Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C10H9NO2S2, was prepared from a condensation reaction of phenyl chloro­formate and 1,3-thia­zolidine-2-thione in the presence of triethyl­amine. In the crystal structure, mol­ecules exist as the thione tautomer.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805028941/ob6582sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805028941/ob6582Isup2.hkl
Contains datablock I

CCDC reference: 287683

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.068
  • wR factor = 0.220
  • Data-to-parameter ratio = 18.4

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT230_ALERT_2_B Hirshfeld Test Diff for S2 - C1 .. 7.87 su
Alert level C PLAT199_ALERT_1_C Check the Reported _cell_measurement_temperature 293 K PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for S2 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C3 PLAT340_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 9
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

1,3-Thiazolidine-2-thione derivatives have a high potential for biological activity, and these derivatives have been widely used in agrochemical fungicides (Takashi et al., 1997). In addition, 3-acyl-1,3-thiazolidine-2-thiones can be used as active amides for peptide synthesis (Li et al., 1981). In order to investigate the structure–activity and structure–properties relationships, a series of new 1,3-thiazolidine-2-thione derivatives has been synthesized in our laboratory. We report here the structure of the title compound, (I), as an early result in our study of this series of compounds.

The molecular structure of (I) is illustrated in Fig. 1. Selected bond lengths and angles are listed in Table 1. In solution, 1,3-thiazolidine-2-thione exists in tautomeric equilibrium with its thiol form (Atzei et al., 2001). However, only the thione form is observed in the crystal of (I).

Experimental top

1,3-Thiazolidine-2-thione (0.60 g, 5 mmol), prepared according to the procedure of Owen (1967), and triethylamine (0.62 g, 6 mmol) were dissolved in dichloromethane (15 ml) with stirring. Phenyl chloroformate (0.95 g, 6 mmol) was added dropwise to the mixture in an ice bath. The mixture was stirred at 273 K for 6 h and then dried in vacuo to give a yellow solid of (I) (1.15 g, yield 96.2%), which was then recrystallized from ethanol by slow evaporation to give yellow blocks (m.p. 386–388 K).

Refinement top

All H atoms were placed in idealized positions and allowed to ride on their parent atoms (C—H = 0.97 Å), with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1993); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids.
Phenyl 1,3-thiazolidine-2-thione-3-carboxylate top
Crystal data top
C10H9NO2S2F(000) = 496.00
Mr = 239.31Dx = 1.445 Mg m3
Monoclinic, P21/cMelting point = 386–388 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.7107 Å
a = 11.5465 (6) ÅCell parameters from 7221 reflections
b = 8.9066 (4) Åθ = 2.3–27.4°
c = 11.9102 (6) ŵ = 0.46 mm1
β = 116.112 (2)°T = 293 K
V = 1099.83 (10) Å3Block, yellow
Z = 40.50 × 0.50 × 0.40 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1537 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.027
ω scansθmax = 27.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1414
Tmin = 0.772, Tmax = 0.831k = 1111
9973 measured reflectionsl = 1515
2505 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.068 w = 4Fo2/[0.0101Fo2 + σ(Fo2)]
wR(F2) = 0.220(Δ/σ)max = 0.004
S = 1.00Δρmax = 0.35 e Å3
2505 reflectionsΔρmin = 0.41 e Å3
136 parameters
Crystal data top
C10H9NO2S2V = 1099.83 (10) Å3
Mr = 239.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.5465 (6) ŵ = 0.46 mm1
b = 8.9066 (4) ÅT = 293 K
c = 11.9102 (6) Å0.50 × 0.50 × 0.40 mm
β = 116.112 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2505 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1537 reflections with F2 > 2σ(F2)
Tmin = 0.772, Tmax = 0.831Rint = 0.027
9973 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.068136 parameters
wR(F2) = 0.220H-atom parameters constrained
S = 1.00Δρmax = 0.35 e Å3
2505 reflectionsΔρmin = 0.41 e Å3
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement using reflections with F2 > 2.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.0244 (1)0.4486 (2)0.2170 (1)0.0803 (5)
S20.2445 (1)0.6318 (2)0.0616 (2)0.0939 (5)
O10.1860 (3)0.5967 (4)0.1794 (4)0.086 (1)
O20.1439 (3)0.8042 (3)0.0627 (3)0.0640 (9)
N10.0216 (3)0.6831 (3)0.0709 (3)0.0505 (8)
C10.2325 (5)0.787 (1)0.023 (1)0.087 (4)
C20.1068 (4)0.7922 (5)0.0237 (4)0.070 (1)
C30.0828 (4)0.5889 (4)0.1186 (4)0.053 (1)
C40.1123 (4)0.6845 (4)0.1113 (4)0.053 (1)
C50.2761 (4)0.8273 (4)0.0987 (4)0.058 (1)
C60.3241 (5)0.7911 (6)0.0150 (5)0.072 (1)
C70.4495 (6)0.8240 (7)0.0441 (7)0.098 (2)
C80.5264 (6)0.8924 (7)0.1558 (7)0.095 (2)
C90.4782 (6)0.9293 (7)0.2379 (6)0.092 (2)
C100.3510 (5)0.8942 (6)0.2106 (5)0.074 (1)
H10.29920.77970.10830.119*
H20.24450.87820.01500.121*
H30.07090.89250.00320.078*
H40.11530.76410.10560.078*
H50.26920.74230.06340.090*
H60.48430.79720.01390.126*
H70.61510.91680.17540.114*
H80.53230.97960.31570.099*
H90.31590.91750.26910.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0761 (9)0.088 (1)0.0751 (9)0.0046 (6)0.0322 (7)0.0344 (7)
S20.0522 (7)0.0702 (9)0.144 (1)0.0000 (5)0.0293 (8)0.0166 (8)
O10.053 (2)0.067 (2)0.116 (3)0.009 (1)0.018 (2)0.043 (2)
O20.059 (2)0.066 (2)0.071 (2)0.012 (1)0.032 (1)0.024 (1)
N10.050 (2)0.042 (2)0.050 (2)0.005 (1)0.014 (1)0.006 (1)
C10.053 (3)0.068 (8)0.118 (1)0.009 (4)0.017 (5)0.045 (1)
C20.065 (3)0.070 (3)0.060 (3)0.019 (2)0.015 (2)0.019 (2)
C30.050 (2)0.050 (2)0.053 (2)0.003 (2)0.018 (2)0.008 (2)
C40.051 (2)0.047 (2)0.055 (2)0.004 (2)0.017 (2)0.004 (2)
C50.063 (2)0.046 (2)0.067 (3)0.002 (2)0.030 (2)0.012 (2)
C60.068 (3)0.073 (3)0.084 (3)0.013 (2)0.043 (2)0.011 (2)
C70.081 (4)0.112 (5)0.122 (5)0.019 (3)0.063 (4)0.011 (4)
C80.071 (3)0.096 (4)0.117 (5)0.018 (3)0.041 (3)0.001 (4)
C90.083 (4)0.085 (4)0.079 (4)0.015 (3)0.009 (3)0.003 (3)
C100.084 (3)0.070 (3)0.066 (3)0.005 (2)0.030 (2)0.003 (2)
Geometric parameters (Å, º) top
S1—C31.641 (4)C7—C81.375 (9)
S2—C11.750 (8)C8—C91.360 (9)
S2—C31.725 (4)C9—C101.393 (9)
O1—C41.177 (5)C1—H10.9700
O2—C41.338 (5)C1—H20.9700
O2—C51.407 (5)C2—H30.9700
N1—C21.485 (5)C2—H40.9700
N1—C31.371 (6)C6—H50.9700
N1—C41.403 (5)C7—H60.9700
C1—C21.460 (9)C8—H70.9700
C5—C61.376 (9)C9—H80.9700
C5—C101.365 (6)C10—H90.9700
C6—C71.364 (8)H3—C20.9700
S1—C3—S2118.9 (3)S2—C1—H1108.8806
S1—C3—N1129.5 (3)S2—C1—H2109.2747
C3—S2—C193.2 (3)N1—C2—H3110.1758
S2—C1—C2111.2 (5)N1—C2—H4109.5406
S2—C3—N1111.5 (3)H1—C1—C2109.2151
O1—C4—N1125.7 (4)H2—C1—C2108.8356
O1—C4—O2125.1 (4)C1—C2—H3110.2497
O2—C4—N1109.1 (3)C1—C2—H4109.7336
C5—O2—C4116.8 (3)H2—C1—H1109.4601
O2—C5—C6118.2 (4)H4—C2—H3109.4621
O2—C5—C10119.9 (5)C5—C6—H5120.1531
C3—N1—C2115.1 (3)C5—C10—H9120.5588
C4—N1—C2121.1 (4)H5—C6—C7120.7284
N1—C2—C1107.7 (6)C6—C7—H6119.5422
C4—N1—C3123.7 (3)H6—C7—C8120.2747
C10—C5—C6121.7 (5)C7—C8—H7119.7586
C5—C6—C7119.1 (5)C8—C9—H8120.1307
C5—C10—C9118.4 (6)H7—C8—C9119.7272
C6—C7—C8120.2 (7)C9—C10—H9121.0211
C7—C8—C9120.5 (6)H8—C9—C10119.8144
C8—C9—C10120.1 (5)
C3—S2—C1—C29.2 (7)C2—N1—C4—O1174.8 (4)
C1—S2—C3—S1177.1 (2)C2—N1—C4—O26.9 (5)
C1—S2—C3—N13.1 (3)C3—N1—C4—O18.6 (7)
C5—O2—C4—O11.4 (7)C3—N1—C4—O2169.7 (3)
C5—O2—C4—N1176.9 (3)S2—C1—C2—N112.3 (9)
C4—O2—C5—C6103.7 (5)O2—C5—C6—C7174.7 (5)
C4—O2—C5—C1080.9 (5)C10—C5—C6—C70.6 (7)
C3—N1—C2—C110.5 (6)O2—C5—C10—C9173.6 (4)
C4—N1—C2—C1166.4 (6)C6—C5—C10—C91.6 (7)
C2—N1—C3—S1175.9 (3)C5—C6—C7—C80.1 (7)
C2—N1—C3—S23.9 (4)C6—C7—C8—C90 (1)
C4—N1—C3—S17.3 (6)C7—C8—C9—C101.7 (9)
C4—N1—C3—S2172.9 (3)C8—C9—C10—C52.2 (8)

Experimental details

Crystal data
Chemical formulaC10H9NO2S2
Mr239.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.5465 (6), 8.9066 (4), 11.9102 (6)
β (°) 116.112 (2)
V3)1099.83 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.50 × 0.50 × 0.40
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.772, 0.831
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
9973, 2505, 1537
Rint0.027
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.220, 1.00
No. of reflections2505
No. of parameters136
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.41

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO, CrystalStructure (Rigaku/MSC, 2004), SIR97 (Altomare et al., 1993), CRYSTALS (Betteridge et al., 2003), ORTEP-3 for Windows (Farrugia, 1997), CrystalStructure.

Selected geometric parameters (Å, º) top
S1—C31.641 (4)O2—C51.407 (5)
S2—C11.750 (8)N1—C21.485 (5)
S2—C31.725 (4)N1—C31.371 (6)
O1—C41.177 (5)N1—C41.403 (5)
O2—C41.338 (5)
S1—C3—S2118.9 (3)S2—C3—N1111.5 (3)
S1—C3—N1129.5 (3)C3—N1—C2115.1 (3)
C3—S2—C193.2 (3)N1—C2—C1107.7 (6)
S2—C1—C2111.2 (5)
C1—S2—C3—N13.1 (3)C2—N1—C3—S23.9 (4)
C5—O2—C4—N1176.9 (3)C3—N1—C4—O18.6 (7)
C4—O2—C5—C6103.7 (5)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds