Download citation
Download citation
link to html
The Co atom in the title compound, [Co(C10H14NO6)(C2H8N2)]·H2O, has an octa­hedral geometry with tetra­dentate N,N-bis­(carboxy­meth­yl)-L-leucine (L-bcmle) and bidentate ethyl­enediamine (en) ligands. The complexes and water mol­ecules are linked via N—H...O and O—H...O hydrogen bonds, forming layers perpendicular to the c axis. Between these hydro­philic layers, hydro­phobic bilayers are formed by the isobutyl groups of the L-bcmle ligands.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805040407/ob6598sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805040407/ob6598Isup2.hkl
Contains datablock I

CCDC reference: 296624

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.025
  • wR factor = 0.052
  • Data-to-parameter ratio = 16.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.62 Ratio
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.48 From the CIF: _reflns_number_total 3626 Count of symmetry unique reflns 2127 Completeness (_total/calc) 170.47% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1499 Fraction of Friedel pairs measured 0.705 Are heavy atom types Z>Si present yes
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

High efficiency and specificity of biological reactions are achieved by molecular recognition utilizing steric repulsion and weak non-covalent interactions, such as hydrogen bonding, electrostatic, hydrophobic and aromatic ring-stacking interactions (Rebek, 1990). In order to understand such non-covalent interactions of the molecular recognition sites of proteins, we have studied inorganic complexes containing amino acid derivatives as model compounds (Jitsukawa et al., 1994; Kumita et al., 2001). In this paper, we report the crystal structure of the title compound, [CoII(L-bcmle)(en)]·H2O, (I). The L-bcmle ligand was derived from the natural amino acid L-leucine (L-Leu).

For complex (I), there are three possible types of stereoisomers, depending on the position of the Cα site and the orientation of the isobutyl group of the L-Leu unit in L-bcmle. Our preparation method facilely gave the red single crystalline product, (I) (Fig. 1). 1H NMR spectroscopic analysis also suggested that (I) was dominantly formed in the synthetic solution through the procedure. The coordination mode of L-bcmle in (I) is the same as those observed in the crystals of analogous CoIII (Jitsukawa et al., 1994, Kumita et al. 1998, 2001) and CrIII complexes (Borcarsly et al., 1990). Their CD [Please define] spectra in aqueous solution exhibited characteristically large positive and negative bands in the dd region, which are induced by the coordination geometry and the absolute configuration around the asymmetric centres.

In (I), the CoIII centre has a distorted octahedral geometry, with Co—O = 1.8912 (12)–1.8979 (12) Å and Co—N = 1.9281 (14)–1.9648 (15) Å (Table 1). These values are slightly shorter than the generally reported values of Co—O(carboxylate) = 1.894–1.918 Å and Co—N(amine) = 1.938–1.977 Å (Orpen et al., 1989), and are in the range of the reported values of Co—O(carboxylate) = 1.854 (9)–1.947 (3) Å and Co—N(amine) = 1.907 (4)–1.962 (3) Å for the corresponding CoIII complexes with nitrilotriacetic acid analogues (Jitsukawa et al., 1994; Kumita et al., 1998, 2001; Swanminathan et al. 1989).

Intermolecular hydrogen bonds (Table 2) between the [CoIII(L-bcmle)(en)] and H2O molecules form hydrophilic layers parallel to the (001) plane (Fig. 2). The isobutyl groups of the L-bcmle ligands are located outside the hydrophilic layers, and interdigitation of the alkyl chains forms a bilayer structure.

Experimental top

The tripodal ligand N,N-bis(carboxymethyl)-L-leucine (H3bcmle) was synthesized from L-leucine according to the literature method of Uehara et al. (1970). K2[Co(bcmle)(CO3)] was obtained from the reaction of K3[Co(CO3)3] and H3bcmle. To a 0.2 M aqueous solution (10 ml) of K2[Co(bcmle)(CO3)] was added an equimolar amount of ethylenediamine, neutralized with HCl, and the resulting mixture was stirred at 323 K for 12 h under conditions of pH 6–7 in the presence of active charcoal. After filtration, the reaction mixture was purified using a QAE Sephadex A-25 column (Cl form) [Solvent?], eluting a non-absorbed reddish-violet solution of the product. Evaporation of the reddish-violet solution and recrystallization of the precipitated product in water gave the red crystals of (I) suitable for X-ray analysis (yield 4.2%).

Refinement top

All H atoms were located in difference Fourier maps. The positions of the water H atoms were refined freely, with Uiso(H) = 1.2Ueq(O). All other H atoms were constrained to ride on their parent atoms, with N—H = 0.92 Å and C—H = 0.98–1.00 Å, and with Uiso(H) = 1.2Ueq(C,N). Each methyl group was allowed to rotate freely about the C—C bond. The absolute structure determination based on the Flack (1983) parameter is consistent with the known absolute configuration of L-leucine (Voet & Voet, 2004).

Computing details top

Data collection: Crystal Clear (Rigaku, 1999); cell refinement: Crystal Clear; data reduction: Crystal Structure (Rigaku/MSC, 2005); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: RASTER3D (Merritt & Bacon, 1997) and Mercury (Bruno et al., 2002); software used to prepare material for publication: CrystalStructure.

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing of (I), viewed along the b axis. H atoms bonded to C atoms have been omitted for clarity. Broken lines indicate the hydrogen bonding interactions.
[N,N-Bis(carboxymethyl)-L-leucinato](1,2-ethanediamine)cobalt(III) monohydrate top
Crystal data top
[Co(C10H14NO6)(C2H8N2)]·H2OF(000) = 800.00
Mr = 381.27Dx = 1.597 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71070 Å
Hall symbol: P 2ac 2abCell parameters from 5217 reflections
a = 7.4740 (4) Åθ = 3.1–27.5°
b = 7.3532 (4) ŵ = 1.12 mm1
c = 28.8604 (16) ÅT = 173 K
V = 1586.10 (15) Å3Prism, red
Z = 40.19 × 0.16 × 0.16 mm
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
3626 independent reflections
Radiation source: Rigaku rotating anode generator3261 reflections with F2 > 2σ(F2)
Graphite monochromatorRint = 0.030
Detector resolution: 14.63 pixels mm-1θmax = 27.5°
ω scansh = 99
Absorption correction: numerical
(ABSCOR; Higashi, 1999)
k = 99
Tmin = 0.761, Tmax = 0.799l = 3727
12559 measured reflections
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0037P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.025(Δ/σ)max = 0.002
wR(F2) = 0.052Δρmax = 0.40 e Å3
S = 1.02Δρmin = 0.27 e Å3
3626 reflectionsAbsolute structure: Flack (1983), with 1510 Friedel pairs
215 parametersAbsolute structure parameter: 0.001 (11)
H atoms treated by a mixture of independent and constrained refinement
Crystal data top
[Co(C10H14NO6)(C2H8N2)]·H2OV = 1586.10 (15) Å3
Mr = 381.27Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.4740 (4) ŵ = 1.12 mm1
b = 7.3532 (4) ÅT = 173 K
c = 28.8604 (16) Å0.19 × 0.16 × 0.16 mm
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
3626 independent reflections
Absorption correction: numerical
(ABSCOR; Higashi, 1999)
3261 reflections with F2 > 2σ(F2)
Tmin = 0.761, Tmax = 0.799Rint = 0.030
12559 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.052Δρmax = 0.40 e Å3
S = 1.02Δρmin = 0.27 e Å3
3626 reflectionsAbsolute structure: Flack (1983), with 1510 Friedel pairs
215 parametersAbsolute structure parameter: 0.001 (11)
Special details top

Experimental. Spectroscopic analysis: UV-vis (H2O, σmax, cm−1): 19.3 (logε = 2.23), 27.2 (logε = 2.25); CD (H20, σmax, cm−1): 17.3 (Δε = 2.24), 21.5 (Δε = −1.60), 27.0 (Δε = 0.81); 1H NMR (D2O, δ, p.p.m.): 4.54 (d, 1H, J = 16.5 Hz), 4.32 (d, 1H, J = 16.7 Hz), 4.26 (d, 1H, J = 18.1 Hz), 4.07 (dd, 1H, J = 4.2, 7.7 Hz), 3.92 (d, 1H, J = 18.2 Hz); 3.05 (m, 1H), 2.94 (m, 1H), 2.60 (m, 1H), 2.56 (m, 1H), 2.10(m, 1H), 1.90 (m, 1H), 1.90 (m, 2H), 1.06 (d, 3H, J = 3.7 Hz), 1.05 (d, 3H, J = 3.6 Hz).

Refinement. Refinement using reflections with F2 > 2.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.88858 (3)0.74722 (3)0.806470 (10)0.01208 (6)
O21.13040 (16)0.82404 (17)0.80247 (4)0.0161 (2)
O30.80288 (16)0.98894 (17)0.80351 (5)0.0158 (2)
O41.36625 (18)0.8791 (2)0.84747 (5)0.0224 (3)
O50.67538 (19)1.20206 (18)0.84717 (5)0.0222 (3)
O60.97386 (18)0.50862 (17)0.81836 (4)0.0178 (3)
O71.06173 (19)0.33578 (19)0.87781 (5)0.0241 (3)
O80.4509 (2)0.4480 (2)0.88876 (8)0.0437 (5)
N10.9011 (2)0.78846 (19)0.87301 (5)0.0123 (3)
N20.6416 (2)0.6564 (2)0.80334 (6)0.0174 (3)
N30.89026 (19)0.7194 (2)0.74004 (5)0.0135 (3)
C10.7508 (2)0.9157 (2)0.88375 (6)0.0144 (4)
C20.7404 (2)1.0500 (2)0.84267 (6)0.0157 (4)
C30.7600 (2)1.0067 (2)0.93135 (6)0.0183 (4)
C40.5762 (2)1.0316 (2)0.95412 (6)0.0214 (4)
C50.5930 (3)1.1629 (3)0.99487 (8)0.0377 (6)
C60.4981 (3)0.8507 (3)0.96989 (8)0.0326 (5)
C70.8896 (2)0.6045 (2)0.89412 (6)0.0159 (4)
C80.9846 (2)0.4694 (2)0.86218 (6)0.0170 (4)
C91.0796 (2)0.8740 (2)0.88241 (6)0.0155 (4)
C101.2057 (2)0.8549 (2)0.84193 (6)0.0148 (4)
C110.5992 (2)0.6038 (2)0.75476 (6)0.0194 (4)
C120.7044 (2)0.7248 (2)0.72288 (6)0.0175 (4)
H10.63820.84220.88310.017*
H20.81751.12720.92800.022*
H30.83620.93210.95200.022*
H40.49321.08630.93080.026*
H50.47421.18661.00790.045*
H60.64581.27740.98410.045*
H70.66991.10901.01870.045*
H80.37850.87070.98280.039*
H90.57560.79720.99360.039*
H100.48990.76790.94340.039*
H110.76280.56900.89800.019*
H120.94730.60490.92500.019*
H131.13370.81600.91000.019*
H141.06241.00460.88940.019*
H150.62890.55740.82250.021*
H160.56370.74540.81310.021*
H170.46950.61820.74880.023*
H180.63160.47490.74940.023*
H190.69810.67950.69060.021*
H200.65730.85060.72380.021*
H210.95570.81160.72670.016*
H220.94250.61040.73220.016*
H230.349 (2)0.414 (2)0.8906 (7)0.0210*
H240.493 (2)0.353 (2)0.8843 (8)0.0210*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01029 (11)0.01487 (12)0.01108 (11)0.00110 (12)0.00064 (10)0.00027 (12)
O20.0115 (6)0.0229 (6)0.0139 (6)0.0027 (5)0.0001 (6)0.0010 (5)
O30.0166 (6)0.0168 (6)0.0141 (6)0.0006 (5)0.0015 (6)0.0018 (6)
O40.0100 (7)0.0341 (8)0.0231 (7)0.0019 (6)0.0001 (6)0.0018 (6)
O50.0207 (7)0.0216 (8)0.0244 (7)0.0067 (6)0.0007 (6)0.0000 (6)
O60.0211 (7)0.0158 (6)0.0166 (7)0.0019 (6)0.0024 (5)0.0006 (5)
O70.0279 (8)0.0197 (7)0.0249 (8)0.0059 (6)0.0021 (6)0.0040 (6)
O80.0350 (10)0.0273 (10)0.0689 (13)0.0064 (8)0.0028 (10)0.0097 (10)
N10.0088 (7)0.0158 (8)0.0124 (7)0.0005 (7)0.0001 (6)0.0006 (6)
N20.0146 (8)0.0227 (8)0.0148 (8)0.0040 (6)0.0001 (7)0.0001 (7)
N30.0137 (7)0.0143 (8)0.0126 (7)0.0004 (7)0.0011 (6)0.0001 (6)
C10.0090 (9)0.0194 (10)0.0148 (10)0.0013 (8)0.0014 (7)0.0021 (8)
C20.0086 (9)0.0214 (11)0.0172 (10)0.0022 (8)0.0002 (8)0.0009 (8)
C30.0170 (10)0.0211 (10)0.0170 (10)0.0016 (9)0.0012 (8)0.0032 (9)
C40.0203 (11)0.0283 (11)0.0157 (10)0.0056 (10)0.0022 (8)0.0004 (9)
C50.0364 (14)0.0437 (15)0.0331 (13)0.0033 (12)0.0127 (12)0.0149 (11)
C60.0277 (13)0.0465 (15)0.0237 (12)0.0038 (11)0.0095 (10)0.0000 (11)
C70.0191 (10)0.0156 (9)0.0130 (9)0.0021 (9)0.0019 (9)0.0009 (7)
C80.0147 (10)0.0178 (10)0.0185 (10)0.0037 (8)0.0008 (8)0.0001 (8)
C90.0095 (10)0.0208 (10)0.0162 (9)0.0020 (8)0.0018 (8)0.0020 (8)
C100.0138 (10)0.0122 (9)0.0184 (10)0.0007 (8)0.0007 (8)0.0017 (8)
C110.0170 (10)0.0234 (10)0.0177 (10)0.0044 (9)0.0032 (9)0.0042 (8)
C120.0148 (8)0.0221 (11)0.0156 (9)0.0005 (9)0.0034 (7)0.0016 (9)
Geometric parameters (Å, º) top
Co1—O21.8971 (12)O8—H230.80 (2)
Co1—O31.8912 (12)O8—H240.77 (2)
Co1—O61.8979 (12)N2—H150.920
Co1—N11.9464 (14)N2—H160.920
Co1—N21.9648 (15)N3—H210.920
Co1—N31.9281 (14)N3—H220.920
O2—C101.290 (2)C1—H11.000
O3—C21.303 (2)C3—H20.990
O4—C101.224 (2)C3—H30.990
O5—C21.226 (2)C4—H41.000
O6—C81.300 (2)C5—H50.980
O7—C81.226 (2)C5—H60.980
N1—C11.494 (2)C5—H70.980
N1—C71.486 (2)C6—H80.980
N1—C91.500 (2)C6—H90.980
N2—C111.489 (2)C6—H100.980
N3—C121.475 (2)C7—H110.990
C1—C21.545 (2)C7—H120.990
C1—C31.530 (2)C9—H130.990
C3—C41.534 (2)C9—H140.990
C4—C51.527 (3)C11—H170.990
C4—C61.522 (3)C11—H180.990
C7—C81.530 (2)C12—H190.990
C9—C101.507 (2)C12—H200.990
C11—C121.503 (2)
O2—Co1—O392.30 (5)C11—N2—H16109.8
O2—Co1—O688.07 (5)H15—N2—H16108.2
O2—Co1—N188.17 (5)Co1—N3—H21109.9
O2—Co1—N2173.37 (6)Co1—N3—H22109.9
O2—Co1—N387.99 (5)C12—N3—H21109.9
O3—Co1—O6172.17 (5)C12—N3—H22109.9
O3—Co1—N185.09 (6)H21—N3—H22108.3
O3—Co1—N289.95 (5)N1—C1—H1106.9
O3—Co1—N393.26 (6)C2—C1—H1106.9
O6—Co1—N187.11 (5)C3—C1—H1106.9
O6—Co1—N290.56 (6)C1—C3—H2108.9
O6—Co1—N394.56 (5)C1—C3—H3108.9
N1—Co1—N298.24 (6)C4—C3—H2108.9
N1—Co1—N3175.75 (6)C4—C3—H3108.9
N2—Co1—N385.66 (6)H2—C3—H3107.7
Co1—O2—C10114.46 (11)C3—C4—H4108.4
Co1—O3—C2113.95 (12)C5—C4—H4108.4
Co1—O6—C8113.67 (11)C6—C4—H4108.4
Co1—N1—C1105.44 (11)C4—C5—H5109.5
Co1—N1—C7105.07 (10)C4—C5—H6109.5
Co1—N1—C9106.64 (11)C4—C5—H7109.5
C1—N1—C7116.21 (14)H5—C5—H6109.5
C1—N1—C9111.64 (13)H5—C5—H7109.5
C7—N1—C9111.01 (14)H6—C5—H7109.5
Co1—N2—C11109.39 (11)C4—C6—H8109.5
Co1—N3—C12108.96 (10)C4—C6—H9109.5
N1—C1—C2106.18 (14)C4—C6—H10109.5
N1—C1—C3115.24 (15)H8—C6—H9109.5
C2—C1—C3114.33 (16)H8—C6—H10109.5
O3—C2—O5123.24 (18)H9—C6—H10109.5
O3—C2—C1115.32 (16)N1—C7—H11110.0
O5—C2—C1121.43 (17)N1—C7—H12110.0
C1—C3—C4113.38 (16)C8—C7—H11110.0
C3—C4—C5109.38 (17)C8—C7—H12110.0
C3—C4—C6111.55 (17)H11—C7—H12108.4
C5—C4—C6110.73 (17)N1—C9—H13109.2
N1—C7—C8108.50 (14)N1—C9—H14109.2
O6—C8—O7124.39 (18)C10—C9—H13109.2
O6—C8—C7114.46 (16)C10—C9—H14109.2
O7—C8—C7121.15 (17)H13—C9—H14107.9
N1—C9—C10112.14 (15)N2—C11—H17110.1
O2—C10—O4124.64 (18)N2—C11—H18110.1
O2—C10—C9115.33 (16)C12—C11—H17110.1
O4—C10—C9119.88 (17)C12—C11—H18110.1
N2—C11—C12108.11 (15)H17—C11—H18108.4
N3—C12—C11105.75 (14)N3—C12—H19110.6
H23—O8—H2497 (2)N3—C12—H20110.6
Co1—N2—H15109.8C11—C12—H19110.6
Co1—N2—H16109.8C11—C12—H20110.6
C11—N2—H15109.8H19—C12—H20108.7
O2—Co1—O3—C2107.54 (12)Co1—O2—C10—C915.69 (19)
O3—Co1—O2—C1090.36 (12)Co1—O3—C2—O5178.24 (14)
O2—Co1—O6—C895.02 (12)Co1—O3—C2—C10.85 (19)
O6—Co1—O2—C1081.81 (12)Co1—O6—C8—O7167.95 (15)
O2—Co1—N1—C1124.87 (10)Co1—O6—C8—C712.7 (2)
O2—Co1—N1—C7111.84 (11)Co1—N1—C1—C237.53 (15)
O2—Co1—N1—C96.07 (11)Co1—N1—C1—C3165.19 (13)
N1—Co1—O2—C105.35 (12)Co1—N1—C7—C834.35 (16)
O2—Co1—N3—C12158.59 (12)Co1—N1—C9—C1015.02 (17)
N3—Co1—O2—C10176.45 (12)C1—N1—C7—C8150.44 (15)
O3—Co1—N1—C132.41 (10)C7—N1—C1—C2153.42 (14)
O3—Co1—N1—C7155.70 (12)C7—N1—C1—C378.92 (19)
O3—Co1—N1—C986.40 (11)C1—N1—C9—C10129.69 (16)
N1—Co1—O3—C219.58 (12)C9—N1—C1—C277.88 (17)
O3—Co1—N2—C1197.92 (12)C9—N1—C1—C349.8 (2)
N2—Co1—O3—C278.69 (12)C7—N1—C9—C1098.90 (17)
O3—Co1—N3—C1266.41 (11)C9—N1—C7—C880.56 (17)
N3—Co1—O3—C2164.34 (12)Co1—N2—C11—C1231.04 (17)
O6—Co1—N1—C1146.97 (11)Co1—N3—C12—C1145.54 (16)
O6—Co1—N1—C723.68 (11)N1—C1—C2—O325.4 (2)
O6—Co1—N1—C994.22 (11)N1—C1—C2—O5155.49 (17)
N1—Co1—O6—C86.76 (13)N1—C1—C3—C4143.53 (16)
O6—Co1—N2—C1189.89 (11)C2—C1—C3—C493.03 (19)
N2—Co1—O6—C891.46 (13)C3—C1—C2—O3153.60 (16)
O6—Co1—N3—C12113.51 (11)C3—C1—C2—O527.3 (2)
N3—Co1—O6—C8177.15 (12)C1—C3—C4—C5166.06 (17)
N1—Co1—N2—C11177.05 (11)C1—C3—C4—C671.1 (2)
N2—Co1—N1—C156.83 (11)N1—C7—C8—O632.4 (2)
N2—Co1—N1—C766.46 (12)N1—C7—C8—O7148.19 (17)
N2—Co1—N1—C9175.63 (11)N1—C9—C10—O220.8 (2)
N2—Co1—N3—C1223.30 (12)N1—C9—C10—O4163.34 (16)
N3—Co1—N2—C114.64 (11)N2—C11—C12—N349.49 (18)
Co1—O2—C10—O4168.70 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H23···O7i0.80 (2)2.25 (2)3.040 (2)166
O8—H24···O5ii0.77 (2)2.06 (2)2.744 (2)147
N2—H16···O4i0.922.032.922 (2)162
N3—H21···O6iii0.922.022.8973 (19)160
Symmetry codes: (i) x1, y, z; (ii) x, y1, z; (iii) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Co(C10H14NO6)(C2H8N2)]·H2O
Mr381.27
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)7.4740 (4), 7.3532 (4), 28.8604 (16)
V3)1586.10 (15)
Z4
Radiation typeMo Kα
µ (mm1)1.12
Crystal size (mm)0.19 × 0.16 × 0.16
Data collection
DiffractometerRigaku Mercury CCD area-detector
diffractometer
Absorption correctionNumerical
(ABSCOR; Higashi, 1999)
Tmin, Tmax0.761, 0.799
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
12559, 3626, 3261
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.052, 1.02
No. of reflections3626
No. of parameters215
No. of restraints?
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.27
Absolute structureFlack (1983), with 1510 Friedel pairs
Absolute structure parameter0.001 (11)

Computer programs: Crystal Clear (Rigaku, 1999), Crystal Clear, Crystal Structure (Rigaku/MSC, 2005), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), RASTER3D (Merritt & Bacon, 1997) and Mercury (Bruno et al., 2002), CrystalStructure.

Selected geometric parameters (Å, º) top
Co1—O21.8971 (12)Co1—N11.9464 (14)
Co1—O31.8912 (12)Co1—N21.9648 (15)
Co1—O61.8979 (12)Co1—N31.9281 (14)
O2—Co1—O392.30 (5)O3—Co1—N393.26 (6)
O2—Co1—O688.07 (5)O6—Co1—N187.11 (5)
O2—Co1—N188.17 (5)O6—Co1—N290.56 (6)
O2—Co1—N2173.37 (6)O6—Co1—N394.56 (5)
O2—Co1—N387.99 (5)N1—Co1—N298.24 (6)
O3—Co1—O6172.17 (5)N1—Co1—N3175.75 (6)
O3—Co1—N185.09 (6)N2—Co1—N385.66 (6)
O3—Co1—N289.95 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H23···O7i0.80 (2)2.25 (2)3.040 (2)166
O8—H24···O5ii0.77 (2)2.06 (2)2.744 (2)147
N2—H16···O4i0.9202.0322.922 (2)162
N3—H21···O6iii0.9202.0172.8973 (19)160
Symmetry codes: (i) x1, y, z; (ii) x, y1, z; (iii) x+2, y+1/2, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds