—C1—S1119.81 (14)H8A—C8—H8B109.5
C1—C2—C3119.88 (18)C6—C8—H8C109.5
C1—C2—H2120.1H8A—C8—H8C109.5
C3—C2—H2120.1H8B—C8—H8C109.5
C2—C3—C4121.20 (18)S1—N1—H1A114.1 (16)
C2—C3—S2116.20 (14)S1—N1—H1B115.1 (16)
C4—C3—S2122.58 (15)H1A—N1—H1B112 (2)
C5—C4—C3116.63 (19)S2—N2—H2A119.5 (18)
C5—C4—C7118.76 (19)S2—N2—H2B114.9 (19)
C3—C4—C7124.61 (19)H2A—N2—H2B122 (3)
C6—C5—C4124.15 (18)O2—S1—O1117.66 (8)
C6—C5—H5117.9O2—S1—N1107.33 (9)
C4—C5—H5117.9O1—S1—N1107.02 (9)
C5—C6—C1116.93 (17)O2—S1—C1108.94 (8)
C5—C6—C8119.74 (18)O1—S1—C1106.88 (8)
C1—C6—C8123.33 (18)N1—S1—C1108.76 (9)
C4—C7—H7A109.5O3—S2—O4118.87 (10)
C4—C7—H7B109.5O3—S2—N2106.27 (10)
H7A—C7—H7B109.5O4—S2—N2107.38 (11)
C4—C7—H7C109.5O3—S2—C3107.26 (9)
H7A—C7—H7C109.5O4—S2—C3106.83 (9)
H7B—C7—H7C109.5N2—S2—C3110.12 (10)
C6—C1—C2—C31.6 (3)C2—C1—C6—C8177.22 (18)
S1—C1—C2—C3178.28 (12)S1—C1—C6—C82.9 (3)
C1—C2—C3—C41.9 (3)C2—C1—S1—O2106.92 (14)
C1—C2—C3—S2176.44 (12)C6—C1—S1—O273.16 (15)
C2—C3—C4—C53.6 (3)C2—C1—S1—O1124.98 (14)
S2—C3—C4—C5174.66 (15)C6—C1—S1—O154.94 (16)
C2—C3—C4—C7176.00 (19)C2—C1—S1—N19.76 (16)
S2—C3—C4—C75.7 (3)C6—C1—S1—N1170.16 (15)
C3—C4—C5—C61.9 (3)C2—C3—S2—O35.20 (16)
C7—C4—C5—C6177.7 (2)C4—C3—S2—O3173.16 (16)
C4—C5—C6—C11.4 (3)C2—C3—S2—O4133.67 (15)
C4—C5—C6—C8179.01 (19)C4—C3—S2—O444.69 (19)
C2—C1—C6—C53.2 (3)C2—C3—S2—N2110.03 (16)
S1—C1—C6—C5176.68 (14)C4—C3—S2—N271.62 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.83 (2)2.27 (2)3.050 (2)157 (2)
N1—H1B···O2ii0.82 (2)2.28 (2)3.016 (2)149 (2)
N2—H2A···O4iii0.83 (2)2.06 (2)2.848 (3)158 (2)
N2—H2B···O1iv0.83 (2)2.18 (2)2.939 (2)153 (2)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y1/2, z; (iii) x+1, y1/2, z+1/2; (iv) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC8H12N2O4S2
Mr264.32
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)297
a, b, c (Å)14.4793 (2), 8.0520 (1), 19.1935 (4)
V3)2237.72 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.31 × 0.18 × 0.14
Data collection
DiffractometerOxford Diffraction Xcalibur
Absorption correctionAnalytical
(Clark & Reid, 1995)
Tmin, Tmax0.868, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
33751, 2183, 1693
Rint0.034
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.099, 1.07
No. of reflections2183
No. of parameters159
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.28

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), CrysAlis RED, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97, PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.829 (15)2.269 (16)3.050 (2)157 (2)
N1—H1B···O2ii0.821 (15)2.279 (17)3.016 (2)149 (2)
N2—H2A···O4iii0.830 (17)2.062 (19)2.848 (3)158 (2)
N2—H2B···O1iv0.825 (17)2.18 (2)2.939 (2)153 (2)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y1/2, z; (iii) x+1, y1/2, z+1/2; (iv) x+1/2, y+1/2, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds