Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C23H18O3, was prepared from anthrone and 3,4-dimethoxy­benzaldehyde in the presence of pyridine. X-ray analysis shows that the three rings of the anthraquinone moiety are not coplanar; the central six-membered ring assumes an asymmetric boat conformation in which the carbonyl C and the opposite C atom deviate from the plane by 0.190 (3) and 0.262 (3) Å, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805028278/ob6581sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805028278/ob6581Isup2.hkl
Contains datablock I

CCDC reference: 282603

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C)= 0.003 Å
  • R factor = 0.035
  • wR factor = 0.110
  • Data-to-parameter ratio = 13.2

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

10-Substituted benzylideneanthrones have been known for a long time for their widespread use as functional dyes and disperse dyes (Day, 1963). Recently, however, some 10-substituted benzylideneanthrones have been found to possess high antitumor activity (Paull et al., 1992; Prinz et al., 2003). Owing to our interest in this area, we have prepared a series of 10-substituted benzylideneanthrones and evaluated their anticancer activity. Our study on the structure–activity relationship (SAR) showed that a substitutent in the benzene moiety of the molecule affects the antitumor activity (Hu & Zhou, 2004). In a continuation of our research on SAR, we prepared the title compound, (I), and investigated its structure.

The molecular structure of (I) is illustrated in Fig. 1, and selected bond lengths and angles are listed in Table 1. The three rings of the anthraquinone moiety are not coplanar, the dihedral angle between the two outer benzene rings being 24.68 (9)°. In the central six-membered ring, atoms C11/C12/C13/C14 are planar within 0.0083 (9) Å, atoms C5 and C10 deviating from the plane by 0.262 (3) and 0.190 (3) Å, respectively; the ring assumes an asymmetric boat conformation.

Experimental top

To a mixture of anthrone (2.0 g, 10 mmol) and 3,4-dimethoxybenzaldehyde (2.0 g, 12 mmol) were added pyridine (30 ml) and piperidine (0.5 g, 6 mmol). The reaction mixture was refluxed for 6 h and thin-layer chromatography showed that the reaction was complete. The mixture was cooled to room temperature, poured into methanol (75 ml) and placed in a refrigerator overnight. The precipitate which formed was collected and recrystallized twice from glacial acetic acid to afford orange crystals of (I) (2.4 g, yield 70.2%, m.p. 453–456 K). Crystals suitable for X-ray analysis were grown from an ethanol solution by slow evaparation.

Refinement top

H atoms were placed at calculated positions and refined using a riding model. H atoms were given isotropic displacement parameters equal to 1.2 times the equivalent isotropic displacement parameters of their parent atoms (1.5 for methyl H atoms) and C—H distances were constrained to 0.93 Å (0.96 Å for methyl H atoms).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD (McArdle, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of (I), shown with 50% probability displacement ellipsoids.
10-(3,4-Dimethoxybenzylidene)anthrone top
Crystal data top
C23H18O3F(000) = 720
Mr = 342.37Dx = 1.305 Mg m3
Monoclinic, P21/nMelting point = 453–456 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.709 (3) ÅCell parameters from 25 reflections
b = 10.306 (2) Åθ = 10.7–14.0°
c = 14.847 (6) ŵ = 0.09 mm1
β = 103.36 (3)°T = 295 K
V = 1743.1 (9) Å3Prismatic, orange
Z = 40.40 × 0.40 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.021
Radiation source: fine-focus sealed tubeθmax = 25.2°, θmin = 2.0°
Graphite monochromatorh = 1413
ω/2θ scansk = 012
3529 measured reflectionsl = 117
3136 independent reflections3 standard reflections every 60 min
1832 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0484P)2 + 0.3183P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
3136 reflectionsΔρmax = 0.15 e Å3
238 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0133 (12)
Crystal data top
C23H18O3V = 1743.1 (9) Å3
Mr = 342.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.709 (3) ŵ = 0.09 mm1
b = 10.306 (2) ÅT = 295 K
c = 14.847 (6) Å0.40 × 0.40 × 0.20 mm
β = 103.36 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.021
3529 measured reflections3 standard reflections every 60 min
3136 independent reflections intensity decay: none
1832 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 0.99Δρmax = 0.15 e Å3
3136 reflectionsΔρmin = 0.13 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.07769 (13)0.91670 (16)0.26699 (11)0.0853 (5)
O20.48952 (12)0.24924 (13)0.60172 (9)0.0618 (4)
O30.45078 (12)0.13957 (13)0.44370 (9)0.0628 (4)
C10.07187 (19)1.0518 (2)0.41341 (15)0.0614 (6)
H10.01411.10010.37400.074*
C20.1505 (2)1.1133 (2)0.48267 (16)0.0665 (6)
H20.14651.20260.49020.080*
C30.2351 (2)1.0416 (2)0.54095 (16)0.0669 (6)
H30.28841.08280.58860.080*
C40.24224 (17)0.90959 (18)0.52979 (15)0.0587 (5)
H40.30060.86310.57010.070*
C50.17147 (15)0.70174 (17)0.44396 (12)0.0448 (4)
C60.03917 (17)0.5061 (2)0.40338 (14)0.0565 (5)
H60.09570.45470.44140.068*
C70.0657 (2)0.4513 (2)0.35799 (16)0.0725 (7)
H70.07940.36360.36590.087*
C80.1508 (2)0.5259 (3)0.30062 (17)0.0828 (8)
H80.22100.48830.26940.099*
C90.13106 (18)0.6547 (3)0.29017 (16)0.0739 (7)
H90.18830.70470.25160.089*
C100.01277 (16)0.8539 (2)0.32866 (14)0.0576 (5)
C110.16388 (14)0.84343 (17)0.45934 (12)0.0454 (5)
C120.06211 (15)0.63806 (18)0.39324 (12)0.0451 (4)
C130.02637 (15)0.7128 (2)0.33644 (13)0.0523 (5)
C140.07668 (16)0.91733 (18)0.40075 (13)0.0481 (5)
C150.27495 (15)0.64083 (18)0.47521 (14)0.0533 (5)
H150.33290.69260.51140.064*
C160.31284 (15)0.50738 (18)0.46252 (13)0.0489 (5)
C170.38052 (15)0.44288 (18)0.53917 (13)0.0476 (5)
H170.39660.48320.59680.057*
C180.42387 (15)0.32021 (17)0.53070 (13)0.0467 (5)
C190.40288 (16)0.25983 (18)0.44413 (13)0.0494 (5)
C200.33782 (16)0.3241 (2)0.36780 (14)0.0546 (5)
H200.32390.28500.30980.066*
C210.29319 (17)0.4466 (2)0.37722 (14)0.0570 (5)
H210.24920.48870.32530.068*
C220.5087 (2)0.3023 (2)0.69236 (13)0.0698 (6)
H22A0.55030.38290.69460.105*
H22B0.55420.24260.73590.105*
H22C0.43460.31720.70780.105*
C230.4107 (2)0.0596 (2)0.36466 (14)0.0699 (6)
H23A0.32650.05490.35070.105*
H23B0.44290.02600.37710.105*
H23C0.43560.09580.31280.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0625 (9)0.1013 (13)0.0794 (11)0.0244 (9)0.0095 (8)0.0270 (9)
O20.0731 (9)0.0504 (8)0.0519 (8)0.0149 (7)0.0063 (7)0.0021 (6)
O30.0668 (9)0.0524 (9)0.0625 (9)0.0157 (7)0.0013 (7)0.0076 (7)
C10.0639 (13)0.0565 (13)0.0679 (14)0.0192 (11)0.0233 (12)0.0193 (11)
C20.0793 (15)0.0455 (12)0.0806 (16)0.0017 (11)0.0310 (13)0.0040 (12)
C30.0685 (14)0.0534 (13)0.0768 (15)0.0080 (11)0.0126 (12)0.0049 (11)
C40.0511 (11)0.0513 (13)0.0680 (14)0.0001 (10)0.0022 (10)0.0022 (10)
C50.0391 (10)0.0456 (11)0.0468 (10)0.0013 (8)0.0038 (8)0.0056 (8)
C60.0514 (11)0.0573 (12)0.0617 (13)0.0074 (10)0.0146 (10)0.0070 (10)
C70.0646 (14)0.0737 (15)0.0836 (16)0.0243 (13)0.0260 (13)0.0247 (13)
C80.0466 (12)0.108 (2)0.0897 (18)0.0194 (15)0.0080 (12)0.0369 (17)
C90.0409 (11)0.105 (2)0.0680 (15)0.0044 (13)0.0044 (10)0.0178 (14)
C100.0402 (10)0.0776 (15)0.0537 (13)0.0170 (11)0.0084 (9)0.0113 (11)
C110.0383 (9)0.0463 (11)0.0506 (11)0.0025 (9)0.0082 (8)0.0060 (9)
C120.0369 (9)0.0536 (12)0.0439 (10)0.0004 (9)0.0078 (8)0.0030 (9)
C130.0367 (10)0.0701 (14)0.0479 (11)0.0040 (9)0.0054 (9)0.0040 (10)
C140.0424 (10)0.0509 (12)0.0523 (11)0.0096 (9)0.0135 (9)0.0089 (9)
C150.0420 (10)0.0475 (12)0.0626 (13)0.0007 (9)0.0040 (9)0.0010 (9)
C160.0373 (9)0.0460 (11)0.0589 (12)0.0030 (8)0.0016 (9)0.0040 (9)
C170.0412 (10)0.0457 (11)0.0512 (11)0.0002 (8)0.0010 (8)0.0023 (9)
C180.0391 (9)0.0438 (11)0.0524 (11)0.0016 (8)0.0003 (8)0.0034 (9)
C190.0433 (10)0.0477 (11)0.0550 (12)0.0048 (9)0.0071 (9)0.0010 (9)
C200.0519 (11)0.0604 (13)0.0475 (11)0.0054 (10)0.0029 (9)0.0025 (10)
C210.0492 (11)0.0601 (13)0.0552 (12)0.0092 (10)0.0012 (9)0.0093 (11)
C220.0871 (16)0.0647 (14)0.0482 (12)0.0083 (12)0.0040 (11)0.0039 (11)
C230.0906 (17)0.0575 (13)0.0605 (14)0.0118 (12)0.0149 (12)0.0117 (11)
Geometric parameters (Å, º) top
O1—C101.230 (2)C9—C131.394 (3)
O2—C181.365 (2)C9—H90.9300
O2—C221.421 (2)C10—C141.467 (3)
O3—C191.361 (2)C10—C131.471 (3)
O3—C231.422 (2)C11—C141.403 (2)
C1—C21.367 (3)C12—C131.405 (2)
C1—C141.401 (3)C15—C161.471 (3)
C1—H10.9300C15—H150.9300
C2—C31.371 (3)C16—C211.384 (3)
C2—H20.9300C16—C171.396 (2)
C3—C41.376 (3)C17—C181.379 (2)
C3—H30.9300C17—H170.9300
C4—C111.399 (3)C18—C191.398 (3)
C4—H40.9300C19—C201.380 (3)
C5—C151.348 (2)C20—C211.386 (3)
C5—C121.480 (2)C20—H200.9300
C5—C111.484 (3)C21—H210.9300
C6—C71.378 (3)C22—H22A0.9599
C6—C121.401 (3)C22—H22B0.9599
C6—H60.9300C22—H22C0.9599
C7—C81.385 (3)C23—H23A0.9599
C7—H70.9300C23—H23B0.9599
C8—C91.362 (3)C23—H23C0.9599
C8—H80.9300
C18—O2—C22117.57 (15)C9—C13—C10118.97 (19)
C19—O3—C23118.29 (15)C12—C13—C10120.73 (17)
C2—C1—C14121.2 (2)C1—C14—C11119.97 (19)
C2—C1—H1119.4C1—C14—C10119.62 (18)
C14—C1—H1119.4C11—C14—C10120.35 (17)
C1—C2—C3119.2 (2)C5—C15—C16131.69 (18)
C1—C2—H2120.4C5—C15—H15114.2
C3—C2—H2120.4C16—C15—H15114.2
C2—C3—C4120.8 (2)C21—C16—C17118.28 (17)
C2—C3—H3119.6C21—C16—C15123.32 (17)
C4—C3—H3119.6C17—C16—C15118.17 (18)
C3—C4—C11121.65 (19)C18—C17—C16120.92 (18)
C3—C4—H4119.2C18—C17—H17119.5
C11—C4—H4119.2C16—C17—H17119.5
C15—C5—C12124.86 (17)O2—C18—C17125.05 (17)
C15—C5—C11119.09 (16)O2—C18—C19114.82 (16)
C12—C5—C11116.04 (15)C17—C18—C19120.12 (17)
C7—C6—C12121.1 (2)O3—C19—C20125.66 (18)
C7—C6—H6119.4O3—C19—C18115.12 (16)
C12—C6—H6119.4C20—C19—C18119.21 (18)
C6—C7—C8120.4 (2)C19—C20—C21120.25 (19)
C6—C7—H7119.8C19—C20—H20119.9
C8—C7—H7119.8C21—C20—H20119.9
C9—C8—C7119.6 (2)C16—C21—C20121.20 (18)
C9—C8—H8120.2C16—C21—H21119.4
C7—C8—H8120.2C20—C21—H21119.4
C8—C9—C13121.0 (2)O2—C22—H22A109.5
C8—C9—H9119.5O2—C22—H22B109.5
C13—C9—H9119.5H22A—C22—H22B109.5
O1—C10—C14121.6 (2)O2—C22—H22C109.5
O1—C10—C13121.3 (2)H22A—C22—H22C109.5
C14—C10—C13117.08 (16)H22B—C22—H22C109.5
C4—C11—C14117.16 (17)O3—C23—H23A109.5
C4—C11—C5122.85 (16)O3—C23—H23B109.5
C14—C11—C5119.97 (16)H23A—C23—H23B109.5
C6—C12—C13117.61 (18)O3—C23—H23C109.5
C6—C12—C5122.71 (17)H23A—C23—H23C109.5
C13—C12—C5119.57 (17)H23B—C23—H23C109.5
C9—C13—C12120.2 (2)
C14—C1—C2—C30.3 (3)C4—C11—C14—C10.9 (3)
C1—C2—C3—C40.6 (3)C5—C11—C14—C1177.93 (17)
C2—C3—C4—C110.2 (3)C4—C11—C14—C10176.50 (17)
C12—C6—C7—C80.4 (3)C5—C11—C14—C104.7 (3)
C6—C7—C8—C90.9 (4)O1—C10—C14—C114.9 (3)
C7—C8—C9—C130.0 (4)C13—C10—C14—C1161.51 (17)
C3—C4—C11—C140.6 (3)O1—C10—C14—C11167.72 (18)
C3—C4—C11—C5178.21 (19)C13—C10—C14—C1115.9 (3)
C15—C5—C11—C422.9 (3)C12—C5—C15—C166.5 (3)
C12—C5—C11—C4157.81 (17)C11—C5—C15—C16172.7 (2)
C15—C5—C11—C14155.82 (18)C5—C15—C16—C2148.2 (3)
C12—C5—C11—C1423.5 (2)C5—C15—C16—C17137.3 (2)
C7—C6—C12—C131.0 (3)C21—C16—C17—C181.9 (3)
C7—C6—C12—C5177.26 (18)C15—C16—C17—C18176.59 (16)
C15—C5—C12—C626.4 (3)C22—O2—C18—C174.1 (3)
C11—C5—C12—C6154.39 (17)C22—O2—C18—C19176.72 (18)
C15—C5—C12—C13157.46 (19)C16—C17—C18—O2179.21 (17)
C11—C5—C12—C1321.8 (2)C16—C17—C18—C191.6 (3)
C8—C9—C13—C121.5 (3)C23—O3—C19—C2015.3 (3)
C8—C9—C13—C10175.3 (2)C23—O3—C19—C18164.97 (18)
C6—C12—C13—C92.0 (3)O2—C18—C19—O30.1 (2)
C5—C12—C13—C9178.32 (17)C17—C18—C19—O3179.34 (16)
C6—C12—C13—C10174.80 (17)O2—C18—C19—C20179.68 (17)
C5—C12—C13—C101.5 (3)C17—C18—C19—C200.4 (3)
O1—C10—C13—C917.1 (3)O3—C19—C20—C21179.76 (18)
C14—C10—C13—C9159.28 (18)C18—C19—C20—C210.5 (3)
O1—C10—C13—C12166.05 (18)C17—C16—C21—C200.9 (3)
C14—C10—C13—C1217.5 (3)C15—C16—C21—C20175.36 (18)
C2—C1—C14—C110.5 (3)C19—C20—C21—C160.2 (3)
C2—C1—C14—C10176.92 (18)

Experimental details

Crystal data
Chemical formulaC23H18O3
Mr342.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)11.709 (3), 10.306 (2), 14.847 (6)
β (°) 103.36 (3)
V3)1743.1 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.40 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3529, 3136, 1832
Rint0.021
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.110, 0.99
No. of reflections3136
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.13

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CAD-4 EXPRESS, XCAD (McArdle, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
O1—C101.230 (2)C10—C141.467 (3)
C5—C151.348 (2)C10—C131.471 (3)
C5—C121.480 (2)C11—C141.403 (2)
C5—C111.484 (3)C12—C131.405 (2)
C15—C5—C12124.86 (17)C21—C16—C15123.32 (17)
C15—C5—C11119.09 (16)C17—C16—C15118.17 (18)
C5—C15—C16131.69 (18)
C11—C5—C12—C1321.8 (2)C5—C11—C14—C104.7 (3)
C5—C12—C13—C101.5 (3)C12—C5—C15—C166.5 (3)
C14—C10—C13—C1217.5 (3)C5—C15—C16—C2148.2 (3)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds