Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, C16H26N2O3S3, adjacent mol­ecules are arranged in a head-to-tail manner and linked via weak C—H...S inter­actions, forming helical chains parallel to the a axis. These chains are connected via C—H...O inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805041541/ob6594sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805041541/ob6594Isup2.hkl
Contains datablock I

CCDC reference: 296620

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.025
  • wR factor = 0.062
  • Data-to-parameter ratio = 24.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.60 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.07 Ratio PLAT480_ALERT_4_C Long H...A H-Bond Reported H3A .. S14 .. 2.95 Ang.
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 30.00 From the CIF: _reflns_number_total 5320 Count of symmetry unique reflns 3067 Completeness (_total/calc) 173.46% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2253 Fraction of Friedel pairs measured 0.735 Are heavy atom types Z>Si present yes
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

β-Amino acids are a key part of many natural products displaying antibiotic, antifungal and cytotoxic properties (Cardillo & Tomasini, 1996), precursors of β-lactam antibiotics (Georg, 1993), and peptidomimetics showing remarkable resistance for enzymatic degradation (Steer et al., 2000). β-Amino acids are also very interesting objects of studies because of their tendency to form highly stable helical structures: 14-helix, 12-helix, 10/12-helix for penta-, hexa- and heptamers, composed of appropriately substituted β-amino acids (Seebach et al., 1998; Cheng et al., 2001). The stability of above structures is higher than those of similar ones formed by α-amino acids.

Even though β-amino acids can be obtained from natural sources and via chemical synthesis (Liu & Sibi, 2002), taking into account their significance and their further applications as peptide mimetics, there is a need for elaboration of new, effective and stereoselective methods of their preparation. One of the possible synthetic ways leading to the above compounds involves synthesis of simple precursor (e.g. β-alanine) attached to a chiral auxiliary group. Among many chiral auxiliaries, bornane-10,2-sultam is one of the most popular and effective groups to create new chiral centres. This group was introduced by Oppolzer et al. (1984), and henceforth has been widely used for synthesis of many compounds (Oppolzer, 1990; Szymańska et al., 2000). We applied the Schiff base obtained from β-alanine and Oppolzer's sultam for the synthesis of some β2-substituted β-amino acids (Woźniak et al., 2005). For this purpose we modified the methodology described by Ponsinet et al. (2000). The precursor was chosen on the basis of the simplicity of its synthesis, the very high asymmetric induction characteristic for the sultam moiety and the high tendency of N-acylsultam derivatives to be crystalline.

In the title compound, (I), bond lengths and angles are typical for substituted bornane-10,2-sultam (Hughes et al., 1999; Raczko et al., 2000; Szymański et al., 2001) (Fig. 1 and Table 1). The cyclohexane ring adopts a fairly regular boat conformation, with ring puckering parameters Q = 0.993 (2) Å, θ = 88.65 (7)° and ϕ = 355.21 (7)° (Cremer & Pople, 1975) and asymmetry parameter ΔCs(C1) = 9.4 (1)° (Duax et al., 1976). Adjacent molecules of (I) are arranged in a head-to-tail manner and linked via weak C—H···S interactions (Table 2), forming helical chains parallel to the a axis (Fig. 2). These chains are connected via C—H···O interactions (Table 2).

Experimental top

Compound (I) was synthesized from bornane-10,2-sultam and methyl 3-{[bis(methyltio)methylene]amino}propionate, according to the procedure given by Oppolzer et al. (1989). Such obtained compound can be, after enolatization by treatment with either n-butyllithium or lithium diisopropylamide at 195 K, alkylated by selected alkyl halides yielding precursors of β2-amino acids (superscript 2 denotes the position of the introduced group α with reference to the carboxyl group). Crystals of (I) suitable for X-ray study were grown from an ethanol solution by slow evaporation at room temperature (m.p. 363–364 K).

Refinement top

All H atoms were positioned geometry and refined as riding atoms, with C—H distances of 0.98–1.00 Å, and with Uiso(H) values of 1.5Ueq(C) for methyl H atoms) or 1.2Ueq (for the remaining H atoms). The absolute configuration determined based on the Flack (1983) parameter is consistent with that of bornane-10,2-sultam (Oppolzer, 1990; Kiegiel & Jurczak, 1999).

Computing details top

Data collection: KM-4 CCD Software (Oxford Diffraction, 2003); cell refinement: KM-4 CCD Software; data reduction: KM-4 CCD Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The arrangement of the molecules of (I) in the unit cell. The C—H···O and C—H···S interactions are represented by dashed lines. H atoms not involved in these interactions have been omitted.
(2R)-N-{3-[Bis(methylsulfanyl)methylene]aminopropionoyl}bornane-10,2-sultam top
Crystal data top
C16H26N2O3S3F(000) = 832
Mr = 390.57Dx = 1.398 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 16987 reflections
a = 7.742 (2) Åθ = 3–30°
b = 12.348 (3) ŵ = 0.42 mm1
c = 19.405 (3) ÅT = 100 K
V = 1855.1 (7) Å3Prism, colourless
Z = 40.5 × 0.4 × 0.3 mm
Data collection top
Kuma KM-4 CCD
diffractometer
5197 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 30.0°, θmin = 3.5°
ω scansh = 1010
23438 measured reflectionsk = 1717
5320 independent reflectionsl = 2725
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0336P)2 + 0.344P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.007
5320 reflectionsΔρmax = 0.34 e Å3
221 parametersΔρmin = 0.28 e Å3
0 restraintsAbsolute structure: Flack (1983), 2253 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (4)
Crystal data top
C16H26N2O3S3V = 1855.1 (7) Å3
Mr = 390.57Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.742 (2) ŵ = 0.42 mm1
b = 12.348 (3) ÅT = 100 K
c = 19.405 (3) Å0.5 × 0.4 × 0.3 mm
Data collection top
Kuma KM-4 CCD
diffractometer
5197 reflections with I > 2σ(I)
23438 measured reflectionsRint = 0.035
5320 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.062Δρmax = 0.34 e Å3
S = 1.08Δρmin = 0.28 e Å3
5320 reflectionsAbsolute structure: Flack (1983), 2253 Friedel pairs
221 parametersAbsolute structure parameter: 0.02 (4)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.51915 (13)0.67071 (9)0.88913 (6)0.01110 (19)
C20.49885 (16)0.55731 (9)0.92132 (6)0.0151 (2)
H2A0.37570.53930.92900.018*
H2B0.56180.55190.96560.018*
C30.58097 (17)0.48228 (10)0.86535 (6)0.0171 (2)
H3A0.68540.44550.88320.021*
H3B0.49740.42700.84940.021*
C40.62729 (16)0.56221 (10)0.80667 (6)0.0153 (2)
H4A0.63900.52750.76030.018*
C50.78750 (15)0.62777 (10)0.82945 (6)0.0150 (2)
H5A0.82890.67580.79210.018*
H5B0.88280.57940.84400.018*
C60.71568 (14)0.69419 (9)0.89122 (6)0.0116 (2)
H6A0.76610.66680.93540.014*
N70.73476 (12)0.81367 (8)0.88720 (5)0.01266 (18)
C80.89772 (14)0.86113 (9)0.88450 (6)0.0124 (2)
C90.90309 (14)0.98358 (9)0.88196 (6)0.0147 (2)
H9A0.86281.01270.92670.018*
H9B0.82261.00930.84580.018*
C101.08343 (16)1.02783 (10)0.86693 (7)0.0164 (2)
H10A1.15961.01630.90720.020*
H10B1.13420.98960.82690.020*
N111.06878 (14)1.14448 (8)0.85198 (5)0.01622 (19)
C121.08624 (15)1.21226 (10)0.90071 (6)0.0149 (2)
S131.06005 (4)1.35316 (2)0.886320 (15)0.01729 (6)
S141.13436 (5)1.17486 (3)0.987090 (17)0.02570 (8)
C151.00471 (19)1.35206 (11)0.79608 (7)0.0211 (2)
H15A0.97231.42530.78150.032*
H15B0.90731.30280.78850.032*
H15C1.10441.32750.76910.032*
C161.1389 (2)1.30060 (12)1.03450 (8)0.0289 (3)
H16A1.17321.28641.08230.043*
H16B1.02381.33361.03380.043*
H16C1.22221.35011.01310.043*
C170.48111 (15)0.64785 (10)0.81113 (6)0.0146 (2)
C180.29864 (17)0.60251 (12)0.79903 (7)0.0236 (3)
H18A0.28210.58850.74980.035*
H18B0.21280.65530.81480.035*
H18C0.28470.53490.82480.035*
C190.50311 (19)0.74367 (11)0.76128 (7)0.0214 (3)
H19A0.49990.71720.71370.032*
H19B0.61420.77920.77000.032*
H19C0.40920.79570.76840.032*
C200.42524 (15)0.76273 (9)0.92518 (6)0.0158 (2)
H20A0.40590.74460.97430.019*
H20B0.31180.77570.90310.019*
S210.55856 (4)0.88043 (2)0.917945 (16)0.01488 (6)
O220.49880 (12)0.95521 (8)0.86658 (6)0.0250 (2)
O230.59643 (13)0.92319 (8)0.98528 (5)0.0258 (2)
O241.02565 (11)0.80390 (7)0.88246 (5)0.01985 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0087 (4)0.0125 (5)0.0121 (4)0.0013 (4)0.0005 (3)0.0006 (4)
C20.0164 (5)0.0139 (5)0.0150 (5)0.0007 (4)0.0034 (4)0.0007 (4)
C30.0187 (6)0.0128 (5)0.0199 (5)0.0027 (4)0.0044 (4)0.0015 (4)
C40.0164 (5)0.0158 (5)0.0136 (5)0.0035 (4)0.0027 (4)0.0037 (4)
C50.0119 (5)0.0144 (5)0.0187 (5)0.0011 (4)0.0037 (4)0.0034 (4)
C60.0094 (4)0.0108 (5)0.0146 (5)0.0009 (4)0.0013 (4)0.0010 (4)
N70.0082 (4)0.0104 (4)0.0194 (4)0.0005 (3)0.0000 (3)0.0015 (4)
C80.0106 (4)0.0128 (5)0.0139 (5)0.0014 (4)0.0019 (4)0.0012 (4)
C90.0119 (5)0.0117 (5)0.0206 (5)0.0003 (4)0.0002 (4)0.0004 (4)
C100.0142 (5)0.0129 (5)0.0223 (6)0.0022 (4)0.0026 (4)0.0036 (4)
N110.0159 (5)0.0142 (4)0.0186 (4)0.0022 (4)0.0013 (4)0.0006 (4)
C120.0143 (5)0.0128 (5)0.0176 (5)0.0031 (4)0.0007 (4)0.0026 (4)
S130.02205 (14)0.01235 (12)0.01746 (13)0.00150 (11)0.00094 (11)0.00015 (10)
S140.0432 (2)0.01505 (14)0.01882 (14)0.00273 (14)0.01004 (14)0.00058 (12)
C150.0271 (6)0.0195 (6)0.0167 (5)0.0039 (5)0.0012 (5)0.0008 (5)
C160.0426 (9)0.0218 (6)0.0224 (6)0.0012 (6)0.0109 (6)0.0064 (5)
C170.0139 (5)0.0169 (5)0.0130 (5)0.0031 (4)0.0017 (4)0.0013 (4)
C180.0179 (6)0.0284 (7)0.0246 (6)0.0071 (5)0.0075 (5)0.0024 (6)
C190.0238 (6)0.0245 (6)0.0157 (5)0.0036 (5)0.0054 (5)0.0054 (5)
C200.0115 (5)0.0138 (5)0.0219 (5)0.0002 (4)0.0039 (4)0.0024 (4)
S210.01014 (11)0.01224 (12)0.02226 (13)0.00152 (10)0.00221 (11)0.00297 (10)
O220.0137 (4)0.0186 (4)0.0426 (6)0.0050 (3)0.0010 (4)0.0091 (4)
O230.0230 (5)0.0267 (5)0.0277 (5)0.0036 (4)0.0051 (4)0.0155 (4)
O240.0108 (4)0.0146 (4)0.0342 (5)0.0014 (3)0.0018 (3)0.0015 (4)
Geometric parameters (Å, º) top
C1—C201.5197 (16)C10—H10A0.9900
C1—C21.5413 (16)C10—H10B0.9900
C1—C61.5495 (15)N11—C121.2700 (16)
C1—C171.5676 (16)C12—S131.7738 (13)
C2—C31.5627 (17)C12—S141.7780 (13)
C2—H2A0.9900S13—C151.8028 (13)
C2—H2B0.9900S14—C161.8050 (15)
C3—C41.5490 (17)C15—H15A0.9800
C3—H3A0.9900C15—H15B0.9800
C3—H3B0.9900C15—H15C0.9800
C4—C51.5456 (17)C16—H16A0.9800
C4—C171.5513 (18)C16—H16B0.9800
C4—H4A1.0000C16—H16C0.9800
C5—C61.5553 (16)C17—C181.5376 (17)
C5—H5A0.9900C17—C191.5377 (17)
C5—H5B0.9900C18—H18A0.9800
C6—N71.4848 (15)C18—H18B0.9800
C6—H6A1.0000C18—H18C0.9800
N7—C81.3921 (14)C19—H19A0.9800
N7—S211.7019 (10)C19—H19B0.9800
C8—O241.2173 (14)C19—H19C0.9800
C8—C91.5134 (16)C20—S211.7880 (12)
C9—C101.5273 (16)C20—H20A0.9900
C9—H9A0.9900C20—H20B0.9900
C9—H9B0.9900S21—O221.4353 (11)
C10—N111.4737 (16)S21—O231.4395 (10)
C20—C1—C2116.35 (9)N11—C10—H10B110.0
C20—C1—C6108.53 (9)C9—C10—H10B110.0
C2—C1—C6105.04 (9)H10A—C10—H10B108.4
C20—C1—C17119.29 (10)C12—N11—C10119.31 (11)
C2—C1—C17102.04 (9)N11—C12—S13121.13 (9)
C6—C1—C17104.10 (9)N11—C12—S14123.58 (10)
C1—C2—C3102.44 (9)S13—C12—S14115.28 (7)
C1—C2—H2A111.3C12—S13—C1599.94 (6)
C3—C2—H2A111.3C12—S14—C16105.14 (7)
C1—C2—H2B111.3S13—C15—H15A109.5
C3—C2—H2B111.3S13—C15—H15B109.5
H2A—C2—H2B109.2H15A—C15—H15B109.5
C4—C3—C2103.14 (10)S13—C15—H15C109.5
C4—C3—H3A111.1H15A—C15—H15C109.5
C2—C3—H3A111.1H15B—C15—H15C109.5
C4—C3—H3B111.1S14—C16—H16A109.5
C2—C3—H3B111.1S14—C16—H16B109.5
H3A—C3—H3B109.1H16A—C16—H16B109.5
C5—C4—C3108.01 (10)S14—C16—H16C109.5
C5—C4—C17102.27 (9)H16A—C16—H16C109.5
C3—C4—C17102.97 (10)H16B—C16—H16C109.5
C5—C4—H4A114.1C18—C17—C19106.61 (10)
C3—C4—H4A114.1C18—C17—C4114.43 (11)
C17—C4—H4A114.1C19—C17—C4114.12 (10)
C4—C5—C6102.11 (9)C18—C17—C1112.68 (10)
C4—C5—H5A111.3C19—C17—C1116.61 (10)
C6—C5—H5A111.3C4—C17—C192.26 (9)
C4—C5—H5B111.3C17—C18—H18A109.5
C6—C5—H5B111.3C17—C18—H18B109.5
H5A—C5—H5B109.2H18A—C18—H18B109.5
N7—C6—C1106.39 (9)C17—C18—H18C109.5
N7—C6—C5116.61 (10)H18A—C18—H18C109.5
C1—C6—C5103.42 (9)H18B—C18—H18C109.5
N7—C6—H6A110.0C17—C19—H19A109.5
C1—C6—H6A110.0C17—C19—H19B109.5
C5—C6—H6A110.0H19A—C19—H19B109.5
C8—N7—C6120.69 (9)C17—C19—H19C109.5
C8—N7—S21122.39 (8)H19A—C19—H19C109.5
C6—N7—S21112.53 (7)H19B—C19—H19C109.5
O24—C8—N7119.62 (10)C1—C20—S21107.18 (8)
O24—C8—C9123.82 (10)C1—C20—H20A110.3
N7—C8—C9116.53 (9)S21—C20—H20A110.3
C8—C9—C10112.87 (10)C1—C20—H20B110.3
C8—C9—H9A109.0S21—C20—H20B110.3
C10—C9—H9A109.0H20A—C20—H20B108.5
C8—C9—H9B109.0O22—S21—O23117.39 (7)
C10—C9—H9B109.0O22—S21—N7109.06 (6)
H9A—C9—H9B107.8O23—S21—N7109.43 (6)
N11—C10—C9108.47 (10)O22—S21—C20113.04 (6)
N11—C10—H10A110.0O23—S21—C20110.14 (6)
C9—C10—H10A110.0N7—S21—C2095.54 (5)
C20—C1—C2—C3170.21 (10)S14—C12—S13—C15177.44 (7)
C6—C1—C2—C369.77 (11)N11—C12—S14—C16178.52 (12)
C17—C1—C2—C338.61 (11)S13—C12—S14—C160.53 (10)
C1—C2—C3—C43.28 (12)C5—C4—C17—C18173.37 (10)
C2—C3—C4—C574.14 (12)C3—C4—C17—C1861.36 (12)
C2—C3—C4—C1733.57 (12)C5—C4—C17—C1963.44 (12)
C3—C4—C5—C666.00 (12)C3—C4—C17—C19175.45 (10)
C17—C4—C5—C642.20 (11)C5—C4—C17—C157.15 (10)
C20—C1—C6—N733.23 (12)C3—C4—C17—C154.86 (10)
C2—C1—C6—N7158.32 (9)C20—C1—C17—C1869.21 (14)
C17—C1—C6—N794.81 (10)C2—C1—C17—C1860.59 (12)
C20—C1—C6—C5156.61 (9)C6—C1—C17—C18169.69 (10)
C2—C1—C6—C578.30 (11)C20—C1—C17—C1954.58 (14)
C17—C1—C6—C528.57 (11)C2—C1—C17—C19175.62 (10)
C4—C5—C6—N7124.19 (10)C6—C1—C17—C1966.53 (13)
C4—C5—C6—C17.82 (11)C20—C1—C17—C4173.08 (10)
C1—C6—N7—C8176.83 (10)C2—C1—C17—C457.12 (10)
C5—C6—N7—C862.12 (14)C6—C1—C17—C451.98 (10)
C1—C6—N7—S2126.16 (11)C2—C1—C20—S21144.62 (9)
C5—C6—N7—S21140.87 (8)C6—C1—C20—S2126.49 (11)
C6—N7—C8—O243.16 (17)C17—C1—C20—S2192.37 (11)
S21—N7—C8—O24157.87 (10)C8—N7—S21—O2276.99 (11)
C6—N7—C8—C9178.79 (10)C6—N7—S21—O22126.45 (9)
S21—N7—C8—C924.08 (15)C8—N7—S21—O2352.65 (11)
O24—C8—C9—C107.66 (17)C6—N7—S21—O23103.92 (9)
N7—C8—C9—C10170.31 (10)C8—N7—S21—C20166.30 (10)
C8—C9—C10—N11168.95 (10)C6—N7—S21—C209.73 (9)
C9—C10—N11—C1292.48 (13)C1—C20—S21—O22103.14 (9)
C10—N11—C12—S13177.08 (9)C1—C20—S21—O23123.34 (8)
C10—N11—C12—S141.92 (16)C1—C20—S21—N710.29 (9)
N11—C12—S13—C151.64 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···S14i0.992.953.484 (2)115 (1)
C20—H20B···O24ii0.992.283.242 (2)164 (1)
Symmetry codes: (i) x1/2, y+3/2, z+2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H26N2O3S3
Mr390.57
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)7.742 (2), 12.348 (3), 19.405 (3)
V3)1855.1 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.5 × 0.4 × 0.3
Data collection
DiffractometerKuma KM-4 CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
23438, 5320, 5197
Rint0.035
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.062, 1.08
No. of reflections5320
No. of parameters221
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.28
Absolute structureFlack (1983), 2253 Friedel pairs
Absolute structure parameter0.02 (4)

Computer programs: KM-4 CCD Software (Oxford Diffraction, 2003), KM-4 CCD Software, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97 and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
N7—C81.3921 (14)C12—S141.7780 (13)
N7—S211.7019 (10)C20—S211.7880 (12)
C10—N111.4737 (16)S21—O221.4353 (11)
N11—C121.2700 (16)S21—O231.4395 (10)
C12—S131.7738 (13)
C1—C2—C3—C43.28 (12)C1—C6—N7—S2126.16 (11)
C20—C1—C6—N733.23 (12)C5—C6—N7—S21140.87 (8)
C4—C5—C6—C17.82 (11)S21—N7—C8—C924.08 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···S14i0.992.953.484 (2)115 (1)
C20—H20B···O24ii0.992.283.242 (2)164 (1)
Symmetry codes: (i) x1/2, y+3/2, z+2; (ii) x1, y, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds