Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C26H30O10, is the meso isomer of a 2,3-disubstituted succinic acid derivative and has inversion symmetry. The crystal structure is stabilized by inter­molecular C—H...π and π–π stacking inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680502756X/ob6580sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680502756X/ob6580Isup2.hkl
Contains datablock I

CCDC reference: 287682

Key indicators

  • Single-crystal X-ray study
  • T = 292 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.045
  • wR factor = 0.132
  • Data-to-parameter ratio = 12.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT230_ALERT_2_C Hirshfeld Test Diff for O4 - C11 .. 5.71 su PLAT480_ALERT_4_C Long H...A H-Bond Reported H13B .. CG1 .. 2.90 Ang.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

1,4-Diketones are versatile intermediates for synthesis of some natural products consisting of cyclopentanone and the furan ring system (McMurry & Meiton, 1971; Ito et al., 1975, 1977). In the present paper, we report the crystal structure of the title compound, (I), which is a 1,4-diketone. The structure of a similar compound, (2RS,3SR)-diethyl 2,3-bis(3,4,5-trimethoxybenzoyl)succinate, has been reported previously (Meng & Wu, 2005).

The asymmetric unit of (I) contains one-half molecule with the other half generated by a centre of inversion (Fig. 1 and Table 1). The crystal structure is stabilized by C—H···π intermolecular interactions (Table 2). The Cg1 in Table 2 is the centroid of the benzene ring (C3–C8). A ππ stacking interaction is also observed, the Cg1···Cg1(1 − x, 1 − y, 1 − z) distance being 3.794 Å.

Experimental top

Compound (I) was synthesized as reported previously (Wu et al., 1997). Crystals of (I) appropriate for data collection were obtained from a methanol–ethyl acetate solution by slow evaporation.

Refinement top

The methyl H atoms were constrained to an ideal geometry, with C—H distances of 0.96 Å and Uiso(H) = 1.5Ueq(C), but each group was allowed to rotate freely about its C—C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93 Å for phenyl H and 0.97 Å for methene H, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. View of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to labelled atoms by the symmetry operation (1 − x, −y, 2 − z).
(2RS,3SR)-Diethyl 2,3-bis(3,4-dimethoxybenzoyl)succinate top
Crystal data top
C26H30O10Z = 1
Mr = 502.50F(000) = 266
Triclinic, P1Dx = 1.351 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5045 (10) ÅCell parameters from 2590 reflections
b = 8.5868 (10) Åθ = 2.8–25.2°
c = 9.0850 (11) ŵ = 0.10 mm1
α = 80.306 (2)°T = 292 K
β = 75.645 (2)°Block, colorless
γ = 75.245 (2)°0.40 × 0.20 × 0.20 mm
V = 617.60 (13) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1851 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
Graphite monochromatorθmax = 25.0°, θmin = 2.3°
ϕ and ω scansh = 910
3501 measured reflectionsk = 810
2140 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.075P)2 + 0.1199P]
where P = (Fo2 + 2Fc2)/3
2140 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C26H30O10γ = 75.245 (2)°
Mr = 502.50V = 617.60 (13) Å3
Triclinic, P1Z = 1
a = 8.5045 (10) ÅMo Kα radiation
b = 8.5868 (10) ŵ = 0.10 mm1
c = 9.0850 (11) ÅT = 292 K
α = 80.306 (2)°0.40 × 0.20 × 0.20 mm
β = 75.645 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1851 reflections with I > 2σ(I)
3501 measured reflectionsRint = 0.014
2140 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.06Δρmax = 0.29 e Å3
2140 reflectionsΔρmin = 0.22 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1862 (3)0.3223 (2)0.3486 (2)0.0682 (6)
H1A0.29460.25380.31940.102*
H1B0.13560.35470.26160.102*
H1C0.11810.26400.42770.102*
C20.2224 (3)0.8657 (2)0.5539 (2)0.0610 (5)
H2A0.15090.87450.65350.092*
H2B0.18280.95580.48410.092*
H2C0.33360.86610.55920.092*
C30.26736 (19)0.43624 (19)0.53013 (17)0.0410 (4)
C40.27992 (19)0.57737 (19)0.58281 (18)0.0415 (4)
C50.3491 (2)0.5628 (2)0.70841 (18)0.0447 (4)
H50.35940.65510.74270.054*
C60.40328 (19)0.41121 (19)0.78359 (18)0.0434 (4)
H60.45020.40270.86760.052*
C70.38818 (18)0.27226 (19)0.73467 (17)0.0401 (4)
C80.32020 (19)0.28753 (19)0.60581 (17)0.0415 (4)
H80.31090.19500.57130.050*
C90.4371 (2)0.1073 (2)0.81095 (19)0.0465 (4)
C100.5136 (2)0.07973 (19)0.95268 (18)0.0436 (4)
H100.46190.16961.01500.052*
C110.6994 (2)0.0729 (2)0.89667 (18)0.0460 (4)
C120.9123 (2)0.2176 (2)0.8534 (2)0.0600 (5)
H12A0.92730.26010.74620.072*
H12B0.98680.11190.86250.072*
C130.9488 (3)0.3280 (3)0.9419 (3)0.0713 (6)
H13A0.86180.42470.94840.107*
H13B1.05310.35580.89200.107*
H13C0.95510.27551.04290.107*
O10.20140 (16)0.46252 (14)0.40393 (14)0.0559 (4)
O20.22213 (15)0.71867 (14)0.50181 (14)0.0523 (3)
O30.4202 (2)0.01003 (16)0.76366 (17)0.0771 (5)
O40.79541 (18)0.04036 (18)0.83980 (19)0.0752 (5)
O50.74006 (15)0.20440 (15)0.91485 (16)0.0585 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.1036 (16)0.0506 (11)0.0680 (12)0.0163 (10)0.0507 (11)0.0078 (9)
C20.0833 (13)0.0362 (9)0.0668 (12)0.0115 (9)0.0234 (10)0.0066 (8)
C30.0452 (8)0.0414 (9)0.0394 (8)0.0106 (7)0.0132 (6)0.0052 (6)
C40.0437 (8)0.0382 (9)0.0427 (8)0.0100 (7)0.0086 (6)0.0044 (6)
C50.0514 (9)0.0409 (9)0.0468 (9)0.0141 (7)0.0118 (7)0.0113 (7)
C60.0476 (9)0.0445 (9)0.0422 (8)0.0109 (7)0.0146 (7)0.0080 (7)
C70.0406 (8)0.0415 (9)0.0401 (8)0.0101 (7)0.0101 (6)0.0060 (6)
C80.0468 (9)0.0386 (9)0.0439 (8)0.0124 (7)0.0132 (7)0.0079 (7)
C90.0563 (10)0.0411 (9)0.0486 (9)0.0127 (7)0.0210 (7)0.0060 (7)
C100.0526 (9)0.0384 (9)0.0453 (9)0.0101 (7)0.0194 (7)0.0060 (7)
C110.0543 (10)0.0414 (9)0.0454 (9)0.0107 (8)0.0158 (7)0.0060 (7)
C120.0504 (10)0.0639 (12)0.0672 (12)0.0193 (9)0.0063 (8)0.0106 (9)
C130.0601 (12)0.0897 (16)0.0735 (13)0.0330 (11)0.0071 (10)0.0208 (11)
O10.0821 (9)0.0417 (7)0.0549 (7)0.0129 (6)0.0375 (6)0.0025 (5)
O20.0704 (8)0.0363 (6)0.0549 (7)0.0107 (5)0.0245 (6)0.0032 (5)
O30.1342 (14)0.0440 (8)0.0783 (9)0.0249 (8)0.0691 (9)0.0007 (6)
O40.0639 (9)0.0631 (9)0.1015 (11)0.0175 (7)0.0047 (8)0.0319 (8)
O50.0489 (7)0.0517 (8)0.0805 (9)0.0163 (6)0.0134 (6)0.0159 (6)
Geometric parameters (Å, º) top
C1—O11.426 (2)C7—C81.403 (2)
C1—H1A0.9600C7—C91.474 (2)
C1—H1B0.9600C8—H80.9300
C1—H1C0.9600C9—O31.2129 (19)
C2—O21.422 (2)C9—C101.540 (2)
C2—H2A0.9600C10—C111.525 (2)
C2—H2B0.9600C10—C10i1.528 (3)
C2—H2C0.9600C10—H100.9800
C3—O11.3592 (19)C11—O41.198 (2)
C3—C81.368 (2)C11—O51.309 (2)
C3—C41.413 (2)C12—O51.458 (2)
C4—O21.353 (2)C12—C131.474 (3)
C4—C51.382 (2)C12—H12A0.9700
C5—C61.387 (2)C12—H12B0.9700
C5—H50.9300C13—H13A0.9600
C6—C71.387 (2)C13—H13B0.9600
C6—H60.9300C13—H13C0.9600
O1—C1—H1A109.5C7—C8—H8119.4
O1—C1—H1B109.5O3—C9—C7121.36 (14)
H1A—C1—H1B109.5O3—C9—C10118.22 (14)
O1—C1—H1C109.5C7—C9—C10120.41 (13)
H1A—C1—H1C109.5C11—C10—C10i109.95 (16)
H1B—C1—H1C109.5C11—C10—C9107.63 (13)
O2—C2—H2A109.5C10i—C10—C9109.94 (15)
O2—C2—H2B109.5C11—C10—H10109.8
H2A—C2—H2B109.5C10i—C10—H10109.8
O2—C2—H2C109.5C9—C10—H10109.8
H2A—C2—H2C109.5O4—C11—O5124.53 (16)
H2B—C2—H2C109.5O4—C11—C10122.83 (15)
O1—C3—C8125.18 (14)O5—C11—C10112.63 (14)
O1—C3—C4115.11 (14)O5—C12—C13107.63 (15)
C8—C3—C4119.70 (14)O5—C12—H12A110.2
O2—C4—C5125.31 (14)C13—C12—H12A110.2
O2—C4—C3115.30 (14)O5—C12—H12B110.2
C5—C4—C3119.39 (15)C13—C12—H12B110.2
C4—C5—C6120.36 (14)H12A—C12—H12B108.5
C4—C5—H5119.8C12—C13—H13A109.5
C6—C5—H5119.8C12—C13—H13B109.5
C7—C6—C5120.65 (14)H13A—C13—H13B109.5
C7—C6—H6119.7C12—C13—H13C109.5
C5—C6—H6119.7H13A—C13—H13C109.5
C6—C7—C8118.77 (14)H13B—C13—H13C109.5
C6—C7—C9124.15 (14)C3—O1—C1116.38 (13)
C8—C7—C9117.08 (14)C4—O2—C2118.15 (13)
C3—C8—C7121.12 (14)C11—O5—C12117.54 (14)
C3—C8—H8119.4
O1—C3—C4—O21.0 (2)C8—C7—C9—C10179.69 (14)
C8—C3—C4—O2179.04 (14)O3—C9—C10—C1195.47 (19)
O1—C3—C4—C5178.48 (14)C7—C9—C10—C1183.84 (18)
C8—C3—C4—C51.5 (2)O3—C9—C10—C10i24.3 (3)
O2—C4—C5—C6179.52 (14)C7—C9—C10—C10i156.42 (17)
C3—C4—C5—C61.0 (2)C10i—C10—C11—O446.7 (2)
C4—C5—C6—C70.4 (2)C9—C10—C11—O473.1 (2)
C5—C6—C7—C81.3 (2)C10i—C10—C11—O5134.67 (17)
C5—C6—C7—C9177.82 (15)C9—C10—C11—O5105.59 (15)
O1—C3—C8—C7179.42 (14)C8—C3—O1—C10.4 (2)
C4—C3—C8—C70.5 (2)C4—C3—O1—C1179.62 (16)
C6—C7—C8—C30.9 (2)C5—C4—O2—C24.0 (2)
C9—C7—C8—C3178.32 (14)C3—C4—O2—C2176.49 (14)
C6—C7—C9—O3179.54 (16)O4—C11—O5—C123.8 (3)
C8—C7—C9—O30.4 (3)C10—C11—O5—C12174.83 (15)
C6—C7—C9—C101.2 (2)C13—C12—O5—C11154.78 (17)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···Cg1ii0.962.903.820162
Symmetry code: (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC26H30O10
Mr502.50
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)8.5045 (10), 8.5868 (10), 9.0850 (11)
α, β, γ (°)80.306 (2), 75.645 (2), 75.245 (2)
V3)617.60 (13)
Z1
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3501, 2140, 1851
Rint0.014
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.133, 1.06
No. of reflections2140
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.22

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SAINT-Plus, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), PLATON.

Selected geometric parameters (Å, º) top
C9—C101.540 (2)C10—C10i1.528 (3)
C10—C111.525 (2)
O3—C9—C7121.36 (14)C11—C10—C10i109.95 (16)
O3—C9—C10118.22 (14)C11—C10—C9107.63 (13)
C7—C9—C10120.41 (13)C10i—C10—C9109.94 (15)
O3—C9—C10—C1195.47 (19)C7—C9—C10—C10i156.42 (17)
C7—C9—C10—C1183.84 (18)C10i—C10—C11—O446.7 (2)
O3—C9—C10—C10i24.3 (3)C9—C10—C11—O473.1 (2)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···Cg1ii0.962.903.820162
Symmetry code: (ii) x1, y, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds