Download citation
Download citation
link to html
In the crystal structure of the title complex, [Cu(C10H9NO3)(H2O)]·H2O, the Cu atom is tetracoordinated by O and N atoms, and facilitates an intermolecular Cu...O short contact of 2.809 (3) Å. The two symmetrically-related coordinated Cu ions form distorted square pyramids of coordination CuO4N. In the asymmetric unit, a free water mol­ecule is hydrogen bonded to the coordinated water mol­ecule. In the packing, the mol­ecules are interconnected by two types of O—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803012236/ob6257sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803012236/ob6257Isup2.hkl
Contains datablock I

CCDC reference: 217365

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.052
  • wR factor = 0.123
  • Data-to-parameter ratio = 16.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Amber Alert Alert Level B:
PLAT_420 Alert B D-H Without Acceptor O2W - H1W2 .. ?
0 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
0 Alert Level C = Please check

Comment top

Considerable attention has been paid to the structures of Cu complexes with Schiff bases formed from salicylaldehyde-amino acid (Ueki et al., 1967, 1969; Bkouche-Waksman et al., 1988). These complexes are expected to be a catalytic intermediate in the non-enzymatic transamination reactions (Eichhorn & Marchand, 1956; Longenecker & Snell, 1957). Recently, X-ray structural studies on tin complexes with such ligands exhibited a variety of coordination and bonding towards the tinIV ion (Dakternieks et al., 1998; Basu Baul et al., 1999, 2001, 2002). The usefulness of such systems have in turn prompted research into the chemistry of Cu since the bond distances concerning the N atoms are of interest. In this study, we report the X-ray structural analysis of the title Cu complex, (I).

The asymmetric unit comprises a ligand-coordinated CuII cation, a coordinated water molecule, and a free water molecule. The Cu1 atom is tetracoordinated by two O atoms and one N atom from the O,N,O-tridentate ligand and by one O atom of a water molecule. The Cu—O and Cu—N bond distances are in the range of 1.881 (3)–1.959 (3) Å, which are agreeable with the values [1.892 (2)–1.993 (2) Å Warda, 1997a,b; Warda & Friebel et al., 1997, Warda, 1998a,b)]. The Cu1 atom also facilitates an intermolecular Cu···O1i short contact (Table 1). The two symmetrically related CuO4N coordinations form mutual distorted square pyramids with the atom O1i occupying the apices. The basal plane is formed by the Cu1/O1/N1/O3/O1W. The bond angles around the Cu1 are listed in Table 1.

The ligand and Cu1 atom form two nearly planar rings, a five-membered Cu1—O3—C9—C8—N1 [Q2 puckering amplitude 0.090 (5) Å] and a six-membered Cu1—O1—C1—C6—C7—N1 [QT puckering amplitude 0.184 (4) Å]. These two rings adopt envelope conformations with atoms C8 and Cu1 deviating by 0.134 (1) Å and 0.222 (1) Å from the N1/Cu1/O3/C9 and O1/C1/C6/C7/N1 planes, respectively. The three rings; the six-membered, five-membered and aromatic rings are nearly coplanar with the first one making dihedral angles of 7.1 (2)° and 4.8 (2)° with the 2nd and 3rd, respectively.

In the asymmetric unit, the CuII complex cation and the free water molecule are interconnected by O1W-H1W1···O2W hydrogen bond. In the crystal packing, the two water molecules also play an important role in the intermolecular hydrogen bonding scheme, in which there are two types of intermolecular O—H···O bonds, O1W-H2W1···O3i and O2W-H2W2···O2ii (Table 2 and Fig. 2), involving the water molecules. Two molecules are interconnected by the two intermolecular hydrogen bonds into molecular chains.

Experimental top

Methanolic solution of potassium ((2-(2-hydroxyphenyl)ethylidene)amino)acetate (Dakternieks et al., 1998) was added dropwise to the stirred aqueous solution of Cu(OAc)2·H2O containing few drops of acetic acid (1:1). The filtered solution upon slow evaporation afforded green crystals of the title compound (I). M.p. 520 (1) K, analysis found: C 41.27, H. 4.47, N 4.80%; calc. for C10H13NO5Cu: C 41.31, H. 4.51, N 4.82%; IR (KBr): 1630 ν(OCO), 1599 ν(C=N), 1237 ν[Ph(C=O)].

Refinement top

All H atoms attached to C were geometrically fixed with C—H 0.93–0.97 Å. Though the H atoms attached to the O1W were calculated and isotropically refined with OW—H 0.84 (6)–1.02 (7) Å, those attached to the O2W were located from difference maps with OW—H 1.04 Å and treated as riding atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The structure of the title compound (I) showing 50% probability displacement ellipsoids with the atom-numbering scheme.
[Figure 2] Fig. 2. Packing diagram of (I) showing the links via O—H···O hydrogen bonds.
[((2-(2-hydroxyphenyl)ethylidene)amino)acetato]aquacopper(II) hydrate top
Crystal data top
C10H11CuNO4·H2OF(000) = 1192
Mr = 290.75Dx = 1.759 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.2250 (3) ÅCell parameters from 3297 reflections
b = 10.6741 (3) Åθ = 2.8–28.3°
c = 14.2089 (3) ŵ = 2.00 mm1
β = 134.294 (1)°T = 293 K
V = 2195.59 (9) Å3Block, green
Z = 80.20 × 0.12 × 0.10 mm
Data collection top
Siemens SMART CCD area detector
diffractometer
2718 independent reflections
Radiation source: fine-focus sealed tube1739 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
Detector resolution: 8.33 pixels mm-1θmax = 28.3°, θmin = 2.8°
ω scansh = 2620
Absorption correction: empirical (using intensity measurements)
SADABS (Sheldrick, 1996)
k = 1214
Tmin = 0.691, Tmax = 0.825l = 1418
7657 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0475P)2]
where P = (Fo2 + 2Fc2)/3
2718 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.97 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
C10H11CuNO4·H2OV = 2195.59 (9) Å3
Mr = 290.75Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.2250 (3) ŵ = 2.00 mm1
b = 10.6741 (3) ÅT = 293 K
c = 14.2089 (3) Å0.20 × 0.12 × 0.10 mm
β = 134.294 (1)°
Data collection top
Siemens SMART CCD area detector
diffractometer
2718 independent reflections
Absorption correction: empirical (using intensity measurements)
SADABS (Sheldrick, 1996)
1739 reflections with I > 2σ(I)
Tmin = 0.691, Tmax = 0.825Rint = 0.080
7657 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.97 e Å3
2718 reflectionsΔρmin = 0.73 e Å3
163 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 30 s covered 0.3° in ω. The crystal-to-detector distance was 5 cm and the detector swing angle was −35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.07427 (3)0.63653 (4)0.42731 (5)0.02928 (17)
O10.1025 (2)0.6112 (3)0.3276 (3)0.0410 (8)
O20.0380 (2)0.8136 (3)0.6311 (3)0.0516 (9)
O30.04290 (19)0.6636 (3)0.5279 (3)0.0346 (7)
N10.0922 (2)0.8160 (3)0.4386 (3)0.0265 (7)
C10.1412 (3)0.6939 (4)0.3098 (4)0.0289 (9)
C20.1670 (3)0.6498 (4)0.2452 (4)0.0357 (10)
H20.15560.56670.21810.043*
C30.2083 (3)0.7265 (5)0.2216 (4)0.0412 (11)
H30.22490.69480.17960.049*
C40.2253 (3)0.8505 (5)0.2595 (4)0.0443 (11)
H40.25420.90200.24440.053*
C50.1995 (3)0.8972 (4)0.3194 (4)0.0373 (10)
H50.21140.98100.34450.045*
C60.1552 (3)0.8223 (4)0.3447 (4)0.0271 (8)
C70.1258 (3)0.8819 (4)0.4035 (4)0.0267 (8)
C80.0653 (3)0.8751 (4)0.5011 (4)0.0323 (9)
H8A0.00990.92470.43650.039*
H8B0.11410.93100.57030.039*
C90.0474 (3)0.7781 (4)0.5588 (4)0.0318 (9)
C100.1340 (4)1.0211 (4)0.4199 (5)0.0505 (12)
H10A0.09391.05050.42910.076*
H10B0.11671.05930.34410.076*
H10C0.19671.04300.49690.076*
O1W0.0698 (3)0.4558 (3)0.4463 (3)0.0436 (8)
H1W10.092 (4)0.402 (7)0.414 (6)0.10 (2)*
H2W10.039 (3)0.413 (5)0.454 (5)0.056 (16)*
O2W0.1302 (3)0.3495 (4)0.3495 (4)0.0805 (13)
H2W20.09580.27980.27780.121*
H1W20.18220.30180.43680.121*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0418 (3)0.0246 (3)0.0375 (3)0.0046 (2)0.0335 (3)0.0033 (2)
O10.0608 (19)0.0301 (17)0.064 (2)0.0155 (14)0.0549 (18)0.0160 (14)
O20.091 (2)0.0433 (19)0.061 (2)0.0008 (18)0.068 (2)0.0024 (16)
O30.0496 (16)0.0288 (16)0.0478 (18)0.0084 (13)0.0423 (15)0.0050 (13)
N10.0338 (18)0.0275 (17)0.0298 (18)0.0002 (13)0.0265 (16)0.0012 (14)
C10.029 (2)0.033 (2)0.029 (2)0.0019 (17)0.0217 (18)0.0027 (17)
C20.042 (2)0.038 (3)0.042 (2)0.0004 (19)0.035 (2)0.005 (2)
C30.045 (3)0.054 (3)0.043 (3)0.002 (2)0.037 (2)0.002 (2)
C40.050 (3)0.054 (3)0.051 (3)0.000 (2)0.043 (2)0.008 (2)
C50.046 (2)0.036 (2)0.043 (3)0.0058 (19)0.036 (2)0.0009 (19)
C60.032 (2)0.030 (2)0.025 (2)0.0003 (16)0.0220 (18)0.0028 (16)
C70.031 (2)0.027 (2)0.0268 (19)0.0016 (15)0.0217 (17)0.0008 (16)
C80.047 (2)0.024 (2)0.040 (2)0.0006 (17)0.036 (2)0.0014 (18)
C90.037 (2)0.035 (2)0.035 (2)0.0008 (18)0.029 (2)0.0001 (18)
C100.082 (3)0.027 (2)0.065 (3)0.001 (2)0.059 (3)0.002 (2)
O1W0.072 (2)0.0278 (17)0.059 (2)0.0065 (16)0.056 (2)0.0011 (14)
O2W0.111 (3)0.067 (3)0.093 (3)0.001 (2)0.082 (3)0.009 (2)
Geometric parameters (Å, º) top
Cu1—O11.881 (3)C4—C51.366 (6)
Cu1—N11.936 (3)C4—H40.9300
Cu1—O31.948 (3)C5—C61.422 (6)
Cu1—O1W1.959 (3)C5—H50.9300
Cu1—O1i2.809 (3)C6—C71.466 (5)
O1—C11.317 (5)C7—C101.495 (6)
O2—C91.228 (5)C8—C91.514 (6)
O3—C91.280 (5)C8—H8A0.9700
N1—C71.296 (5)C8—H8B0.9700
N1—C81.469 (5)C10—H10A0.9600
C1—C21.416 (5)C10—H10B0.9600
C1—C61.418 (5)C10—H10C0.9600
C2—C31.367 (6)O1W—H1W11.02 (7)
C2—H20.9300O1W—H2W10.84 (6)
C3—C41.379 (6)O2W—H2W21.0425
C3—H30.9300O2W—H1W21.0401
O1—Cu1—N193.9 (1)C4—C5—H5118.8
O1—Cu1—O3179.0 (1)C6—C5—H5118.8
N1—Cu1—O386.0 (1)C1—C6—C5117.5 (4)
O1—Cu1—O1W91.7 (1)C1—C6—C7123.9 (3)
N1—Cu1—O1W170.9 (1)C5—C6—C7118.6 (4)
O3—Cu1—O1W88.6 (1)N1—C7—C6120.9 (4)
O1—Cu1—O1i78.3 (1)N1—C7—C10120.7 (4)
N1—Cu1—O1i101.4 (2)C6—C7—C10118.4 (3)
O3—Cu1—O1i100.8 (2)N1—C8—C9111.3 (3)
O1W—Cu1—O1i86.7 (1)N1—C8—H8A109.4
C1—O1—Cu1125.6 (3)C9—C8—H8A109.4
C9—O3—Cu1114.4 (2)N1—C8—H8B109.4
C7—N1—C8121.0 (3)C9—C8—H8B109.4
C7—N1—Cu1128.6 (3)H8A—C8—H8B108.0
C8—N1—Cu1110.4 (2)O2—C9—O3124.5 (4)
O1—C1—C2116.1 (4)O2—C9—C8118.5 (4)
O1—C1—C6125.5 (4)O3—C9—C8117.0 (4)
C2—C1—C6118.3 (3)C7—C10—H10A109.5
C3—C2—C1121.6 (4)C7—C10—H10B109.5
C3—C2—H2119.2H10A—C10—H10B109.5
C1—C2—H2119.2C7—C10—H10C109.5
C2—C3—C4120.6 (4)H10A—C10—H10C109.5
C2—C3—H3119.7H10B—C10—H10C109.5
C4—C3—H3119.7Cu1—O1W—H1W1115 (4)
C5—C4—C3119.5 (4)Cu1—O1W—H2W1131 (4)
C5—C4—H4120.2H1W1—O1W—H2W1111 (5)
C3—C4—H4120.2H2W2—O2W—H1W2104.2
C4—C5—C6122.3 (4)
N1—Cu1—O1—C113.4 (3)C2—C1—C6—C7175.6 (4)
O1W—Cu1—O1—C1159.4 (3)C4—C5—C6—C12.3 (6)
N1—Cu1—O3—C90.6 (3)C4—C5—C6—C7177.0 (4)
O1W—Cu1—O3—C9172.1 (3)C8—N1—C7—C6178.2 (3)
O1—Cu1—N1—C78.9 (3)Cu1—N1—C7—C60.9 (5)
O3—Cu1—N1—C7172.1 (3)C8—N1—C7—C102.9 (6)
O1—Cu1—N1—C8173.6 (3)Cu1—N1—C7—C10179.8 (3)
O3—Cu1—N1—C85.4 (3)C1—C6—C7—N16.5 (6)
Cu1—O1—C1—C2172.2 (3)C5—C6—C7—N1174.2 (4)
Cu1—O1—C1—C610.6 (6)C1—C6—C7—C10172.4 (4)
O1—C1—C2—C3179.7 (4)C5—C6—C7—C106.9 (5)
C6—C1—C2—C32.9 (6)C7—N1—C8—C9168.0 (4)
C1—C2—C3—C40.6 (7)Cu1—N1—C8—C99.7 (4)
C2—C3—C4—C51.0 (7)Cu1—O3—C9—O2173.5 (4)
C3—C4—C5—C60.0 (7)Cu1—O3—C9—C86.6 (4)
O1—C1—C6—C5179.2 (4)N1—C8—C9—O2169.1 (4)
C2—C1—C6—C53.7 (5)N1—C8—C9—O311.0 (5)
O1—C1—C6—C71.5 (6)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O2W1.02 (9)1.65 (9)2.649 (9)164 (7)
O1W—H2W1···O3ii0.83 (7)2.02 (7)2.850 (8)172 (6)
O2W—H2W2···O2iii1.041.822.838 (5)166
Symmetry codes: (ii) x, y+1, z+1; (iii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC10H11CuNO4·H2O
Mr290.75
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)20.2250 (3), 10.6741 (3), 14.2089 (3)
β (°) 134.294 (1)
V3)2195.59 (9)
Z8
Radiation typeMo Kα
µ (mm1)2.00
Crystal size (mm)0.20 × 0.12 × 0.10
Data collection
DiffractometerSiemens SMART CCD area detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
SADABS (Sheldrick, 1996)
Tmin, Tmax0.691, 0.825
No. of measured, independent and
observed [I > 2σ(I)] reflections
7657, 2718, 1739
Rint0.080
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.123, 0.95
No. of reflections2718
No. of parameters163
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.97, 0.73

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Cu1—O11.881 (3)Cu1—O1W1.959 (3)
Cu1—N11.936 (3)Cu1—O1i2.809 (3)
Cu1—O31.948 (3)
O1—Cu1—N193.9 (1)O3—Cu1—O1W88.6 (1)
O1—Cu1—O3179.0 (1)O1—Cu1—O1i78.3 (1)
N1—Cu1—O386.0 (1)N1—Cu1—O1i101.4 (2)
O1—Cu1—O1W91.7 (1)O3—Cu1—O1i100.8 (2)
N1—Cu1—O1W170.9 (1)O1W—Cu1—O1i86.7 (1)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O2W1.02 (9)1.65 (9)2.649 (9)164 (7)
O1W—H2W1···O3ii0.83 (7)2.02 (7)2.850 (8)172 (6)
O2W—H2W2···O2iii1.041.822.838 (5)166
Symmetry codes: (ii) x, y+1, z+1; (iii) x, y+1, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds