Download citation
Download citation
link to html
In the title compound, [Pt2Br2(C4H6NO)2(NH3)4](NO3)2, the intradimer Pt—Pt distance is 2.6476 (4) Å. The axial PtIII—Br bond distances at the N4- and N2O2-coordinated sites are 2.5647 (9) and 2.5889 (8) Å, respectively. The two Pt coordination planes are tilted by 18.1 (3)°, and the average torsional twist of the ligands about the Pt—Pt axis is estimated as 1.0°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803014405/ob6261sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803014405/ob6261Isup2.hkl
Contains datablock I

CCDC reference: 217433

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.012 Å
  • Disorder in solvent or counterion
  • R factor = 0.036
  • wR factor = 0.092
  • Data-to-parameter ratio = 24.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_302 Alert C Anion/Solvent Disorder ......................... 33.00 Perc.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The PtIII ions are generally given as a result of two-electron one-step oxidation of dinuclear PtII complexes. The electrochemistry of such PtIII dimers was first investigated on the α-pyridonate-bridged cis-diammineplatinum(III) dimers, [PtIII2(NH3)4(µ-α-pyridonato)2L2]4+ (L is an axial ligand, such as OH2, NO3-, NO2-, Cl-, Br-, etc.; Hollis & Lippard, 1983). It should be noted here that two geometrical isomers, head-to-head (HH) and head-to-tail (HT) isomers, are possible due to the asymmetric feature of the bridging amidate ligands (hereafter, HH and HT will be used as prefixes to distinguish these two isomers). Upon oxidation of PtII2 into PtIII2, a single Pt—Pt bond is formed between the two 5 d7 centres and 0.3–0.4 Å of shortening in the Pt—Pt distance is induced. Moreover, the Pt2III cores generally accept two additional ligands at the axial sites. As far as the doubly bridged dimers mentioned above are concerned, around 21 crystal structures have been determined crystallographically (see, for example, Matsumoto & Sakai, 1999). Six compounds of them are those which possess one or two halide ions at the axial sites, in which α-pyridonate, α-pyrrolidinonate, and 1-methyluracilate are used as the bridging ligands. As for the α-pyrrolidinonate family investigated in this report, mono- and dichloro-coordinated HH dimers were previously reported by the authors (Sakai et al., 1998). On the other hand, only one bromo compound, HT-[PtIII2(NH3)4(µ-α-pyridonato)2Br2]2+, has been reported by now (Hollis et al., 1983). Here we report the crystal structure of HH-[PtIII2(NH3)4(µ-α-pyrrolidinonato)2Br2](NO3)2, (I).

The crystal of (I) is isomorphous to that of the dichloro analog, HH-[PtIII2(NH3)4(µ-α-pyrrolidinonato)2Cl2](NO3)2 [(II); Sakai et al., 1998]. The cell volume of (I) [V = 1052.94 (11) Å3] is larger than that reported for (II) [V = 1026.8 (4) Å3], reflecting a larger ionic radius of Br compared to that of Cl. The intradimer Pt—Pt distance [2.6476 (4) Å] is by ca 0.1 Å longer than that reported for (II) [2.6366 (7) Å], which must be interpreted in terms of the difference between Cl and Br either in the trans influence or in the electronegativity. If the former is a predominant factor, the Pt—Pt bond distance is expected to be longer in the Cl system, for Cl has a stronger trans influence compared to Br. But this is not the case. If the latter is operating, the net charge (corresponding to the 'net oxidation state') in the Cl system is expected to be higher than that in the Br system. Since the Pt—Pt distance is shortened upon oxidation of PtII2 into Pt2III, the higher net oxidation state would cause shortening in the Pt—Pt distance. Thus the electronegativity seems operating. The PtIII—Br distances in (I) (see Table 1) are quite comparable to those reported for HT-[PtIII2(NH3)4(µ-α-pyridonato)2Br2]2+ [PtIII—Br = 2.573 (1) and 2.562 (1) Å; Hollis, Roberts et al., 1983].

On the other hand, structural features of this class of dimers have been often evaluated by use of the following two structural parameters. One is a dihedral angle between the two Pt coordination planes within a dimeric unit (τ), and the other is an average torsional twist of them about the Pt—Pt axis (ω). The values for (I) are estimated as τ = 18.1 (3)° and ω = 1.0°, which are respectively quite comparable to the values of τ = 18.9° and ω = 1.5° in (II). As reported thus far for the related compounds, the two Pt atoms are shifted out of their individual Pt coordination planes in such a manner that they have an attractive interaction toward one another. Atoms Pt1 and Pt2 are respectively shifted from their mean planes defined by four coordinated atoms by 0.079 (3) and 0.017 (3) Å. The crystal packing is stabilized with extensive hydrogen bonds formed either between the ammines and the oxygen atoms of nitrates/amidates and also between the ammines and the Br atoms (see Table 2).

Experimental top

The title compound was prepared in the same manner as reported for the dichloro-coordinated analog (II), HH-[PtIII2(NH3)4(µ-α-pyrrolidinonato)2Cl2](NO3)2 (Sakai et al., 1998), except that HBr was used instead of HCl. The dimer compound (0.024 mmol) was dissolved in an aqueous solution prepared by mixing 0.1 M HBr (0.5 ml) and concentrated HNO3 (0.2 ml). The solution was left at 278 K for a few days to afford (I) as orange needles.

Refinement top

One of two nitrate anions was regarded as being disordered over two sites. All the disordered atoms were supposed to have the same isotropic displacement parameter, where the occupation factors were also supposed as 50%. Moreover, the N—O distances were restrained at 1.22 Å, three O···O distances in each disordered nitrate unit were restrained as equal, and each nitrate unit was restrained to be planar. All H atoms were located at their idealized positions as riding atoms (C—H = 0.97 Å and N—H = 0.89 Å). In the final difference Fourier synthesis, most of 20 residual peaks in the range 1.01–2.42 e Å−3 were observed within 1.59 Å from the Pt atoms. The deepest hole was located 0.84 Å from Pt2.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: KENX (Sakai, 2002); software used to prepare material for publication: SHELXL97, TEXSAN (Molecular Structure Corporation, 2001), KENX and ORTEPII (Johnson, 1976).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-labeling scheme. Displacement ellipsoids are shown at the 50% probability level. H atoms have been omitted for clarity.
di-µ-α-pyrrolidinonato-bis[cis-diamminebromoplatinum(III)] dinitrate top
Crystal data top
[Pt2Br2(C4H6NO)2(NH3)4](NO3)2Z = 2
Mr = 910.35F(000) = 836
Triclinic, P1? # Insert any comments here.
Hall symbol: -P 1Dx = 2.871 Mg m3
a = 9.0092 (5) ÅMo Kα radiation, λ = 0.71069 Å
b = 10.1125 (6) ÅCell parameters from 2413 reflections
c = 12.0131 (7) Åθ = 2.6–23.3°
α = 80.164 (1)°µ = 17.12 mm1
β = 78.041 (1)°T = 293 K
γ = 84.540 (1)°Needle, orange
V = 1052.94 (11) Å30.15 × 0.07 × 0.07 mm
Data collection top
Bruker SMART APEX CCD-detector
diffractometer
6122 independent reflections
Radiation source: fine-focus sealed tube4127 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 8.366 pixels mm-1θmax = 30.0°, θmin = 1.8°
ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1414
Tmin = 0.140, Tmax = 0.302l = 1616
13222 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0467P)2]
where P = (Fo2 + 2Fc2)/3
6122 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 2.90 e Å3
14 restraintsΔρmin = 2.21 e Å3
Crystal data top
[Pt2Br2(C4H6NO)2(NH3)4](NO3)2γ = 84.540 (1)°
Mr = 910.35V = 1052.94 (11) Å3
Triclinic, P1Z = 2
a = 9.0092 (5) ÅMo Kα radiation
b = 10.1125 (6) ŵ = 17.12 mm1
c = 12.0131 (7) ÅT = 293 K
α = 80.164 (1)°0.15 × 0.07 × 0.07 mm
β = 78.041 (1)°
Data collection top
Bruker SMART APEX CCD-detector
diffractometer
6122 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4127 reflections with I > 2σ(I)
Tmin = 0.140, Tmax = 0.302Rint = 0.036
13222 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03714 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 0.95Δρmax = 2.90 e Å3
6122 reflectionsΔρmin = 2.21 e Å3
246 parameters
Special details top

Experimental. The first 50 frames were rescanned at the end of data collection to evaluate any possible decay phenomenon. Since it was judged to be negligible, no decay correction was applied to the data.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Mean-plane data from final SHELXL refinement run:-

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

6.9668 (0.0126) x − 4.2105 (0.0201) y + 5.6680 (0.0232) z = 3.2944 (0.0105)

* −0.0093 (0.0030) N1 * 0.0092 (0.0030) N2 * 0.0094 (0.0030) N5 * −0.0093 (0.0030) N6 − 0.0173 (0.0030) Pt2 − 2.6198 (0.0032) Pt1

Rms deviation of fitted atoms = 0.0093

7.9525 (0.0085) x − 3.7555 (0.0188) y + 2.6120 (0.0247) z = 0.2500 (0.0103)

Angle to previous plane (with approximate e.s.d.) = 18.06 (1/4)

* −0.0088 (0.0028) O1 * 0.0087 (0.0028) O2 * 0.0087 (0.0028) N3 * −0.0087 (0.0028) N4 0.0793 (0.0028) Pt1 2.7044 (0.0028) Pt2

Rms deviation of fitted atoms = 0.0087

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10.12639 (3)0.32007 (2)0.20144 (2)0.02349 (8)
Pt20.37489 (3)0.18378 (2)0.25391 (2)0.02310 (8)
Br10.12962 (9)0.44849 (8)0.17478 (8)0.0397 (2)
Br20.60975 (10)0.05224 (8)0.31580 (8)0.0432 (2)
O10.0125 (6)0.1580 (5)0.2816 (5)0.0380 (13)
O20.1045 (6)0.3956 (5)0.3499 (4)0.0380 (13)
O3A0.7579 (15)0.2108 (13)0.0094 (11)0.0727 (15)*0.50
O3B0.7069 (13)0.1906 (14)0.0259 (13)0.0727 (15)*0.50
O4A0.9445 (16)0.2195 (15)0.1319 (12)0.0727 (15)*0.50
O4B0.9348 (16)0.2403 (14)0.0960 (14)0.0727 (15)*0.50
O5A0.8010 (15)0.0537 (12)0.0952 (13)0.0727 (15)*0.50
O5B0.8722 (15)0.0413 (12)0.0913 (14)0.0727 (15)*0.50
O60.4375 (8)0.2175 (6)0.1514 (6)0.067 (2)
O70.4498 (7)0.3800 (5)0.0597 (5)0.0444 (14)
O80.5651 (7)0.3883 (6)0.2363 (5)0.0503 (16)
N10.2286 (7)0.0386 (5)0.3273 (5)0.0287 (13)
N20.3245 (7)0.2807 (6)0.3926 (5)0.0300 (13)
N30.1339 (8)0.2503 (6)0.0512 (5)0.0394 (16)
H3A0.11700.16320.06600.059*
H3B0.22510.26200.00640.059*
H3C0.06300.29520.01540.059*
N40.2242 (7)0.4924 (5)0.1178 (5)0.0334 (14)
H4A0.26240.48370.04470.050*
H4B0.29840.50780.15180.050*
H4C0.15450.56090.12040.050*
N50.4332 (7)0.0841 (6)0.1130 (5)0.0374 (15)
H5A0.45390.14370.04900.056*
H5B0.35600.03720.10940.056*
H5C0.51460.02860.11990.056*
N60.5275 (7)0.3269 (6)0.1740 (6)0.0342 (15)
H6A0.50580.39990.20800.051*
H6B0.52120.34850.10010.051*
H6C0.62140.29410.17960.051*
N7A0.8336 (12)0.1592 (12)0.0726 (10)0.0727 (15)*0.50
N7B0.8377 (14)0.1550 (12)0.0710 (8)0.0727 (15)*0.50
N80.4846 (7)0.3273 (6)0.1497 (6)0.0349 (15)
C10.0869 (9)0.0517 (7)0.3227 (6)0.0303 (16)
C20.0066 (9)0.0764 (7)0.3724 (7)0.0404 (19)
H2A0.07020.06390.44000.048*
H2B0.04120.10500.31590.048*
C30.1297 (10)0.1759 (8)0.4029 (9)0.052 (3)
H3D0.14450.24670.35570.062*
H3E0.10460.21610.48330.062*
C40.2742 (9)0.0973 (7)0.3803 (7)0.042 (2)
H4D0.30730.09460.45170.051*
H4E0.35610.13800.32860.051*
C50.2070 (8)0.3641 (7)0.4115 (6)0.0296 (15)
C60.2020 (11)0.4280 (9)0.5168 (7)0.050 (2)
H6D0.21910.52310.49590.059*
H6E0.10490.41710.56930.059*
C70.3290 (12)0.3526 (10)0.5695 (9)0.065 (3)
H7A0.39160.41450.58940.078*
H7B0.28880.29180.63850.078*
C80.4195 (11)0.2757 (8)0.4791 (7)0.045 (2)
H8A0.51470.31670.44450.054*
H8B0.44160.18340.51230.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02089 (14)0.02288 (14)0.02666 (15)0.00121 (10)0.00639 (10)0.00165 (10)
Pt20.02139 (14)0.02030 (14)0.02680 (15)0.00011 (10)0.00470 (10)0.00205 (10)
Br10.0245 (4)0.0420 (4)0.0527 (5)0.0031 (3)0.0134 (3)0.0028 (4)
Br20.0342 (5)0.0385 (4)0.0569 (5)0.0091 (3)0.0172 (4)0.0036 (4)
O10.028 (3)0.029 (3)0.050 (4)0.004 (2)0.003 (2)0.009 (2)
O20.034 (3)0.051 (3)0.032 (3)0.013 (2)0.014 (2)0.014 (2)
O60.092 (6)0.041 (4)0.074 (5)0.023 (4)0.023 (4)0.007 (3)
O70.053 (4)0.048 (3)0.031 (3)0.004 (3)0.006 (3)0.008 (3)
O80.057 (4)0.056 (4)0.035 (3)0.016 (3)0.002 (3)0.003 (3)
N10.033 (3)0.020 (3)0.031 (3)0.003 (2)0.003 (3)0.000 (2)
N20.034 (4)0.029 (3)0.028 (3)0.009 (3)0.011 (3)0.010 (2)
N30.038 (4)0.043 (4)0.040 (4)0.001 (3)0.013 (3)0.008 (3)
N40.034 (4)0.025 (3)0.040 (4)0.002 (3)0.009 (3)0.001 (3)
N50.040 (4)0.034 (3)0.035 (4)0.007 (3)0.000 (3)0.009 (3)
N60.025 (3)0.029 (3)0.045 (4)0.005 (3)0.002 (3)0.001 (3)
N80.040 (4)0.032 (3)0.035 (4)0.003 (3)0.008 (3)0.010 (3)
C10.034 (4)0.025 (4)0.031 (4)0.002 (3)0.006 (3)0.003 (3)
C20.040 (5)0.030 (4)0.046 (5)0.011 (3)0.002 (4)0.001 (3)
C30.046 (5)0.024 (4)0.077 (7)0.012 (4)0.003 (5)0.009 (4)
C40.048 (5)0.022 (4)0.050 (5)0.002 (3)0.008 (4)0.010 (3)
C50.035 (4)0.027 (4)0.027 (4)0.002 (3)0.003 (3)0.008 (3)
C60.061 (6)0.056 (6)0.037 (5)0.010 (4)0.016 (4)0.022 (4)
C70.069 (7)0.079 (7)0.059 (7)0.022 (6)0.035 (6)0.033 (5)
C80.059 (6)0.042 (5)0.043 (5)0.007 (4)0.031 (4)0.010 (4)
Geometric parameters (Å, º) top
Pt1—Pt22.6476 (4)C3—C41.543 (11)
Pt1—Br12.5889 (8)C5—C61.506 (10)
Pt2—Br22.5647 (9)C6—C71.504 (12)
Pt1—O12.009 (5)C7—C81.500 (12)
Pt1—O22.023 (5)N3—H3A0.8900
Pt1—N32.034 (6)N3—H3B0.8900
Pt1—N42.036 (5)N3—H3C0.8900
Pt2—N22.025 (6)N4—H4A0.8900
Pt2—N12.028 (5)N4—H4B0.8900
Pt2—N62.065 (5)N4—H4C0.8900
Pt2—N52.067 (6)N5—H5A0.8900
O1—C11.291 (8)N5—H5B0.8900
O2—C51.284 (9)N5—H5C0.8900
O3A—N7A1.240 (9)N6—H6A0.8900
O4A—N7A1.246 (9)N6—H6B0.8900
O4B—N7A1.241 (19)N6—H6C0.8900
O5A—N7A1.220 (9)C2—H2A0.9700
O3B—N7B1.238 (9)C2—H2B0.9700
O4B—N7B1.244 (9)C3—H3D0.9700
O5B—N7B1.214 (9)C3—H3E0.9700
O6—N81.231 (7)C4—H4D0.9700
O7—N81.255 (8)C4—H4E0.9700
O8—N81.242 (8)C6—H6D0.9700
N1—C11.283 (9)C6—H6E0.9700
N1—C41.471 (8)C7—H7A0.9700
N2—C51.296 (9)C7—H7B0.9700
N2—C81.469 (9)C8—H8A0.9700
C1—C21.514 (9)C8—H8B0.9700
C2—C31.486 (11)
O1—Pt1—O292.4 (2)C7—C6—C5103.5 (7)
O1—Pt1—N387.3 (2)C8—C7—C6105.4 (7)
O2—Pt1—N3176.0 (2)N2—C8—C7105.9 (7)
O1—Pt1—N4175.0 (2)Pt1—N3—H3A109.5
O2—Pt1—N487.7 (2)Pt1—N3—H3B109.5
N3—Pt1—N492.3 (3)H3A—N3—H3B109.5
O1—Pt1—Br189.17 (15)Pt1—N3—H3C109.5
O2—Pt1—Br187.82 (14)H3A—N3—H3C109.5
N3—Pt1—Br188.21 (19)H3B—N3—H3C109.5
N4—Pt1—Br185.84 (17)Pt1—N4—H4A109.5
O1—Pt1—Pt287.17 (15)Pt1—N4—H4B109.5
O2—Pt1—Pt286.99 (14)H4A—N4—H4B109.5
N3—Pt1—Pt296.96 (18)Pt1—N4—H4C109.5
N4—Pt1—Pt297.82 (17)H4A—N4—H4C109.5
Br1—Pt1—Pt2173.52 (2)H4B—N4—H4C109.5
N2—Pt2—N193.3 (2)Pt2—N5—H5A109.5
N2—Pt2—N688.9 (2)Pt2—N5—H5B109.5
N1—Pt2—N6177.7 (2)H5A—N5—H5B109.5
N2—Pt2—N5178.3 (2)Pt2—N5—H5C109.5
N1—Pt2—N587.6 (2)H5A—N5—H5C109.5
N6—Pt2—N590.2 (3)H5B—N5—H5C109.5
N2—Pt2—Br294.04 (17)Pt2—N6—H6A109.5
N1—Pt2—Br295.66 (17)Pt2—N6—H6B109.5
N6—Pt2—Br283.70 (17)H6A—N6—H6B109.5
N5—Pt2—Br284.39 (18)Pt2—N6—H6C109.5
N2—Pt2—Pt183.33 (17)H6A—N6—H6C109.5
N1—Pt2—Pt183.15 (17)H6B—N6—H6C109.5
N6—Pt2—Pt197.60 (17)C3—C2—H2A110.9
N5—Pt2—Pt198.26 (18)C1—C2—H2A110.9
Br2—Pt2—Pt1177.03 (2)C3—C2—H2B110.9
C1—O1—Pt1119.1 (5)C1—C2—H2B110.9
C5—O2—Pt1119.4 (4)H2A—C2—H2B108.9
C1—N1—C4112.3 (6)C2—C3—H3D110.5
C1—N1—Pt2123.0 (5)C4—C3—H3D110.5
C4—N1—Pt2124.4 (5)C2—C3—H3E110.5
C5—N2—C8110.9 (6)C4—C3—H3E110.5
C5—N2—Pt2123.3 (5)H3D—C3—H3E108.7
C8—N2—Pt2125.6 (5)N1—C4—H4D110.8
O5A—N7A—O3A121.7 (8)C3—C4—H4D110.8
O3B—N7A—O4B120.8 (14)N1—C4—H4E110.8
O5A—N7A—O4A120.9 (8)C3—C4—H4E110.8
O3A—N7A—O4A117.4 (8)H4D—C4—H4E108.9
O5B—N7B—O3B122.2 (8)C7—C6—H6D111.1
O5B—N7B—O4B120.1 (8)C5—C6—H6D111.1
O3B—N7B—O4B117.8 (8)C7—C6—H6E111.1
O6—N8—O8121.1 (7)C5—C6—H6E111.1
O6—N8—O7119.9 (7)H6D—C6—H6E109.0
O8—N8—O7119.0 (6)C8—C7—H7A110.7
N1—C1—O1127.3 (7)C6—C7—H7A110.7
N1—C1—C2112.5 (6)C8—C7—H7B110.7
O1—C1—C2120.2 (7)C6—C7—H7B110.7
C3—C2—C1104.2 (6)H7A—C7—H7B108.8
C2—C3—C4106.1 (6)N2—C8—H8A110.6
N1—C4—C3104.6 (6)C7—C8—H8A110.6
O2—C5—N2126.8 (7)N2—C8—H8B110.6
O2—C5—C6120.9 (7)C7—C8—H8B110.6
N2—C5—C6112.3 (7)H8A—C8—H8B108.7
O1—Pt1—Pt2—N10.1 (2)C1—N1—C4—C33.7 (9)
O2—Pt1—Pt2—N21.5 (2)C2—C3—C4—N15.6 (9)
N4—Pt1—Pt2—N62.3 (2)C8—N2—C5—O2177.4 (7)
N3—Pt1—Pt2—N50.3 (2)C8—N2—C5—C61.1 (10)
C4—N1—C1—O1179.9 (7)O2—C5—C6—C7173.7 (8)
C4—N1—C1—C20.3 (9)N2—C5—C6—C77.7 (10)
N1—C1—C2—C33.4 (9)C5—C6—C7—C812.9 (10)
O1—C1—C2—C3176.5 (7)C5—N2—C8—C79.6 (10)
C1—C2—C3—C45.3 (9)C6—C7—C8—N213.8 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3C···Br10.892.863.242 (6)107
N3—H3A···O10.892.562.790 (8)96
N3—H3B···O70.892.373.183 (9)152
N4—H4C···Br10.892.813.176 (6)107
N4—H4A···O70.892.182.927 (8)141
N5—H5C···Br20.892.723.132 (7)110
N5—H5A···O3A0.892.813.226 (14)110
N5—H5A···O3B0.892.332.866 (14)119
N5—H5A···O60.892.433.225 (9)150
N6—H6C···Br20.892.703.111 (6)110
N6—H6C···O3A0.892.402.868 (13)113
N6—H6B···O3B0.892.633.063 (14)111
N6—H6B···O70.892.112.982 (9)165
N3—H3A···O5Ai0.892.243.051 (14)151
N3—H3A···O5Bi0.892.032.910 (13)168
N3—H3C···O4Aii0.892.503.120 (17)127
N3—H3C···O4Bii0.892.112.786 (18)132
N4—H4C···O3Aiii0.892.643.130 (15)115
N4—H4C···O4Aiii0.892.333.170 (17)158
N4—H4C···O4Biii0.892.092.934 (16)158
N4—H4B···O7iii0.892.583.217 (8)129
N4—H4B···O8iii0.892.193.038 (9)160
N5—H5B···O5Ai0.891.812.700 (14)177
N5—H5C···O6i0.892.463.153 (9)135
N6—H6A···O7iii0.892.613.053 (8)112
N6—H6A···O8iii0.892.243.093 (8)161
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Pt2Br2(C4H6NO)2(NH3)4](NO3)2
Mr910.35
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.0092 (5), 10.1125 (6), 12.0131 (7)
α, β, γ (°)80.164 (1), 78.041 (1), 84.540 (1)
V3)1052.94 (11)
Z2
Radiation typeMo Kα
µ (mm1)17.12
Crystal size (mm)0.15 × 0.07 × 0.07
Data collection
DiffractometerBruker SMART APEX CCD-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.140, 0.302
No. of measured, independent and
observed [I > 2σ(I)] reflections
13222, 6122, 4127
Rint0.036
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.092, 0.95
No. of reflections6122
No. of parameters246
No. of restraints14
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.90, 2.21

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), KENX (Sakai, 2002), SHELXL97, TEXSAN (Molecular Structure Corporation, 2001), KENX and ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) top
Pt1—Pt22.6476 (4)Pt1—N42.036 (5)
Pt1—Br12.5889 (8)Pt2—N22.025 (6)
Pt2—Br22.5647 (9)Pt2—N12.028 (5)
Pt1—O12.009 (5)Pt2—N62.065 (5)
Pt1—O22.023 (5)Pt2—N52.067 (6)
Pt1—N32.034 (6)
O1—Pt1—O292.4 (2)N2—Pt2—N688.9 (2)
O1—Pt1—N387.3 (2)N1—Pt2—N6177.7 (2)
O2—Pt1—N3176.0 (2)N2—Pt2—N5178.3 (2)
O1—Pt1—N4175.0 (2)N1—Pt2—N587.6 (2)
O2—Pt1—N487.7 (2)N6—Pt2—N590.2 (3)
N3—Pt1—N492.3 (3)N2—Pt2—Br294.04 (17)
O1—Pt1—Br189.17 (15)N1—Pt2—Br295.66 (17)
O2—Pt1—Br187.82 (14)N6—Pt2—Br283.70 (17)
N3—Pt1—Br188.21 (19)N5—Pt2—Br284.39 (18)
N4—Pt1—Br185.84 (17)N2—Pt2—Pt183.33 (17)
N3—Pt1—Pt296.96 (18)N1—Pt2—Pt183.15 (17)
N4—Pt1—Pt297.82 (17)N6—Pt2—Pt197.60 (17)
Br1—Pt1—Pt2173.52 (2)N5—Pt2—Pt198.26 (18)
N2—Pt2—N193.3 (2)Br2—Pt2—Pt1177.03 (2)
O1—Pt1—Pt2—N10.1 (2)N4—Pt1—Pt2—N62.3 (2)
O2—Pt1—Pt2—N21.5 (2)N3—Pt1—Pt2—N50.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3C···Br10.892.863.242 (6)107
N3—H3A···O10.892.562.790 (8)96
N3—H3B···O70.892.373.183 (9)152
N4—H4C···Br10.892.813.176 (6)107
N4—H4A···O70.892.182.927 (8)141
N5—H5C···Br20.892.723.132 (7)110
N5—H5A···O3A0.892.813.226 (14)110
N5—H5A···O3B0.892.332.866 (14)119
N5—H5A···O60.892.433.225 (9)150
N6—H6C···Br20.892.703.111 (6)110
N6—H6C···O3A0.892.402.868 (13)113
N6—H6B···O3B0.892.633.063 (14)111
N6—H6B···O70.892.112.982 (9)165
N3—H3A···O5Ai0.892.243.051 (14)151
N3—H3A···O5Bi0.892.032.910 (13)168
N3—H3C···O4Aii0.892.503.120 (17)127
N3—H3C···O4Bii0.892.112.786 (18)132
N4—H4C···O3Aiii0.892.643.130 (15)115
N4—H4C···O4Aiii0.892.333.170 (17)158
N4—H4C···O4Biii0.892.092.934 (16)158
N4—H4B···O7iii0.892.583.217 (8)129
N4—H4B···O8iii0.892.193.038 (9)160
N5—H5B···O5Ai0.891.812.700 (14)177
N5—H5C···O6i0.892.463.153 (9)135
N6—H6A···O7iii0.892.613.053 (8)112
N6—H6A···O8iii0.892.243.093 (8)161
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds