Download citation
Download citation
link to html
A series of related acetyl­acetonate–carbon­yl–rhodium com­pounds substituted by functionalized phosphines has been prepared in good to excellent yields by the reaction of [Rh(acac)(CO)2] (acac is acetyl­acetonate) with the corresponding allyl-, cyano­methyl- or cyano­ethyl-substituted phosphines. All com­pounds were fully characterized by 31P, 1H, 13C NMR and IR spectroscopy. The X-ray structures of (acetyl­acetonato-κ2O,O′)(tert-butyl­phosphanedicarbo­nitrile-κP)carbonyl­rhodium(I), [Rh(C5H7O2)(CO)(C8H13N2)] or [Rh(acac)(CO)(tBuP(CH2CN)2}] (2b), (acetyl­acetonato-κ2O,O′)carbon­yl[3-(di­phenyl­phosphan­yl)propane­nitrile-κP]rhodium(I), [Rh(C5H7O2)(C15H14N)(CO)] or [Rh(acac)(CO){Ph2P(CH2CH2CN)}] (2h), and (acetyl­acetonato-κ2O,O′)carbonyl[3-(di-tert-butyl­phosphan­yl)propane­nitrile-κP]rhodium(I), [Rh(C5H7O2)(C11H22N)(CO)] or [Rh(acac)(CO){tBu2P(CH2CH2CN)}] (2i), showed a square-planar geometry around the Rh atom with a significant trans influence over the acetyl­acetonate moiety, evidenced by long Rh—O bond lengths as expected for poor π-acceptor phosphines. The Rh—P distances displayed an inverse linear dependence with the coupling constants JP-Rh and the IR ν(C[triple bond]O) bands, which accounts for the Rh—P electronic bonding feature (poor π-acceptors) of these com­plexes. A combined study from density functional theory (DFT) calculations and an evaluation of the intra­molecular H...Rh contacts from X-ray diffraction data allowed a com­parison of the conformational preferences of these com­plexes in the solid state versus the isolated com­pounds in the gas phase. For 2b, 2h and 2i, an energy-framework study evidenced that the crystal structures are mainly governed by dispersive energy. In fact, strong pairwise mol­ecular dispersive inter­actions are responsible for the columnar arrangement observed in these com­plexes. A Hirshfeld surface analysis employing three-dimensional mol­ecular surface contours and two-dimensional fingerprint plots indicated that the structures are stabilized by H...H, C...H, H...O, H...N and H...Rh inter­molecular inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229620011420/oc3006sup1.cif
Contains datablocks 2b, 2h, 2i, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620011420/oc30062bsup2.hkl
Contains datablock 2b

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620011420/oc30062hsup3.hkl
Contains datablock 2h

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620011420/oc30062isup4.hkl
Contains datablock 2i

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229620011420/oc3006sup5.pdf
Additional Tables and Figures

CCDC references: 793226; 793227; 793228

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1991) for (2b); CrystalClear (Rigaku/MSC, 2005) for (2h), (2i). Cell refinement: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1991) for (2b); CrystalClear (Rigaku/MSC, 2005) for (2h), (2i). Data reduction: TEXSAN (Molecular Structure Corporation, 1999) for (2b); CrystalClear (Rigaku/MSC, 2005) for (2h), (2i). For all structures, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015).

(Acetylacetonato-κ2O,O')(tert-butylphosphanedicarbonitrile-κP)carbonylrhodium(I) (2b) top
Crystal data top
[Rh(C5H7O2)(CO)(C8H13N2)]Dx = 1.519 Mg m3
Mr = 398.20Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 25 reflections
a = 11.972 (4) Åθ = 28–36°
b = 12.032 (5) ŵ = 1.08 mm1
c = 12.085 (5) ÅT = 298 K
V = 1740.8 (11) Å3Prism
Z = 40.36 × 0.34 × 0.30 mm
F(000) = 808
Data collection top
Rigaku AFC7S
diffractometer
2724 reflections with I > 2σ(I)
Radiation source: Normal-focus sealed tubeRint = 0.050
ω–2θ scansθmax = 25.0°, θmin = 2.4°
Absorption correction: ψ scan
(North et al., 1968)
h = 314
Tmin = 0.655, Tmax = 0.714k = 414
4245 measured reflectionsl = 414
2835 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.6003P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.074(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.61 e Å3
2835 reflectionsΔρmin = 0.78 e Å3
190 parametersAbsolute structure: Flack x determined using 1013 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004).
0 restraintsAbsolute structure parameter: 0.03 (4)
Special details top

Experimental. 3 standard reflection, every 150 reflection, decay: none

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.39711 (3)0.27288 (3)0.17779 (3)0.04056 (14)
P10.40942 (10)0.37160 (10)0.33244 (10)0.0375 (3)
O10.5060 (3)0.3797 (3)0.1045 (3)0.0523 (9)
O20.3837 (4)0.1863 (3)0.0316 (3)0.0549 (9)
O30.2458 (5)0.1175 (5)0.2916 (4)0.0829 (15)
N10.4814 (6)0.3748 (7)0.6386 (5)0.092 (2)
N20.7008 (5)0.3071 (6)0.3924 (6)0.089 (2)
C10.5362 (5)0.3781 (5)0.0018 (4)0.0486 (13)
C20.4984 (5)0.3044 (5)0.0767 (4)0.0540 (14)
H20.52350.31610.14860.065*
C30.4272 (5)0.2147 (5)0.0616 (4)0.0521 (13)
C40.6169 (7)0.4666 (6)0.0292 (5)0.0712 (17)
H4A0.63400.51090.03470.107*
H4B0.58480.51300.08540.107*
H4C0.68420.43320.05680.107*
C50.3956 (8)0.1442 (6)0.1578 (5)0.082 (2)
H5A0.34570.08660.13370.123*
H5B0.46140.11140.18920.123*
H5C0.35910.18920.21250.123*
C60.3034 (5)0.1782 (5)0.2471 (5)0.0543 (13)
C70.3031 (5)0.4820 (5)0.3522 (5)0.0576 (14)
C80.3136 (7)0.5450 (8)0.4614 (6)0.092 (3)
H8A0.25620.60060.46560.138*
H8B0.38550.58010.46500.138*
H8C0.30570.49420.52210.138*
C90.1889 (6)0.4288 (8)0.3372 (9)0.102 (3)
H9A0.13190.48410.34650.153*
H9B0.17910.37130.39130.153*
H9C0.18370.39750.26430.153*
C100.3211 (8)0.5646 (6)0.2567 (6)0.089 (2)
H10A0.26800.62410.26260.133*
H10B0.31110.52700.18730.133*
H10C0.39550.59420.26060.133*
C110.4086 (5)0.2847 (5)0.4581 (4)0.0553 (14)
H11A0.33270.25990.47090.066*
H11B0.45360.21920.44390.066*
C120.4493 (6)0.3365 (6)0.5595 (5)0.0652 (17)
C130.5445 (4)0.4448 (5)0.3435 (4)0.0467 (12)
H13A0.56090.48160.27390.056*
H13B0.53970.50130.40050.056*
C140.6331 (5)0.3689 (6)0.3697 (5)0.0570 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.0443 (2)0.0422 (2)0.03527 (19)0.00320 (18)0.00025 (17)0.00016 (17)
P10.0373 (6)0.0417 (6)0.0336 (5)0.0001 (5)0.0005 (6)0.0028 (5)
O10.061 (2)0.055 (2)0.0410 (18)0.0129 (19)0.0063 (17)0.0039 (18)
O20.075 (2)0.0479 (18)0.0421 (18)0.012 (2)0.003 (2)0.0014 (16)
O30.082 (3)0.082 (3)0.085 (3)0.034 (3)0.013 (3)0.007 (3)
N10.113 (5)0.118 (6)0.045 (3)0.019 (5)0.016 (3)0.011 (3)
N20.056 (3)0.109 (5)0.103 (5)0.017 (4)0.021 (3)0.008 (4)
C10.053 (3)0.052 (3)0.041 (3)0.000 (3)0.010 (2)0.003 (2)
C20.073 (4)0.056 (3)0.034 (2)0.005 (3)0.004 (2)0.001 (2)
C30.069 (3)0.050 (3)0.038 (3)0.004 (3)0.006 (2)0.000 (2)
C40.090 (5)0.068 (4)0.055 (3)0.013 (4)0.019 (4)0.002 (3)
C50.121 (6)0.077 (4)0.048 (3)0.004 (5)0.009 (4)0.015 (3)
C60.055 (3)0.055 (3)0.053 (3)0.013 (3)0.002 (3)0.002 (3)
C70.051 (3)0.062 (3)0.059 (3)0.016 (3)0.006 (3)0.008 (3)
C80.093 (5)0.113 (7)0.071 (4)0.044 (5)0.005 (4)0.032 (5)
C90.046 (3)0.106 (6)0.154 (8)0.022 (4)0.002 (5)0.010 (7)
C100.112 (6)0.072 (4)0.083 (5)0.038 (5)0.021 (5)0.009 (4)
C110.059 (3)0.064 (3)0.042 (3)0.011 (3)0.001 (3)0.011 (3)
C120.069 (4)0.084 (5)0.043 (3)0.010 (4)0.000 (3)0.020 (3)
C130.048 (3)0.047 (3)0.045 (3)0.009 (2)0.001 (2)0.001 (2)
C140.040 (3)0.076 (4)0.055 (3)0.005 (3)0.004 (2)0.006 (3)
Geometric parameters (Å, º) top
Rh1—C61.805 (6)C5—H5B0.9600
Rh1—O12.033 (4)C5—H5C0.9600
Rh1—O22.057 (4)C7—C91.520 (10)
Rh1—P12.2194 (14)C7—C81.528 (9)
P1—C111.843 (5)C7—C101.539 (9)
P1—C131.846 (5)C8—H8A0.9600
P1—C71.855 (6)C8—H8B0.9600
O1—C11.294 (6)C8—H8C0.9599
O2—C31.287 (7)C9—H9A0.9600
O3—C61.140 (7)C9—H9B0.9600
N1—C121.129 (9)C9—H9C0.9600
N2—C141.133 (9)C10—H10A0.9599
C1—C21.375 (8)C10—H10B0.9600
C1—C41.486 (9)C10—H10C0.9601
C2—C31.388 (8)C11—C121.458 (9)
C2—H20.9301C11—H11A0.9701
C3—C51.488 (8)C11—H11B0.9701
C4—H4A0.9601C13—C141.435 (8)
C4—H4B0.9601C13—H13A0.9700
C4—H4C0.9599C13—H13B0.9698
C5—H5A0.9600
C6—Rh1—O1178.0 (2)C9—C7—C10108.0 (6)
C6—Rh1—O291.7 (2)C8—C7—C10108.4 (6)
O1—Rh1—O289.78 (15)C9—C7—P1107.5 (5)
C6—Rh1—P189.33 (18)C8—C7—P1114.2 (4)
O1—Rh1—P189.18 (11)C10—C7—P1105.6 (4)
O2—Rh1—P1177.97 (11)C7—C8—H8A109.5
C11—P1—C13102.4 (3)C7—C8—H8B109.4
C11—P1—C7107.2 (3)H8A—C8—H8B109.5
C13—P1—C7104.5 (3)C7—C8—H8C109.6
C11—P1—Rh1112.9 (2)H8A—C8—H8C109.5
C13—P1—Rh1111.98 (18)H8B—C8—H8C109.5
C7—P1—Rh1116.48 (18)C7—C9—H9A109.5
C1—O1—Rh1126.0 (4)C7—C9—H9B109.4
C3—O2—Rh1125.9 (3)H9A—C9—H9B109.5
O1—C1—C2125.4 (5)C7—C9—H9C109.5
O1—C1—C4114.4 (5)H9A—C9—H9C109.5
C2—C1—C4120.2 (5)H9B—C9—H9C109.5
C1—C2—C3127.8 (5)C7—C10—H10A109.5
C1—C2—H2116.1C7—C10—H10B109.5
C3—C2—H2116.1H10A—C10—H10B109.5
O2—C3—C2124.8 (5)C7—C10—H10C109.5
O2—C3—C5115.5 (6)H10A—C10—H10C109.5
C2—C3—C5119.8 (5)H10B—C10—H10C109.5
C1—C4—H4A109.5C12—C11—P1116.6 (4)
C1—C4—H4B109.5C12—C11—H11A108.1
H4A—C4—H4B109.5P1—C11—H11A108.1
C1—C4—H4C109.4C12—C11—H11B108.1
H4A—C4—H4C109.5P1—C11—H11B108.2
H4B—C4—H4C109.5H11A—C11—H11B107.3
C3—C5—H5A109.5N1—C12—C11178.8 (8)
C3—C5—H5B109.5C14—C13—P1111.1 (4)
H5A—C5—H5B109.5C14—C13—H13A109.4
C3—C5—H5C109.5P1—C13—H13A109.4
H5A—C5—H5C109.5C14—C13—H13B109.5
H5B—C5—H5C109.5P1—C13—H13B109.5
O3—C6—Rh1178.9 (6)H13A—C13—H13B108.0
C9—C7—C8112.7 (6)N2—C14—C13177.9 (7)
(Acetylacetonato-κ2O,O')]carbonyl[3-(diphenylphosphanyl)propanenitrile-κPrhodium(I), (2h) top
Crystal data top
[Rh(C5H7O2)(C15H14NP)(CO)]F(000) = 952
Mr = 469.27Dx = 1.459 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.676 (4) ÅCell parameters from 23386 reflections
b = 15.666 (4) Åθ = 2–25°
c = 11.937 (4) ŵ = 0.89 mm1
β = 101.927 (8)°T = 298 K
V = 2136.4 (11) Å3Block, yellow
Z = 40.50 × 0.45 × 0.35 mm
Data collection top
Rigaku AFC-7S Mercury
diffractometer
4343 independent reflections
Radiation source: fine-focus seal tube3661 reflections with I > 2σ(I)
Detector resolution: 14.6306 pixels mm-1Rint = 0.029
ω scansθmax = 28.1°, θmin = 2.2°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
h = 1313
Tmin = 0.642, Tmax = 0.733k = 1619
23386 measured reflectionsl = 1414
Refinement top
Refinement on F2104 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0421P)2 + 1.0006P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
4343 reflectionsΔρmax = 0.74 e Å3
301 parametersΔρmin = 0.61 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Intensity data were recorded at room temperature on a Rigaku AFC-7S diffractometer using monochromated Mo Kα radiation (λ= 0.71073 Å). The apparatus was configured with a fine-focus sealed tube and a scintillator detector for data collection of 2b and a CCD mercury detector for 2h and 2i. Experimental details on unit cell and intensity measurements can be found in the CIF files deposited with the Cambridge Crystallographic Data Centre [CCDC 793226, 793227, 793228]. Crystal data, intensity data collection parameters, and final refinement results are summarized in Table 1. For 2h and 2i, an empirical absorption correction multi-scan was applied to data using the CrystalClear crystallographic software package ?(CrystalClear, 2005)?. For 2b, a semiempirical psi-scan absorption correction was applied ?(North et al., 1968). The structures were solved by Direct Methods and refined by full-matrix least-squares on F2.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rh10.74701 (2)0.20421 (2)0.10036 (2)0.04352 (10)
P10.78345 (6)0.17911 (4)0.28775 (6)0.03969 (16)
O20.7114 (2)0.22219 (15)0.07578 (18)0.0607 (6)
O10.80710 (19)0.08437 (13)0.07647 (17)0.0578 (5)
O30.6495 (3)0.37253 (17)0.1389 (3)0.1012 (10)
N11.1467 (3)0.0185 (3)0.3857 (3)0.1013 (13)
C70.8542 (2)0.26134 (17)0.3849 (2)0.0442 (6)
C80.9039 (3)0.33200 (19)0.3434 (3)0.0570 (8)
H80.89520.33970.26490.068*
C90.9663 (3)0.3909 (2)0.4180 (4)0.0762 (11)
H91.00080.43760.38970.091*
C100.9773 (3)0.3805 (2)0.5336 (4)0.0843 (13)
H101.01840.42060.58370.101*
C110.9281 (3)0.3113 (2)0.5761 (3)0.0734 (11)
H110.93560.30500.65480.088*
C120.8674 (3)0.2509 (2)0.5025 (3)0.0558 (7)
H120.83550.20350.53160.067*
C130.8808 (3)0.08754 (17)0.3320 (3)0.0492 (7)
H13A0.84880.03750.27610.074*
H13B0.88600.07250.41700.074*
C141.0051 (3)0.1070 (2)0.3150 (3)0.0583 (8)
H14B1.04690.16210.35110.088*
H14A1.00210.11260.22600.088*
C151.0855 (3)0.0363 (2)0.3546 (3)0.0686 (9)
C30.7231 (3)0.1658 (3)0.1494 (3)0.0647 (9)
C20.7654 (3)0.0836 (3)0.1261 (3)0.0706 (10)
H20.76890.04940.18900.085*
C10.8029 (3)0.0471 (2)0.0195 (3)0.0592 (8)
C60.6884 (3)0.3077 (2)0.1246 (3)0.0613 (8)
C40.8444 (4)0.0439 (2)0.0091 (4)0.0852 (12)
H4A0.85000.06500.08330.128*
H4B0.78970.07810.02130.128*
H4C0.91980.04660.04130.128*
C50.6887 (4)0.1951 (3)0.2720 (3)0.0945 (14)
H5A0.73540.24350.28350.142*
H5B0.60750.21090.28860.142*
H5C0.70130.14960.32200.142*
C16A0.6522 (12)0.1593 (10)0.3447 (16)0.046 (3)0.53 (3)
C17A0.5929 (12)0.2284 (10)0.3791 (17)0.051 (3)0.53 (3)
H17A0.62260.28330.37670.061*0.53 (3)
C18A0.4895 (10)0.2156 (13)0.4168 (11)0.061 (3)0.53 (3)
H18A0.45240.26140.44380.073*0.53 (3)
C19A0.4421 (9)0.1361 (15)0.4142 (10)0.066 (3)0.53 (3)
H19A0.37180.12860.43800.079*0.53 (3)
C20A0.4965 (12)0.0654 (10)0.3767 (13)0.069 (3)0.53 (3)
H20A0.46360.01130.37550.083*0.53 (3)
C21A0.6016 (14)0.0785 (10)0.3413 (17)0.055 (3)0.53 (3)
H21A0.63870.03240.31480.066*0.53 (3)
C16B0.6538 (12)0.1456 (13)0.3384 (16)0.043 (3)0.47 (3)
C17B0.5876 (15)0.2031 (13)0.3849 (19)0.054 (3)0.47 (3)
H17B0.61350.25920.39610.065*0.47 (3)
C18B0.4829 (11)0.1800 (15)0.4155 (12)0.061 (3)0.47 (3)
H18B0.43810.21970.44550.074*0.47 (3)
C19B0.4486 (11)0.0969 (17)0.4000 (12)0.064 (4)0.47 (3)
H19B0.37890.07990.41960.077*0.47 (3)
C20B0.5146 (14)0.0373 (14)0.3559 (16)0.073 (4)0.47 (3)
H20B0.48860.01880.34560.087*0.47 (3)
C21B0.6188 (15)0.0606 (12)0.327 (2)0.056 (3)0.47 (3)
H21B0.66490.02000.30060.067*0.47 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.05160 (16)0.04385 (15)0.03655 (14)0.00244 (9)0.01242 (10)0.00134 (8)
P10.0429 (4)0.0402 (3)0.0364 (4)0.0009 (3)0.0093 (3)0.0016 (3)
O20.0707 (15)0.0772 (14)0.0360 (11)0.0047 (11)0.0156 (10)0.0020 (10)
O10.0692 (14)0.0551 (12)0.0505 (12)0.0037 (10)0.0156 (10)0.0105 (9)
O30.136 (3)0.0571 (15)0.104 (2)0.0380 (16)0.0112 (19)0.0034 (14)
N10.107 (3)0.117 (3)0.086 (2)0.062 (2)0.032 (2)0.018 (2)
C70.0381 (14)0.0458 (15)0.0470 (16)0.0028 (11)0.0052 (12)0.0084 (12)
C80.0522 (18)0.0448 (16)0.070 (2)0.0017 (13)0.0040 (15)0.0026 (14)
C90.067 (2)0.0486 (19)0.101 (3)0.0068 (15)0.010 (2)0.0077 (18)
C100.078 (3)0.062 (2)0.093 (3)0.0078 (18)0.029 (2)0.029 (2)
C110.073 (2)0.078 (2)0.056 (2)0.0130 (19)0.0163 (18)0.0198 (17)
C120.0550 (18)0.064 (2)0.0444 (17)0.0053 (14)0.0007 (13)0.0047 (13)
C130.0592 (18)0.0413 (15)0.0487 (16)0.0041 (12)0.0145 (13)0.0026 (12)
C140.0506 (17)0.0617 (19)0.064 (2)0.0124 (14)0.0159 (15)0.0083 (15)
C150.068 (2)0.085 (2)0.056 (2)0.0253 (19)0.0202 (17)0.0003 (17)
C30.058 (2)0.095 (3)0.0448 (18)0.0100 (18)0.0192 (15)0.0072 (17)
C20.072 (2)0.090 (3)0.054 (2)0.0025 (19)0.0221 (17)0.0250 (18)
C10.0506 (18)0.067 (2)0.063 (2)0.0069 (14)0.0199 (15)0.0211 (16)
C60.076 (2)0.0571 (19)0.0480 (19)0.0058 (16)0.0059 (16)0.0052 (14)
C40.091 (3)0.064 (2)0.104 (3)0.0005 (19)0.029 (2)0.031 (2)
C50.117 (4)0.126 (4)0.042 (2)0.007 (3)0.019 (2)0.006 (2)
C16A0.046 (5)0.056 (5)0.035 (6)0.001 (3)0.008 (4)0.001 (4)
C17A0.042 (4)0.059 (6)0.052 (5)0.002 (4)0.013 (3)0.004 (5)
C18A0.043 (4)0.075 (7)0.067 (5)0.001 (4)0.018 (3)0.003 (5)
C19A0.053 (4)0.077 (8)0.070 (5)0.005 (5)0.019 (4)0.001 (5)
C20A0.068 (6)0.065 (7)0.080 (7)0.005 (4)0.030 (4)0.008 (5)
C21A0.062 (5)0.053 (5)0.054 (6)0.002 (4)0.020 (4)0.004 (4)
C16B0.039 (5)0.059 (6)0.028 (6)0.005 (4)0.001 (4)0.002 (4)
C17B0.049 (4)0.060 (7)0.055 (5)0.006 (4)0.013 (4)0.008 (6)
C18B0.047 (5)0.071 (9)0.068 (5)0.005 (5)0.017 (4)0.008 (6)
C19B0.052 (5)0.077 (9)0.065 (6)0.015 (5)0.016 (4)0.009 (6)
C20B0.059 (5)0.081 (8)0.082 (7)0.019 (5)0.024 (4)0.004 (6)
C21B0.051 (5)0.056 (6)0.063 (7)0.015 (4)0.017 (4)0.004 (5)
Geometric parameters (Å, º) top
Rh1—C61.807 (3)C3—C51.507 (5)
Rh1—O12.045 (2)C2—C11.381 (5)
Rh1—O22.076 (2)C2—H20.9300
Rh1—P12.2240 (10)C1—C41.502 (5)
Rh1—H14A3.3668C4—H4A0.9600
Rh1—H13A3.4068C4—H4B0.9600
P1—C71.814 (3)C4—H4C0.9600
P1—C16B1.820 (9)C5—H5A0.9600
P1—C16A1.828 (9)C5—H5B0.9600
P1—C131.839 (3)C5—H5C0.9600
O2—C31.273 (4)C16A—C17A1.392 (10)
O1—C11.278 (4)C16A—C21A1.394 (10)
O3—C61.139 (4)C17A—C18A1.388 (10)
N1—C151.130 (4)C17A—H17A0.9300
C7—C81.388 (4)C18A—C19A1.360 (11)
C7—C121.391 (4)C18A—H18A0.9300
C8—C91.381 (4)C19A—C20A1.394 (11)
C8—H80.9300C19A—H19A0.9300
C9—C101.369 (6)C20A—C21A1.394 (10)
C9—H90.9300C20A—H20A0.9300
C10—C111.373 (6)C21A—H21A0.9300
C10—H100.9300C16B—C17B1.376 (11)
C11—C121.382 (4)C16B—C21B1.392 (11)
C11—H110.9300C17B—C18B1.395 (11)
C12—H120.9300C17B—H17B0.9300
C13—C141.536 (4)C18B—C19B1.363 (12)
C13—H13A1.0472C18B—H18B0.9300
C13—H13B1.0318C19B—C20B1.382 (12)
C14—C151.465 (4)C19B—H19B0.9300
C14—H14B1.0410C20B—C21B1.380 (11)
C14—H14A1.0595C20B—H20B0.9300
C3—C21.387 (5)C21B—H21B0.9300
C6—Rh1—O1177.17 (13)O2—C3—C5114.5 (4)
C6—Rh1—O292.15 (13)C2—C3—C5119.3 (3)
O1—Rh1—O289.19 (9)C1—C2—C3126.9 (3)
C6—Rh1—P189.85 (11)C1—C2—H2116.5
O1—Rh1—P188.74 (6)C3—C2—H2116.5
O2—Rh1—P1177.57 (6)O1—C1—C2125.7 (3)
C6—Rh1—H14A129.8O1—C1—C4114.0 (3)
O1—Rh1—H14A51.2C2—C1—C4120.3 (3)
O2—Rh1—H14A118.8O3—C6—Rh1178.8 (4)
P1—Rh1—H14A60.6C1—C4—H4A109.5
C6—Rh1—H13A133.2C1—C4—H4B109.5
O1—Rh1—H13A45.2H4A—C4—H4B109.5
O2—Rh1—H13A134.3C1—C4—H4C109.5
P1—Rh1—H13A43.5H4A—C4—H4C109.5
H14A—Rh1—H13A40.1H4B—C4—H4C109.5
C7—P1—C16B107.0 (6)C3—C5—H5A109.5
C7—P1—C16A100.9 (6)C3—C5—H5B109.5
C7—P1—C13101.38 (13)H5A—C5—H5B109.5
C16B—P1—C13100.8 (6)C3—C5—H5C109.5
C16A—P1—C13106.1 (6)H5A—C5—H5C109.5
C7—P1—Rh1118.97 (10)H5B—C5—H5C109.5
C16B—P1—Rh1112.7 (6)C17A—C16A—C21A118.8 (8)
C16A—P1—Rh1113.8 (6)C17A—C16A—P1118.9 (10)
C13—P1—Rh1113.90 (10)C21A—C16A—P1121.7 (10)
C3—O2—Rh1125.3 (2)C18A—C17A—C16A120.1 (9)
C1—O1—Rh1126.4 (2)C18A—C17A—H17A119.9
C8—C7—C12119.1 (3)C16A—C17A—H17A119.9
C8—C7—P1120.5 (2)C19A—C18A—C17A120.1 (8)
C12—C7—P1120.2 (2)C19A—C18A—H18A119.9
C9—C8—C7120.5 (3)C17A—C18A—H18A119.9
C9—C8—H8119.7C18A—C19A—C20A121.6 (8)
C7—C8—H8119.7C18A—C19A—H19A119.2
C10—C9—C8119.8 (4)C20A—C19A—H19A119.2
C10—C9—H9120.1C21A—C20A—C19A117.9 (9)
C8—C9—H9120.1C21A—C20A—H20A121.0
C9—C10—C11120.5 (3)C19A—C20A—H20A121.0
C9—C10—H10119.7C16A—C21A—C20A121.2 (8)
C11—C10—H10119.7C16A—C21A—H21A119.4
C10—C11—C12120.3 (4)C20A—C21A—H21A119.4
C10—C11—H11119.9C17B—C16B—C21B119.2 (9)
C12—C11—H11119.9C17B—C16B—P1121.3 (10)
C11—C12—C7119.8 (3)C21B—C16B—P1119.5 (10)
C11—C12—H12120.1C16B—C17B—C18B122.1 (10)
C7—C12—H12120.1C16B—C17B—H17B118.9
C14—C13—P1110.63 (19)C18B—C17B—H17B118.9
C14—C13—H13A106.7C19B—C18B—C17B117.5 (10)
P1—C13—H13A106.4C19B—C18B—H18B121.3
C14—C13—H13B108.1C17B—C18B—H18B121.3
P1—C13—H13B111.6C18B—C19B—C20B121.7 (9)
H13A—C13—H13B113.3C18B—C19B—H19B119.2
C15—C14—C13111.6 (3)C20B—C19B—H19B119.2
C15—C14—H14B106.1C21B—C20B—C19B120.4 (10)
C13—C14—H14B119.0C21B—C20B—H20B119.8
C15—C14—H14A105.8C19B—C20B—H20B119.8
C13—C14—H14A108.2C20B—C21B—C16B119.0 (10)
H14B—C14—H14A105.1C20B—C21B—H21B120.5
N1—C15—C14179.3 (4)C16B—C21B—H21B120.5
O2—C3—C2126.2 (3)
(Acetylacetonato-κ2O,O')carbonyl[3-(di-tert-butylphosphanyl)propanenitrile-κP]rhodium(I) (2i) top
Crystal data top
[Rh(C5H7O2)(C11H22N)(CO)]F(000) = 888
Mr = 429.29Dx = 1.409 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.531 (3) ÅCell parameters from 19824 reflections
b = 12.450 (3) Åθ = 27–3°
c = 12.161 (2) ŵ = 0.94 mm1
β = 98.92 (3)°T = 298 K
V = 2024.0 (7) Å3Platelet, yellow
Z = 40.50 × 0.15 × 0.10 mm
Data collection top
Rigaku AFC-7S Mercury
diffractometer
3851 independent reflections
Radiation source: fine-focus seal tube2307 reflections with I > 2σ(I)
Detector resolution: 14.6306 pixels mm-1Rint = 0.090
ω scansθmax = 27.7°, θmin = 1.5°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
h = 1617
Tmin = 0.818, Tmax = 0.942k = 1414
19824 measured reflectionsl = 1515
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.075H-atom parameters constrained
wR(F2) = 0.178 w = 1/[σ2(Fo2) + (0.0407P)2 + 8.7706P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max < 0.001
3851 reflectionsΔρmax = 0.50 e Å3
209 parametersΔρmin = 0.84 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.30329 (5)0.25416 (6)0.11383 (6)0.0480 (2)
P10.26047 (17)0.42905 (18)0.13165 (19)0.0447 (6)
O10.1572 (4)0.2136 (5)0.1180 (5)0.0557 (16)
O20.3358 (5)0.0914 (5)0.1043 (5)0.0588 (16)
O30.5129 (6)0.3017 (7)0.0906 (9)0.104 (3)
N10.0282 (8)0.3013 (8)0.3290 (9)0.084 (3)
C10.1179 (7)0.1187 (8)0.1135 (7)0.053 (2)
C20.1730 (7)0.0241 (8)0.1086 (7)0.054 (2)
H20.13740.03990.10750.065*
C30.2736 (8)0.0151 (8)0.1052 (8)0.059 (3)
C50.3200 (9)0.0967 (7)0.1058 (9)0.081 (3)
H5A0.39050.09030.10440.121*
H5B0.28930.13580.04140.121*
H5C0.30930.13430.17190.121*
C40.0102 (7)0.1157 (8)0.1149 (8)0.064 (3)
H4A0.00290.13200.18840.097*
H4B0.01490.04530.09380.097*
H4C0.02230.16770.06330.097*
C60.4299 (8)0.2876 (7)0.1024 (9)0.064 (3)
C130.1426 (6)0.4313 (7)0.1894 (7)0.051 (2)
H13A0.12360.50550.19850.061*
H13B0.09070.39840.13600.061*
C140.1466 (7)0.3732 (8)0.3019 (8)0.060 (3)
H14A0.19240.31300.30490.071*
H14B0.17190.42220.36170.071*
C150.0474 (8)0.3343 (8)0.3181 (9)0.060 (3)
C70.2243 (7)0.4954 (7)0.0091 (8)0.054 (2)
C80.1937 (10)0.6139 (8)0.0037 (10)0.090 (4)
H8A0.17680.64170.07780.136*
H8B0.24840.65430.03580.136*
H8C0.13680.61960.03430.136*
C90.3072 (8)0.4826 (9)0.0780 (9)0.077 (3)
H9A0.28820.51650.14900.116*
H9B0.31920.40760.08880.116*
H9C0.36710.51550.04010.116*
C100.1334 (7)0.4328 (9)0.0702 (8)0.069 (3)
H10A0.11280.46400.14230.103*
H10B0.07940.43650.02780.103*
H10C0.15180.35910.07850.103*
C110.3479 (7)0.5177 (8)0.2282 (8)0.056 (2)
C120.3935 (8)0.4479 (10)0.3277 (9)0.083 (3)
H12A0.43860.49050.37870.125*
H12B0.42930.38890.30160.125*
H12C0.34100.42070.36480.125*
C160.2922 (8)0.6120 (8)0.2739 (9)0.082 (3)
H16A0.33910.65510.32230.123*
H16B0.24250.58430.31480.123*
H16C0.26050.65520.21320.123*
C170.4337 (8)0.5603 (9)0.1733 (10)0.084 (4)
H17A0.47610.60490.22500.127*
H17B0.40730.60170.10880.127*
H17C0.47180.50110.15140.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.0480 (4)0.0411 (4)0.0564 (4)0.0046 (3)0.0129 (3)0.0005 (4)
P10.0470 (13)0.0419 (13)0.0453 (13)0.0047 (10)0.0070 (10)0.0013 (11)
O10.057 (4)0.044 (4)0.068 (4)0.014 (3)0.016 (3)0.005 (3)
O20.065 (4)0.041 (4)0.072 (4)0.001 (3)0.015 (3)0.006 (3)
O30.060 (5)0.081 (6)0.182 (9)0.002 (4)0.048 (6)0.026 (6)
N10.090 (7)0.069 (6)0.106 (8)0.003 (5)0.056 (6)0.010 (6)
C10.058 (6)0.057 (6)0.043 (5)0.018 (5)0.007 (5)0.002 (4)
C20.068 (7)0.049 (6)0.043 (5)0.022 (5)0.001 (5)0.002 (4)
C30.079 (7)0.048 (6)0.049 (6)0.005 (5)0.004 (5)0.007 (4)
C50.107 (9)0.035 (5)0.097 (8)0.012 (5)0.005 (7)0.006 (5)
C40.067 (7)0.055 (6)0.071 (7)0.009 (5)0.009 (5)0.014 (5)
C60.061 (7)0.042 (5)0.089 (8)0.002 (5)0.016 (6)0.008 (5)
C130.058 (5)0.045 (5)0.052 (5)0.002 (4)0.014 (5)0.000 (4)
C140.060 (6)0.063 (6)0.058 (6)0.007 (5)0.013 (5)0.013 (5)
C150.072 (7)0.053 (6)0.063 (7)0.010 (5)0.032 (6)0.002 (5)
C70.063 (6)0.047 (5)0.052 (6)0.001 (4)0.011 (5)0.009 (4)
C80.131 (11)0.054 (7)0.081 (8)0.013 (7)0.000 (7)0.017 (6)
C90.088 (8)0.081 (8)0.066 (7)0.007 (6)0.024 (6)0.009 (6)
C100.070 (7)0.083 (8)0.049 (6)0.005 (6)0.006 (5)0.000 (5)
C110.055 (6)0.058 (6)0.052 (6)0.009 (5)0.001 (5)0.014 (5)
C120.070 (7)0.111 (10)0.062 (7)0.014 (7)0.009 (6)0.001 (7)
C160.092 (8)0.065 (7)0.087 (8)0.015 (6)0.010 (7)0.029 (6)
C170.076 (7)0.086 (8)0.090 (8)0.038 (6)0.010 (6)0.015 (7)
Geometric parameters (Å, º) top
Rh1—C61.790 (11)C14—H14A0.9700
Rh1—O12.048 (6)C14—H14B0.9700
Rh1—O22.081 (6)C7—C91.510 (13)
Rh1—P12.272 (2)C7—C81.535 (13)
P1—C131.840 (9)C7—C101.545 (12)
P1—C111.888 (9)C8—H8A0.9600
P1—C71.896 (9)C8—H8B0.9600
O1—C11.294 (10)C8—H8C0.9600
O2—C31.271 (11)C9—H9A0.9600
O3—C61.167 (11)C9—H9B0.9600
N1—C151.129 (12)C9—H9C0.9600
C1—C21.400 (13)C10—H10A0.9600
C1—C41.460 (12)C10—H10B0.9600
C2—C31.373 (13)C10—H10C0.9600
C2—H20.9300C11—C171.521 (13)
C3—C51.527 (13)C11—C121.539 (13)
C5—H5A0.9600C11—C161.544 (13)
C5—H5B0.9600C12—H12A0.9600
C5—H5C0.9600C12—H12B0.9600
C4—H4A0.9600C12—H12C0.9600
C4—H4B0.9600C16—H16A0.9600
C4—H4C0.9600C16—H16B0.9600
C13—C141.541 (12)C16—H16C0.9600
C13—H13A0.9700C17—H17A0.9600
C13—H13B0.9700C17—H17B0.9600
C14—C151.469 (14)C17—H17C0.9600
C6—Rh1—O1176.9 (4)C9—C7—C8110.7 (9)
C6—Rh1—O290.5 (4)C9—C7—C10106.5 (8)
O1—Rh1—O288.6 (2)C8—C7—C10107.8 (8)
C6—Rh1—P192.6 (3)C9—C7—P1110.2 (7)
O1—Rh1—P188.41 (18)C8—C7—P1114.4 (7)
O2—Rh1—P1176.28 (19)C10—C7—P1106.8 (6)
C13—P1—C11104.5 (4)C7—C8—H8A109.5
C13—P1—C7102.7 (4)C7—C8—H8B109.5
C11—P1—C7110.8 (4)H8A—C8—H8B109.5
C13—P1—Rh1107.5 (3)C7—C8—H8C109.5
C11—P1—Rh1118.4 (3)H8A—C8—H8C109.5
C7—P1—Rh1111.5 (3)H8B—C8—H8C109.5
C1—O1—Rh1128.0 (6)C7—C9—H9A109.5
C3—O2—Rh1125.5 (6)C7—C9—H9B109.5
O1—C1—C2123.5 (8)H9A—C9—H9B109.5
O1—C1—C4115.3 (9)C7—C9—H9C109.5
C2—C1—C4121.2 (8)H9A—C9—H9C109.5
C3—C2—C1127.3 (9)H9B—C9—H9C109.5
C3—C2—H2116.3C7—C10—H10A109.5
C1—C2—H2116.3C7—C10—H10B109.5
O2—C3—C2127.0 (9)H10A—C10—H10B109.5
O2—C3—C5114.1 (9)C7—C10—H10C109.5
C2—C3—C5118.9 (9)H10A—C10—H10C109.5
C3—C5—H5A109.5H10B—C10—H10C109.5
C3—C5—H5B109.5C17—C11—C12107.5 (8)
H5A—C5—H5B109.5C17—C11—C16110.0 (9)
C3—C5—H5C109.5C12—C11—C16107.7 (8)
H5A—C5—H5C109.5C17—C11—P1112.2 (7)
H5B—C5—H5C109.5C12—C11—P1107.1 (7)
C1—C4—H4A109.5C16—C11—P1112.0 (6)
C1—C4—H4B109.5C11—C12—H12A109.5
H4A—C4—H4B109.5C11—C12—H12B109.5
C1—C4—H4C109.5H12A—C12—H12B109.5
H4A—C4—H4C109.5C11—C12—H12C109.5
H4B—C4—H4C109.5H12A—C12—H12C109.5
O3—C6—Rh1174.6 (10)H12B—C12—H12C109.5
C14—C13—P1114.7 (6)C11—C16—H16A109.5
C14—C13—H13A108.6C11—C16—H16B109.5
P1—C13—H13A108.6H16A—C16—H16B109.5
C14—C13—H13B108.6C11—C16—H16C109.5
P1—C13—H13B108.6H16A—C16—H16C109.5
H13A—C13—H13B107.6H16B—C16—H16C109.5
C15—C14—C13111.5 (8)C11—C17—H17A109.5
C15—C14—H14A109.3C11—C17—H17B109.5
C13—C14—H14A109.3H17A—C17—H17B109.5
C15—C14—H14B109.3C11—C17—H17C109.5
C13—C14—H14B109.3H17A—C17—H17C109.5
H14A—C14—H14B108.0H17B—C17—H17C109.5
N1—C15—C14177.8 (11)
Selected 31P NMR, 1H NMR and IR values for 2a2i top
δ31P1JP-RhCH3transCH3cisIR ν(CO, cm-1)
2a56.3170.32.041.861961.8
2b61.9174.52.081.941964.0
2c35.8172.22.061.851969.1
2d39.6188.12.101.941968.0
2e43.7173.22.061.761967.7
2f45.0178.62.131.941969.3
2g74.0180.72.091.911968.5
2h46.0174.02.101.901967.3
2i83.1158.02.071.941927.9
Selected 13C NMR values for 2a2i top
CO2JP-CO1JRh-COCcisCtransCH3cisCH3trans3JRh-CH3trans
2a189.824.376.0184.9187.927.127.7-
2b187.7--184.9188.427.127.65.8
2c189.125.175.9185.2187.827.227.65.6
2d187.126.873.7185.3188.227.127.56.1
2e189.024.975.7185.3187.727.027.65.2
2f187.9--185.2188.127.127.6-
2g190.025.378.1185.1187.927.227.75.7
2h188.325.371.4185.2188.327.127.65.5
2i189.223.575.4184.0187.626.126.85.0
Selected bond lengths (Å) and angles (°) for 2a, 2b, 2c and 2i top
2a2b2h2i
Rh1—P12.2387 (8)2.2194 (9)2.2240 (10)2.272 (2)
Rh1—O12.036 (2)2.033 (4)2.045 (2)2.048 (6)
Rh1—O22.082 (2)2.057 (4)2.077 (2)2.081 (6)
Rh1—C6(CO)1.797 (4)1.805 (6)1.807 (3)1.790 (11)
O1—Rh1—O288.0 (1)89.8 (2)89.2 (1)88.6 (2)
O1—Rh1—P188.2 (1)89.2 (1)88.7 (2)88.4 (2)
O2—Rh1—P1176.2 (1)177.9 (2)177.6 (1)176.3 (2)
O1—Rh1—C6(CO)177.5 (1)178.0 (2)177.2 (1)176.9 (4)
O2—Rh1—C6(CO)94.4 (1)91.7 (2)92.2 (1)90.5 (3)
P1—Rh1—C6(CO)89.4 (1)89.3 (2)89.9 (1)92.6 (3)
Distances and angles (Å, °) for the shortest C—H···Rh contacts found in 2b, 2h and 2i top
From XRD dataFrom DFT calculation at B3YLP/DGDZVP
CompoundThe substituent on the phosphine ligandContact C—H···RhH···RhC—H···RhH···RhC—H···Rh
2bCyanoalkylC11—H11B···Rh13.34984.33.51381.1
C13—H13A···Rh13.39180.93.51178.1
tert-ButylC9—H9C···Rh13.142116.13.559111.2
C10—H10B···Rh13.228115.93.068112.4
2hCyanoalkylC13—H13A···Rh13.40781.43.50779.7
C14—H14A···Rh13.367108.93.371112.5
PhenylC8—H8···Rh13.155118.23.125117.7
2iCyanoalkylC14—H14A···Rh13.044123.03.214116.7
tert-ButylC9—H9B···Rh13.152116.73.147115.5
C10—H10C···Rh13.145117.93.125119.5
C12—H12B···Rh13.119114.03.208108.2
Comparison of 31P NMR, IR and structural selected data for a collection of Rh complexes top
Entry[Rh(acac)(CO)P]δ31P (ppm)1JP-Rh (Hz)dRh-Ot (Å)dRh-CO (Å)dRh-P (Å)νCO (cm-1)Cone angle (°)
1Ph3P48.6180.02.0871.8012.2441975145a
2Cy3P58.0170.02.0961.8042.2611945170a
3Cy2PhP59.0168.32.0781.7972.2431949163a
4CyPh2P53.3171.32.0761.8022.2331959151a
52a56.3170.32.0821.7972.2391961118b
62b61.9174.52.0571.8052.2191964129b
72h46.0174.02.0771.8062.2241967122b
82i83.1158.02.0811.7902.2721927143b
9(PhO)3P212.1293.02.0631.8232.1702006136d
10Py3P102.0251.02.0541.8262.1662012141c
References: (a) Tolman (1977) (b) calculated in this work following the method by Müller & Mingos 1995); (c Trzeciak et al. (1997); (d) Simanko et al. (2000).
Hydrogen-bond and short-contact geometry (Å, °) for 2b, 2h and 2i top
Compound 2b
D—H···AD—HH···AD···AAngleSymmetry code
C11—H11A···N20.972.423.267 (9)145.0x-1/2, -y+1/2, -z+1
C13—H13A···O10.972.483.028 (6)116.0
C2—H2···N10.972.713.549 (8)145.0x-1/2, -y+1/2, -z+1
C13—H13B···O20.972.543.385 (7)145.0-x+1, y+1/2, -z+1/2
Short contacts
X—H···CgX—HH···CgX···CgX—H···CgSymmetry code
C8—H8a···Cg110.963.203.903 (9)145.5-x+1/2, -y+1, z+1/2
Compound 2h
D—H···AD—HH···AD···AAngleSymmetry code
C14—H14b···O20.972.653.657 (6)161.6x-1/2, -y-1/2, z-1/2
Short contacts
D—H···AD—HH···AD···AAngleSymmetry code
C4—H4b···Cg220.932.933.850 (7)161-x+3/2, y-1/2, -z+1/2
C11—H11a···Cg230.932.853.655 (6)146x+1/2, -y+1/2, z+1/2
C18—H18···Cg212.963.850 (6)161x-1/2, -y+1/2, z+1/2
Rh1···Cg224.05x+1/2, -y+1/2, z+1/2
Compound 2i
D—H···AD—H (Å)H···A (Å)D···A (Å)Angle (°)Symmetry code
C13—H13B···O10.972.492.862 (11)102.0
C14—H14A···O10.972.573.012 (12)108.0
C2—H2···N10.932.653.545 (14)160.8-x, y-1/2, -z+1/2
C12—H12C···O20.972.933.603 (13)128.3x, -y+1/2, z+1/2
C9—H9A···C3(acac)0.972.993.809 (14)143.9x, y, z+1
C10—H10A···Cg(C1—C2)0.973.133.901 (12)138.9x, y, z+1
C14—H14B···Cg(Rh-acac)0.973.053.742 (9)129.9x, -y+1/2, z+1/2
Centroids: Cg(C1—C2) centroid between C1 and C2; Cg(Rh-acac) Rh1/O1/C1/C2/C3/O2; Cg11/Cg21 Rh1/O1/C1/C2/C3/O2; Cg22 C7–C12; Cg23 C16A–C21A;
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds