Download citation
Download citation
link to html
The crystal structure of mayenite (12CaO·7Al2O3) has been investigated by single-crystal synchrotron diffraction with high resolution and accuracy, using a four-circle diffractometer equipped with an avalanche photodiode detector (APD) detector installed at PF14A in Tsukuba, Japan. Analysis revealed random displacements of ions by the electrostatic force of the O2- ion (O3) clathrated in two out of 12 cages. O3 ions are located at general positions close to the \bar 4 site at the centre of each cage. The difference-density map revealed two large peaks corresponding to displaced Ca ions. The positive ions close to O3 are displaced and one-to-one correspondence was found between one of the four equivalent O3 ions and the displaced ions. When an O3 ion is present in the cage the Al ion at the 16c position moves 0.946 (3) Å toward the O3 ion. One of the Al-O bonds is broken and a new Al-O3 bond is created. The result is an AlO4 tetrahedron that is quite deformed. The three O1 ions and the O2 ion of the destroyed AlO4 tetrahedron are forcibly displaced. O1 and O2 have two and one displaced ions, respectively. The local structure of the cage occupied by one of the four O3 ions was determined by calculating the electrostatic potential and electric field in the deformed cage, although the position of one of the displaced O1 ions was not clearly identified.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768111005179/og5045sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768111005179/og5045Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108768111005179/og5045sup3.pdf
Extra figures and table

Computing details top

Data collection: BL14A diffractometer control software (Satow. Y. and Iitaka. Y., (1989). Sci. Instrum. 60, 2390-2393; Vaalsta, T. P. & Hester, J. R. (1997). DIFF14A Software. Photon Factory, Tsukuba, Japan. ); cell refinement: RSLC-3 UNICS system (Sakurai, T. & Kobayashi, K. (1979), Rep. Inst. Phys. Chem. Res. 55, 69-77); data reduction: sortref (Sakakura, T. (2008): private communication.); program(s) used to refine structure: MOLLY (Hansen, N. K. and Coppens. P. (1978) Acta Cryst. A34, 909-921.); molecular graphics: gluplot (Sakakura, T. (2008): private communication.).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
(I) top
Crystal data top
Al14Ca12O33Dx = 2.672 Mg m3
Mr = 1386.66Synchrotron radiation, λ = 0.67954 Å
Cubic, I43dCell parameters from 24 reflections
Hall symbol: I -4bd 2c 3θ = 34.7–36.1°
a = 11.989 (3) ŵ = 1.99 mm1
V = 1723.2 (7) Å3T = 298 K
Z = 2Sphere, orange
F(000) = 13720.07 × 0.07 × 0.07 × 0.03 (radius) mm
Data collection top
Tsukuba BL14A four-circle
diffractometer
Rint = 0.012
integrated intensities data from ω/2θ scansθmax = 68.4°, θmin = 4.0°
Absorption correction: for a sphere
Transmission coefficient for spheres tabulated in International Table II(1972) Table 5.3.6B was interpolated with Lagrangian method
h = 932
Tmin = 0.908, Tmax = 0.909k = 924
10790 measured reflectionsl = 3131
3077 independent reflections9 standard reflections every 200 reflections
3020 reflections with F > 3.0σ(F) intensity decay: none
Refinement top
Refinement on F0 constraints
Least-squares matrix: full w = 1/[σ2(Fo) + (0.016P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.016(Δ/σ)max = 0.050
wR(F2) = 0.024Δρmax = 0.34 e Å3
S = 1.09Δρmin = 0.39 e Å3
3020 reflectionsExtinction correction: B-C type 2 isotropic
66 parametersExtinction coefficient: 0.00006 (4)
0 restraints
Crystal data top
Al14Ca12O33Z = 2
Mr = 1386.66Synchrotron radiation, λ = 0.67954 Å
Cubic, I43dµ = 1.99 mm1
a = 11.989 (3) ÅT = 298 K
V = 1723.2 (7) Å30.07 × 0.07 × 0.07 × 0.03 (radius) mm
Data collection top
Tsukuba BL14A four-circle
diffractometer
3020 reflections with F > 3.0σ(F)
Absorption correction: for a sphere
Transmission coefficient for spheres tabulated in International Table II(1972) Table 5.3.6B was interpolated with Lagrangian method
Rint = 0.012
Tmin = 0.908, Tmax = 0.9099 standard reflections every 200 reflections
10790 measured reflections intensity decay: none
3077 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01666 parameters
wR(F2) = 0.0240 restraints
S = 1.09Δρmax = 0.34 e Å3
3020 reflectionsΔρmin = 0.39 e Å3
Special details top

Experimental. Multiple diffraction was avoided using ψ-scan.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ca10.139339 (15)00.250.00869 (3)0.75
Al10.268614 (9)0.268614 (9)0.268614 (9)0.00633 (3)0.875
Al20.250.1250.50.00679 (3)
O10.15052 (4)0.03605 (3)0.44234 (3)0.01155 (7)0.916666
O20.18510 (4)0.18510 (4)0.18510 (4)0.01011 (7)0.875
O30.3559 (6)0.0614 (7)0.2506 (7)0.0163 (8)*0.041667
Ca1a0.16936 (16)0.00673 (17)0.2504 (2)0.00987 (16)*0.041667
Ca1b0.20692 (12)00.250.0128 (2)0.083334
Ca1c0.13537 (17)0.0043 (3)0.2354 (2)0.00930 (3)0.041667
Al1a0.3041 (2)0.1984 (2)0.2619 (2)0.0096 (3)*0.041667
O1a0.1302 (3)0.0603 (3)0.4329 (3)0.0039 (3)*0.041667
O1b0.1718 (6)0.0312 (5)0.4352 (5)0.0079 (6)*0.041667
O2a0.1996 (6)0.1750 (8)0.1893 (7)0.00663 (7)0.041667
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.00936 (4)0.00981 (4)0.00691 (4)000.00090 (4)
Al10.00633 (4)0.00633 (4)0.00633 (4)0.000145 (19)0.000145 (19)0.000145 (19)
Al20.00774 (5)0.00488 (5)0.00774 (5)000
O10.01081 (8)0.01258 (9)0.01128 (7)0.00569 (8)0.00251 (7)0.00328 (6)
O20.01011 (8)0.01011 (8)0.01011 (8)0.00174 (6)0.00174 (6)0.00174 (6)
Ca1b0.0176 (4)0.0113 (3)0.0094 (2)000.0000 (2)
Ca1c0.00936 (4)0.00981 (4)0.00691 (4)000.00090 (4)
Al2a0.00774 (5)0.00488 (5)0.00774 (5)000
Geometric parameters (Å, º) top
Al1i—O1ii1.7746 (4)Ca1xii—O1aii2.311 (3)
Al1i—O1iii1.7746 (4)Ca1i—O1xiii2.3500 (3)
Al1i—O1iv1.7746 (4)Ca1i—O1xiv2.5143 (4)
Al1i—O1aii1.739 (4)Ca1i—O1i2.3500 (3)
Al1i—O1biii2.009 (7)Ca1i—O1xv2.5143 (4)
Al1i—O2i1.7342 (4)Ca1i—O2xvi2.4148 (4)
Al1i—O2ai1.688 (9)Ca1i—O2i2.4148 (4)
Al1i—O3i2.704 (8)Ca1i—O2ai2.335 (9)
Al1ai—O1ii1.673 (3)Ca1i—O3i2.699 (7)
Al1ai—O1iii2.709 (3)Ca1xvii—O2i2.4148 (4)
Al1ai—O1iv1.839 (3)Ca1xvii—O2ai2.387 (8)
Al1ai—O1aii1.431 (5)Ca1xi—O1iii2.5143 (4)
Al1ai—O1biii2.936 (7)Ca1xi—O1iv2.3500 (3)
Al1ai—O2i1.705 (3)Ca1xi—O1biii2.380 (6)
Al1ai—O2ai1.551 (8)Ca1xv—O2i2.4148 (4)
Al1ai—O3i1.762 (9)Ca1xv—O2ai2.626 (8)
Al2—O1iv1.7428 (4)Ca1ai—O1xiii2.378 (3)
Al2ii—O1ii1.7428 (4)Ca1ai—O1xiv2.841 (2)
Al2ii—O1v1.7428 (4)Ca1ai—O1i2.339 (3)
Al2ii—O1vi1.7428 (4)Ca1ai—O1xv2.805 (2)
Al2ii—O1i1.7428 (4)Ca1ai—O1aii3.221 (4)
Al2ii—O1aii1.820 (4)Ca1ai—O2xvi2.434 (2)
Al2iii—O1iii1.7428 (4)Ca1ai—O2i2.285 (2)
Al2iii—O1biii1.657 (6)Ca1ai—O2ai2.177 (9)
Ca1—O12.3500 (3)Ca1ai—O3i2.331 (8)
Ca1—O1vii2.3500 (3)Ca1b—O12.4416 (5)
Ca1—O1viii2.5143 (4)Ca1b—O1vii2.4416 (5)
Ca1—O1ix2.5143 (4)Ca1b—O1viii3.2227 (14)
Ca1—O22.4148 (4)Ca1b—O1ix3.2227 (14)
Ca1—O2ii2.4148 (4)Ca1b—O22.3661 (5)
Ca1—O3i3.141 (7)Ca1b—O2ii2.3661 (5)
Ca1x—O1ii2.5143 (4)Ca1b—O3i2.361 (8)
Ca1x—O1x2.3500 (3)Ca1cx—O1ii2.381 (2)
Ca1x—O1vi2.5143 (4)Ca1cx—O1x2.517 (3)
Ca1x—O1iii2.3500 (3)Ca1cx—O1vi2.578 (2)
Ca1x—O1aii2.905 (4)Ca1cx—O1iii2.192 (3)
Ca1x—O1biii2.285 (6)Ca1cx—O1aii2.768 (4)
Ca1x—O2iii2.4148 (4)Ca1cx—O1biii2.134 (7)
Ca1x—O2xi2.4148 (4)Ca1cx—O2iii2.533 (3)
Ca1xii—O1ii2.3500 (3)Ca1cx—O2xi2.328 (3)
Ca1xii—O1iv2.5143 (4)
O1ii—Al1i—O1iii101.039 (19)O1i—Ca1ai—O3i92.8 (2)
O1ii—Al1i—O1iv101.039 (19)O1xv—Ca1ai—O1xiii63.18 (6)
O1ii—Al1i—O2i116.97 (2)O1xv—Ca1ai—O1xiv58.45 (4)
O1ii—Al1i—O3i68.26 (18)O1xv—Ca1ai—O2xvi114.17 (8)
O1iii—Al1i—O1iv101.039 (19)O1xv—Ca1ai—O2ai78.5 (3)
O1iii—Al1i—O2i116.97 (2)O1xv—Ca1ai—O3i141.4 (2)
O1iii—Al1i—O3i169.27 (18)O1xiii—Ca1ai—O1xiv105.39 (8)
O1iv—Al1i—O2i116.97 (2)O1xiii—Ca1ai—O2xvi96.45 (8)
O1iv—Al1i—O3i82.41 (18)O1xiii—Ca1ai—O2ai83.6 (3)
O2i—Al1i—O3i69.34 (18)O1xiii—Ca1ai—O3i98.8 (2)
O1iv—Al1ai—O3i114.7 (3)O1xiv—Ca1ai—O2xvi71.19 (6)
O1iv—Al1ai—O1aii107.0 (2)O1xiv—Ca1ai—O2ai122.5 (3)
O1iv—Al1ai—O1biii68.72 (16)O1xiv—Ca1ai—O3i155.2 (2)
O1iv—Al1ai—O2ai117.5 (3)O2xvi—Ca1ai—O2ai165.9 (3)
O3i—Al1ai—O1aii88.2 (3)O2xvi—Ca1ai—O3i101.0 (2)
O3i—Al1ai—O1biii171.9 (3)O2ai—Ca1ai—O3i65.2 (3)
O3i—Al1ai—O2ai94.2 (4)O1—Ca1b—O1vii147.84 (7)
O1aii—Al1ai—O1biii83.7 (2)O1—Ca1b—O1viii55.81 (2)
O1aii—Al1ai—O2ai129.2 (4)O1—Ca1b—O1ix93.51 (4)
O1biii—Al1ai—O2ai90.3 (3)O1—Ca1b—O296.54 (2)
O1i—Al2ii—O1v104.553 (17)O1—Ca1b—O2ii79.913 (17)
O1i—Al2ii—O1vi111.985 (17)O1—Ca1b—O3i88.24 (18)
O1i—Al2ii—O1aii104.51 (12)O1vii—Ca1b—O1viii93.51 (4)
O1v—Al2ii—O1vi111.985 (17)O1vii—Ca1b—O1ix55.81 (2)
O1v—Al2ii—O1aii105.73 (12)O1vii—Ca1b—O279.913 (17)
O1vi—Al2ii—O1aii117.04 (12)O1vii—Ca1b—O2ii96.54 (2)
O1ii—Al2ii—O1i111.985 (17)O1vii—Ca1b—O3i123.85 (19)
O1ii—Al2ii—O1v111.985 (17)O1viii—Ca1b—O1ix50.65 (2)
O1ii—Al2ii—O1vi104.553 (17)O1viii—Ca1b—O2102.88 (5)
O1i—Al2ii—O1v104.553 (17)O1viii—Ca1b—O2ii64.99 (3)
O1i—Al2ii—O1vi111.985 (17)O1viii—Ca1b—O3i137.97 (18)
O1v—Al2ii—O1vi111.985 (17)O1ix—Ca1b—O264.99 (3)
O1—Ca1—O1vii173.462 (14)O1ix—Ca1b—O2ii102.88 (5)
O1—Ca1—O1viii68.456 (11)O1ix—Ca1b—O3i167.14 (19)
O1—Ca1—O1ix117.555 (12)O2—Ca1b—O2ii167.31 (7)
O1—Ca1—O297.711 (12)O2—Ca1b—O3i102.16 (19)
O1—Ca1—O2ii80.788 (12)O2ii—Ca1b—O3i89.97 (18)
O1—Ca1—O3i73.44 (14)O1x—Ca1cx—O1vi65.04 (6)
O1vii—Ca1—O1viii117.555 (12)O1x—Ca1cx—O2iii75.39 (8)
O1vii—Ca1—O1ix68.456 (11)O1x—Ca1cx—O2xi95.49 (11)
O1vii—Ca1—O280.788 (12)O1x—Ca1cx—O1aii117.97 (12)
O1vii—Ca1—O2ii97.711 (12)O1x—Ca1cx—O1biii163.8 (2)
O1vii—Ca1—O3i100.03 (14)O1vi—Ca1cx—O2iii74.33 (9)
O1viii—Ca1—O1ix66.496 (12)O1vi—Ca1cx—O2xi127.57 (12)
O1viii—Ca1—O2126.549 (14)O1vi—Ca1cx—O1aii69.18 (9)
O1viii—Ca1—O2ii77.556 (13)O1vi—Ca1cx—O1biii127.9 (2)
O1viii—Ca1—O3i134.52 (14)O2iii—Ca1cx—O2xi150.66 (10)
O1ix—Ca1—O277.556 (13)O2iii—Ca1cx—O1aii127.95 (14)
O1ix—Ca1—O2ii126.549 (14)O2iii—Ca1cx—O1biii97.7 (2)
O1ix—Ca1—O3i157.65 (14)O2xi—Ca1cx—O1aii81.11 (12)
O2—Ca1—O2ii153.735 (16)O2xi—Ca1cx—O1biii83.41 (19)
O2—Ca1—O3i81.77 (14)O1aii—Ca1cx—O1biii78.0 (2)
O2ii—Ca1—O3i72.62 (14)Ca1x—O1ii—Ca1xii98.221 (13)
O1ii—Ca1x—O1iii68.456 (11)Ca1x—O1ii—Al1i92.368 (14)
O1ii—Ca1x—O1x117.555 (12)Ca1x—O1ii—Al2ii94.475 (16)
O1ii—Ca1x—O1vi66.496 (12)Ca1xii—O1ii—Al1i98.052 (16)
O1ii—Ca1x—O2iii126.548 (14)Ca1xii—O1ii—Al2ii122.736 (17)
O1ii—Ca1x—O2xi77.556 (13)Al1i—O1ii—Al2ii136.984 (19)
O1iii—Ca1x—O1x173.462 (14)Ca1xi—O1iii—Ca1x98.221 (13)
O1iii—Ca1x—O1vi117.555 (12)Ca1xi—O1iii—Al1i92.368 (14)
O1iii—Ca1x—O2iii97.711 (12)Ca1xi—O1iii—Al2iii94.475 (16)
O1iii—Ca1x—O2xi80.788 (12)Ca1x—O1iii—Al1i98.052 (16)
O1x—Ca1x—O1vi68.456 (11)Ca1x—O1iii—Al2iii122.736 (17)
O1x—Ca1x—O2iii80.788 (12)Al1i—O1iii—Al2iii136.985 (19)
O1x—Ca1x—O2xi97.711 (12)Ca1xii—O1aii—Al2ii121.03 (18)
O1vi—Ca1x—O2iii77.556 (13)Ca1xii—O1aii—Ca1cx88.38 (13)
O1vi—Ca1x—O2xi126.549 (14)Ca1xii—O1aii—Al1ai97.4 (2)
O2iii—Ca1x—O2xi153.735 (16)Al2ii—O1aii—Ca1cx83.19 (15)
O1i—Ca1i—O1xv117.555 (12)Al2ii—O1aii—Al1ai139.9 (3)
O1i—Ca1i—O1xiii173.462 (14)Ca1cx—O1aii—Al1ai111.1 (2)
O1i—Ca1i—O1xiv68.456 (11)Ca1xi—O1biii—Al2iii101.9 (3)
O1i—Ca1i—O2i97.711 (12)Ca1xi—O1biii—Ca1cx102.8 (2)
O1i—Ca1i—O2xvi80.788 (12)Ca1xi—O1biii—Al1ai89.4 (2)
O1i—Ca1i—O3i83.81 (16)Al2iii—O1biii—Ca1cx134.5 (4)
O1xv—Ca1i—O1xiii68.456 (11)Al2iii—O1biii—Al1ai130.6 (3)
O1xv—Ca1i—O1xiv66.496 (12)Ca1cx—O1biii—Al1ai87.2 (2)
O1xv—Ca1i—O2i77.556 (13)Ca1i—O2i—Ca1xvii99.237 (15)
O1xv—Ca1i—O2xvi126.548 (14)Ca1i—O2i—Ca1xv99.237 (15)
O1xv—Ca1i—O3i136.96 (16)Ca1i—O2i—Al1i118.41 (2)
O1xiii—Ca1i—O1xiv117.555 (12)Ca1xvii—O2i—Ca1xv99.237 (15)
O1xiii—Ca1i—O2i80.788 (12)Ca1xvii—O2i—Al1i118.41 (2)
O1xiii—Ca1i—O2xvi97.711 (12)Ca1xv—O2i—Al1i118.41 (2)
O1xiii—Ca1i—O3i89.89 (16)Ca1xvii—O2ai—Ca1xv94.3 (3)
O1xiv—Ca1i—O2i126.549 (14)Ca1xvii—O2ai—Ca1ai101.3 (4)
O1xiv—Ca1i—O2xvi77.556 (13)Ca1xvii—O2ai—Al1ai111.2 (4)
O1xiv—Ca1i—O3i151.43 (16)Ca1xv—O2ai—Ca1ai104.0 (3)
O2i—Ca1i—O2xvi153.735 (16)Ca1xv—O2ai—Al1ai143.3 (5)
O2i—Ca1i—O3i62.07 (16)Ca1ai—O2ai—Al1ai96.5 (4)
O2xvi—Ca1i—O3i91.79 (16)Ca1ai—O3i—Ca1b145.5 (4)
O1i—Ca1ai—O1xv107.60 (8)Ca1ai—O3i—Al1ai85.6 (3)
O1i—Ca1ai—O1xiii168.36 (10)Ca1b—O3i—Al1ai128.8 (4)
O1i—Ca1ai—O1xiv62.98 (6)Ca1—O3i—Ca1i150.6 (3)
O1i—Ca1ai—O2xvi80.61 (8)Ca1—O3i—Al1i126.3 (3)
O1i—Ca1ai—O2ai102.0 (3)Ca1i—O3i—Al1i83.0 (2)
Symmetry codes: (i) x+3/4, z+1/4, y+1/4; (ii) z, x, y+1/2; (iii) y+1/2, z1/2, x+1/2; (iv) x+1/2, y, z+1; (v) x+1/4, z3/4, y+1/4; (vi) z+1, x1/2, y+1/2; (vii) x, y, z+1/2; (viii) y, z1/2, x+1/2; (ix) y, z+1/2, x; (x) y+1/2, z, x+1/2; (xi) x+1/2, y, z+1/2; (xii) z+1/2, x, y+1/2; (xiii) x+3/4, z1/4, y+1/4; (xiv) y+3/4, x1/4, z1/4; (xv) y+3/4, x+1/4, z+3/4; (xvi) z+3/4, y1/4, x+1/4; (xvii) z+1/4, y+1/4, x+1/4.

Experimental details

Crystal data
Chemical formulaAl14Ca12O33
Mr1386.66
Crystal system, space groupCubic, I43d
Temperature (K)298
a (Å)11.989 (3)
V3)1723.2 (7)
Z2
Radiation typeSynchrotron, λ = 0.67954 Å
µ (mm1)1.99
Crystal size (mm)0.07 × 0.07 × 0.07 × 0.03 (radius)
Data collection
DiffractometerTsukuba BL14A four-circle
diffractometer
Absorption correctionFor a sphere
Transmission coefficient for spheres tabulated in International Table II(1972) Table 5.3.6B was interpolated with Lagrangian method
Tmin, Tmax0.908, 0.909
No. of measured, independent and
observed [F > 3.0σ(F)] reflections
10790, 3077, 3020
Rint0.012
(sin θ/λ)max1)1.368
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.024, 1.09
No. of reflections3020
No. of parameters66
Δρmax, Δρmin (e Å3)0.34, 0.39

Computer programs: BL14A diffractometer control software (Satow. Y. and Iitaka. Y., (1989). Sci. Instrum. 60, 2390-2393; Vaalsta, T. P. & Hester, J. R. (1997). DIFF14A Software. Photon Factory, Tsukuba, Japan. ), RSLC-3 UNICS system (Sakurai, T. & Kobayashi, K. (1979), Rep. Inst. Phys. Chem. Res. 55, 69-77), sortref (Sakakura, T. (2008): private communication.), MOLLY (Hansen, N. K. and Coppens. P. (1978) Acta Cryst. A34, 909-921.), gluplot (Sakakura, T. (2008): private communication.).

Selected geometric parameters (Å, º) top
Al1i—O1ii1.7746 (4)Al1ai—O2ai1.551 (8)
Al1i—O1iii1.7746 (4)Al1ai—O3i1.762 (9)
Al1i—O1iv1.7746 (4)Ca1—O3i3.141 (7)
Al1i—O2i1.7342 (4)Ca1i—O3i2.699 (7)
Al1ai—O1iv1.839 (3)Ca1ai—O3i2.331 (8)
Al1ai—O1aii1.431 (5)Ca1b—O3i2.361 (8)
O1ii—Al1i—O1iii101.039 (19)O1iv—Al1ai—O2ai117.5 (3)
O1ii—Al1i—O1iv101.039 (19)O3i—Al1ai—O1aii88.2 (3)
O1ii—Al1i—O2i116.97 (2)O3i—Al1ai—O1biii171.9 (3)
O1ii—Al1i—O3i68.26 (18)O3i—Al1ai—O2ai94.2 (4)
O1iii—Al1i—O1iv101.039 (19)O1aii—Al1ai—O1biii83.7 (2)
O1iii—Al1i—O2i116.97 (2)O1aii—Al1ai—O2ai129.2 (4)
O1iii—Al1i—O3i169.27 (18)O1biii—Al1ai—O2ai90.3 (3)
O1iv—Al1i—O2i116.97 (2)Ca1ai—O3i—Ca1b145.5 (4)
O1iv—Al1i—O3i82.41 (18)Ca1ai—O3i—Al1ai85.6 (3)
O2i—Al1i—O3i69.34 (18)Ca1b—O3i—Al1ai128.8 (4)
O1iv—Al1ai—O3i114.7 (3)Ca1—O3i—Ca1i150.6 (3)
O1iv—Al1ai—O1aii107.0 (2)Ca1—O3i—Al1i126.3 (3)
O1iv—Al1ai—O1biii68.72 (16)Ca1i—O3i—Al1i83.0 (2)
Symmetry codes: (i) x+3/4, z+1/4, y+1/4; (ii) z, x, y+1/2; (iii) y+1/2, z1/2, x+1/2; (iv) x+1/2, y, z+1.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds