Download citation
Download citation
link to html
In the title compound, [Ni(C15H17N3)2](ClO4)2, the Ni atom is hexacoordinated by six N atoms from two independent N,N′,N′′-tridentate 2-[(2-amino­ethyl­imino)(phenyl)­methyl]­pyridine ligands, with the NiN6 group forming a distorted octahedral geometry. In the asymmetric unit, the ligand-coordinated nickel cation and two perchlorate anions are linked by one N—H...O and two C—H...O hydrogen bonds. In the crystal structure, the complexes are linked by four N—H...O bonds and three C—H...O bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803010869/ob6246sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803010869/ob6246Isup2.hkl
Contains datablock I

CCDC reference: 214798

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.011 Å
  • R factor = 0.068
  • wR factor = 0.199
  • Data-to-parameter ratio = 14.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 28.36 From the CIF: _reflns_number_total 5925 Count of symmetry unique reflns 4317 Completeness (_total/calc) 137.25% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1608 Fraction of Friedel pairs measured 0.372 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure

Comment top

Polydentate Schiff base ligands have been widely studied because of their simple syntheses, inherent stability associated with such systems, and different coordination to various metal ions leading to numerous species of complexes (Brudenell et al., 1996; Chandra et al., 1990; Garnovskii et al., 1993; Lee et al., 1996; Vigato et al., 1990). The coordination chemistry of nickel Schiff bases have also attracted much attentions due to their versatile stereochemistry and bio-inorganic relevances (Cotton et al., 1999; Lancaster et al., 1988). Tridentate Schiff base ligands have been poorly studied compared with those of tetradentate systems (Holm et al., 1966). We report here the crystal structure analysis of the title NiII complex, (I), with tridentate ligand which was derived from the condensation between 1,3-diaminopropane and 2-benzoylpyridine in 1:1 molar ratio.

The asymmetric unit consists of a NiII complex cation and two perchlorate counter-anions with mutual electrostatic interactions (Fig. 1). The Ni1 atom is hexacoordinated by two 2-[(2-aminoethylimino)(phenyl)methyl]pyridine ligands, which act as N,N',N''-tridentate ligands. The NiN6 group forms a distorted octahedral geometry. The almost linear N1—Ni1—N3 group is nearly perpendicular to the basal N2/N4/N5/N6 group. This supproted by the subtended angles at Ni1 (Table 1). The coordinated Ni—N bond distances [2.086 (5)–2.124 (5) Å] are normal (Allen et al., 1987), and agree with those in bis(diethylenetriamine)nickel(II) [Ni—N = 2.094 (5)–2.129 (5) Å; Liu-Gonzalez et al., 2001].

The three coordinated N atoms of one ligand and Ni atom form a NiN3 plane, and the two NiN3 planes are orthogonal to each other with the dihedral angle of 89.3 (2)°. The Ni—N—C—C—C—N six-membered rings are out of planarity towards half chair conformations. The atoms C1 and C2 deviate from the Ni1/N1/N2/C3 plane by −0.321 (8) and 0.506 (7) Å, respectively, and the deviations of the atoms C16 and C17 are −0.328 (9) and 0.404 (9) Å out of the Ni1/N4/N6/C18 plane. The dihedral angle between the rings C5–C10 and N3,C11–C15 is 65.2 (4)°, and that between the rings C20–C25 and N5,C26–C30 is 84.8 (4)°. This remarkable difference is due to the free rotation of the phenyl ring about the Cphenyl—Cmethylene bond.

In the asymmetric unit, the ligand-coordinated NiII cation and two perchlorate counter anions are linked by N6—H6B···O5, C3—H3C···O4, and C30—H30A···O2 hydrogen bonds (Table 2). In the crystal packing, the perchlorate anions also play an important role in the intermolecular hydrogen-bonding scheme. The complex are linked by four types of intermolecular N—H···O bonds and three types of intermolecular C—H···O bonds involving the perchlorate anions. The C23—H23A···O6iii and C28—H28A···O7iv hydrogen bonds (see Table 2 for geometries and symmetry codes), together with the hydrogen bond in the asymmetric units, link the complexes into layers (Fig. 2). Each layer consists of hydrogen-bonded rings [R66(39) (Bernstein, 1995)] invloving three symmetrically related NiII complex cations and three symmetrically related perchlorate anions. The layers are further interconnected into a three-dimensional network throughout the crystal by N1—H1A···O1i, N6—H6A···O3i, N1—H1B···O7ii, N1—H1B···O8ii and C25—H25A···O5ii hydrogen bonds.

Experimental top

2-Benzoylpyridine (366.4 mg, 2 mmol) and 1,3-diaminopropane (148 mg, 2 mmol) was refluxed for 4–5 h. To the resulting solution was added Ni(ClO4)2·6H2O (365.7 mg, 1 mmol) and stirred for 30 min. The solution was filtered and was left for slow evaporation and after 5–6 d yellow crystals of the title compound (I) were obtained -(yield 60%).

Refinement top

Phenyl ring C20—C25 had to be contrained. This, together with the rather large Ueq value of C25 and the Rint value of 0.078, may be a result of the poor quality of the crystal. All H atoms were fixed geometrically with C—H = 0.93–0.97 Å and N—H = 0.90 Å, and were treated as riding atoms. The maximum and minimum electron-density peaks are located 0.03 and 0.99 Å, respectively, from atom Ni1.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The structure of title complex, showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms attached to C atoms and not involved in hydrogen bonding have been omitted for clarity.
[Figure 2] Fig. 2. Packing diagram of the title complex, showing the formation of layers comprising the R66(39) ring pattern.
Bis{2-[(2-aminoethylimino)(phenyl)methyl]pyridine-κ3N}nickel(II) diperchlorate top
Crystal data top
[Ni(C15H17N3)2](ClO4)2F(000) = 764
Mr = 736.24Dx = 1.464 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.0632 (2) ÅCell parameters from 8192 reflections
b = 16.5301 (3) Åθ = 2.5–28.3°
c = 10.2627 (1) ŵ = 0.80 mm1
β = 101.991 (1)°T = 293 K
V = 1669.91 (5) Å3Prism, yellow
Z = 20.50 × 0.44 × 0.20 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
5925 independent reflections
Radiation source: fine-focus sealed tube4981 reflections with I > 2σ(I)'
Graphite monochromatorRint = 0.078
Detector resolution: 8.33 pixels mm-1θmax = 28.4°, θmin = 2.5°
ω scansh = 1213
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 921
Tmin = 0.691, Tmax = 0.857l = 1313
10219 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.068 w = 1/[σ2(Fo2) + (0.1096P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.199(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.89 e Å3
5925 reflectionsΔρmin = 0.60 e Å3
407 parametersExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.032 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1608 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.02 (2)
Crystal data top
[Ni(C15H17N3)2](ClO4)2V = 1669.91 (5) Å3
Mr = 736.24Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.0632 (2) ŵ = 0.80 mm1
b = 16.5301 (3) ÅT = 293 K
c = 10.2627 (1) Å0.50 × 0.44 × 0.20 mm
β = 101.991 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
5925 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
4981 reflections with I > 2σ(I)'
Tmin = 0.691, Tmax = 0.857Rint = 0.078
10219 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.199Δρmax = 0.89 e Å3
S = 1.03Δρmin = 0.60 e Å3
5925 reflectionsAbsolute structure: Flack (1983), 1608 Friedel pairs
407 parametersAbsolute structure parameter: 0.02 (2)
1 restraint
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 10 s covered 0.3° in ω. The crystal-to-detector distance was 5 cm and the detector swing angle was −35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.52556 (5)0.34807 (4)0.37743 (6)0.0326 (2)
Cl10.59324 (17)0.09923 (12)0.0621 (2)0.0634 (5)
Cl20.01677 (15)0.42567 (12)0.36050 (15)0.0525 (4)
O10.4613 (5)0.0770 (4)0.1319 (6)0.0733 (16)
O20.6050 (9)0.0814 (7)0.0763 (7)0.126 (4)
O30.6909 (6)0.0561 (5)0.1128 (7)0.0831 (19)
O40.6083 (8)0.1829 (5)0.0695 (11)0.121 (3)
O50.1271 (6)0.4246 (7)0.4708 (6)0.110 (3)
O60.0715 (9)0.4470 (9)0.2536 (7)0.154 (5)
O70.0776 (8)0.4827 (6)0.3934 (12)0.123 (3)
O80.0583 (8)0.3539 (6)0.3373 (13)0.140 (4)
N10.6299 (5)0.4061 (3)0.2484 (5)0.0412 (10)
H1A0.60520.45860.24380.049*
H1B0.71910.40430.28530.049*
N20.3956 (4)0.2840 (3)0.2262 (4)0.0364 (9)
N30.4078 (5)0.2794 (3)0.4870 (5)0.0413 (10)
N40.6567 (5)0.3899 (3)0.5489 (5)0.0406 (11)
N50.6743 (5)0.2567 (3)0.4146 (5)0.0403 (10)
N60.3918 (5)0.4453 (3)0.3682 (5)0.0441 (11)
H6A0.36130.45770.28170.053*
H6B0.31970.42830.40000.053*
C10.6115 (7)0.3753 (5)0.1124 (7)0.0552 (17)
H1C0.65540.32300.11380.066*
H1D0.65490.41180.06010.066*
C20.4636 (7)0.3669 (4)0.0475 (6)0.0523 (16)
H2B0.45530.36820.04840.063*
H2C0.41530.41350.07160.063*
C30.3934 (7)0.2902 (4)0.0834 (6)0.0470 (13)
H3B0.29990.28990.03470.056*
H3C0.43830.24320.05570.056*
C40.3109 (5)0.2368 (4)0.2655 (6)0.0376 (11)
C50.2095 (6)0.1856 (4)0.1728 (6)0.0433 (13)
C60.2542 (7)0.1257 (5)0.0954 (9)0.0599 (18)
H6C0.34650.11490.10530.072*
C70.1594 (10)0.0828 (5)0.0040 (9)0.076 (2)
H7B0.18880.04430.05000.091*
C80.0218 (10)0.0964 (7)0.0080 (12)0.085 (3)
H8B0.04120.06640.06800.102*
C90.0220 (8)0.1560 (6)0.0713 (10)0.076 (3)
H9A0.11430.16640.06230.091*
C100.0716 (7)0.1991 (5)0.1626 (9)0.064 (2)
H10A0.04220.23710.21720.077*
C110.3145 (5)0.2315 (4)0.4090 (6)0.0385 (11)
C120.2328 (7)0.1793 (5)0.4652 (8)0.0563 (16)
H12A0.17040.14610.41040.068*
C130.2438 (8)0.1767 (5)0.5985 (8)0.065 (2)
H13A0.19020.14150.63600.078*
C140.3369 (7)0.2277 (6)0.6791 (7)0.0612 (18)
H14A0.34580.22760.77120.073*
C150.4160 (7)0.2787 (5)0.6183 (6)0.0554 (17)
H15A0.47680.31350.67130.066*
C160.4422 (8)0.5219 (5)0.4397 (8)0.0616 (18)
H16A0.50650.54790.39470.074*
H16B0.36660.55860.43770.074*
C170.5095 (10)0.5050 (5)0.5811 (8)0.070 (2)
H17A0.45150.46830.61770.084*
H17B0.51280.55530.63030.084*
C180.6507 (8)0.4697 (5)0.6087 (9)0.065 (2)
H18A0.71080.50610.57430.079*
H18B0.68340.46550.70420.079*
C190.7533 (5)0.3424 (4)0.6001 (5)0.0393 (11)
C200.8566 (4)0.3599 (4)0.7234 (3)0.0436 (14)
C210.8313 (4)0.3387 (4)0.8470 (4)0.0617 (19)
H21A0.75040.31290.85250.074*
C220.9267 (5)0.3559 (5)0.9624 (3)0.077 (3)
H22A0.90970.34171.04510.093*
C231.0474 (5)0.3944 (5)0.9541 (4)0.087 (3)
H23A1.11130.40591.03130.105*
C241.0728 (5)0.4156 (6)0.8305 (5)0.119 (4)
H24A1.15370.44140.82500.143*
C250.9774 (5)0.3984 (5)0.7152 (4)0.119 (4)
H25A0.99440.41260.63250.143*
C260.7646 (5)0.2652 (4)0.5290 (6)0.0398 (12)
C270.8641 (7)0.2085 (5)0.5727 (8)0.0562 (17)
H27A0.92430.21510.65400.067*
C280.8733 (8)0.1422 (5)0.4948 (10)0.071 (2)
H28A0.93960.10310.52300.085*
C290.7833 (8)0.1339 (4)0.3737 (9)0.0600 (18)
H29A0.78960.09030.31810.072*
C300.6845 (6)0.1915 (4)0.3376 (7)0.0478 (14)
H30A0.62240.18560.25740.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0258 (3)0.0361 (3)0.0337 (3)0.0013 (3)0.0009 (2)0.0022 (3)
Cl10.0462 (8)0.0632 (11)0.0747 (11)0.0022 (8)0.0010 (7)0.0324 (9)
Cl20.0432 (8)0.0700 (11)0.0447 (7)0.0130 (7)0.0103 (6)0.0038 (7)
O10.045 (3)0.079 (4)0.089 (4)0.008 (3)0.001 (3)0.023 (3)
O20.115 (6)0.184 (11)0.067 (4)0.036 (6)0.008 (4)0.041 (5)
O30.054 (3)0.095 (5)0.103 (5)0.004 (3)0.024 (3)0.041 (4)
O40.090 (5)0.067 (5)0.208 (10)0.025 (4)0.039 (6)0.050 (6)
O50.048 (3)0.224 (11)0.055 (3)0.004 (4)0.007 (2)0.020 (4)
O60.104 (6)0.308 (16)0.052 (4)0.074 (8)0.018 (4)0.029 (6)
O70.069 (4)0.085 (6)0.203 (10)0.001 (4)0.005 (5)0.036 (6)
O80.080 (5)0.060 (4)0.292 (13)0.018 (4)0.064 (7)0.048 (7)
N10.029 (2)0.047 (3)0.046 (3)0.007 (2)0.0050 (18)0.000 (2)
N20.035 (2)0.039 (2)0.033 (2)0.0012 (19)0.0004 (17)0.0031 (17)
N30.036 (2)0.045 (3)0.043 (2)0.003 (2)0.0103 (19)0.002 (2)
N40.032 (2)0.042 (3)0.043 (2)0.0047 (19)0.0035 (18)0.006 (2)
N50.033 (2)0.038 (3)0.049 (3)0.0001 (19)0.0063 (19)0.003 (2)
N60.035 (2)0.055 (3)0.042 (2)0.006 (2)0.0061 (19)0.004 (2)
C10.057 (4)0.065 (4)0.050 (3)0.013 (3)0.026 (3)0.002 (3)
C20.064 (4)0.052 (4)0.036 (3)0.009 (3)0.001 (3)0.005 (2)
C30.053 (3)0.053 (4)0.033 (3)0.009 (3)0.004 (2)0.004 (2)
C40.029 (2)0.036 (3)0.045 (3)0.001 (2)0.001 (2)0.005 (2)
C50.036 (3)0.037 (3)0.052 (3)0.007 (2)0.001 (2)0.007 (2)
C60.044 (3)0.050 (4)0.083 (5)0.015 (3)0.006 (3)0.014 (3)
C70.076 (5)0.055 (5)0.094 (6)0.018 (4)0.012 (5)0.039 (4)
C80.069 (6)0.065 (5)0.106 (6)0.010 (5)0.017 (5)0.038 (5)
C90.043 (4)0.082 (6)0.094 (6)0.015 (4)0.005 (4)0.032 (5)
C100.035 (3)0.057 (4)0.093 (6)0.004 (3)0.005 (3)0.026 (4)
C110.030 (2)0.035 (3)0.050 (3)0.003 (2)0.009 (2)0.003 (2)
C120.043 (3)0.054 (4)0.071 (4)0.012 (3)0.011 (3)0.006 (3)
C130.060 (4)0.065 (5)0.077 (5)0.002 (4)0.030 (4)0.024 (4)
C140.056 (4)0.079 (5)0.050 (4)0.005 (4)0.014 (3)0.011 (3)
C150.051 (4)0.073 (5)0.041 (3)0.003 (3)0.007 (3)0.008 (3)
C160.067 (4)0.052 (4)0.064 (4)0.019 (4)0.010 (3)0.005 (3)
C170.089 (6)0.065 (5)0.052 (4)0.019 (4)0.004 (4)0.004 (3)
C180.062 (4)0.048 (4)0.073 (5)0.006 (3)0.015 (4)0.017 (3)
C190.032 (2)0.045 (3)0.039 (2)0.006 (3)0.0026 (18)0.005 (3)
C200.033 (2)0.056 (4)0.038 (2)0.004 (3)0.0019 (19)0.001 (3)
C210.055 (3)0.083 (6)0.045 (3)0.001 (4)0.006 (3)0.013 (4)
C220.066 (4)0.122 (8)0.039 (3)0.018 (6)0.003 (3)0.017 (5)
C230.061 (5)0.144 (10)0.044 (4)0.019 (5)0.016 (3)0.022 (5)
C240.061 (4)0.239 (13)0.051 (3)0.060 (6)0.000 (3)0.007 (5)
C250.061 (4)0.239 (13)0.051 (3)0.060 (6)0.000 (3)0.007 (5)
C260.031 (2)0.042 (3)0.046 (3)0.002 (2)0.006 (2)0.004 (2)
C270.038 (3)0.055 (4)0.069 (4)0.011 (3)0.003 (3)0.007 (3)
C280.045 (4)0.051 (4)0.114 (7)0.018 (3)0.012 (4)0.008 (4)
C290.053 (4)0.039 (3)0.088 (5)0.002 (3)0.017 (4)0.012 (3)
C300.043 (3)0.037 (3)0.060 (4)0.002 (2)0.005 (3)0.013 (3)
Geometric parameters (Å, º) top
Ni1—N12.086 (5)C7—H7B0.9300
Ni1—N22.097 (4)C8—C91.406 (13)
Ni1—N32.124 (5)C8—H8B0.9300
Ni1—N42.086 (5)C9—C101.380 (10)
Ni1—N52.104 (5)C9—H9A0.9300
Ni1—N62.087 (5)C10—H10A0.9300
Cl1—O41.395 (9)C11—C121.397 (9)
Cl1—O31.399 (6)C12—C131.350 (11)
Cl1—O11.420 (5)C12—H12A0.9300
Cl1—O21.431 (9)C13—C141.397 (12)
Cl2—O61.372 (7)C13—H13A0.9300
Cl2—O81.401 (8)C14—C151.393 (11)
Cl2—O51.411 (6)C14—H14A0.9300
Cl2—O71.427 (9)C15—H15A0.9300
N1—C11.461 (8)C16—C171.495 (11)
N1—H1A0.9000C16—H16A0.9700
N1—H1B0.9000C16—H16B0.9700
N2—C41.281 (8)C17—C181.508 (12)
N2—C31.465 (7)C17—H17A0.9700
N3—C151.333 (8)C17—H17B0.9700
N3—C111.355 (8)C18—H18A0.9700
N4—C191.273 (8)C18—H18B0.9700
N4—C181.461 (9)C19—C261.486 (9)
N5—C261.334 (8)C19—C201.490 (6)
N5—C301.353 (8)C20—C211.3900
N6—C161.497 (10)C20—C251.3900
N6—H6A0.9000C21—C221.3900
N6—H6B0.9000C21—H21A0.9300
C1—C21.506 (10)C22—C231.3900
C1—H1C0.9700C22—H22A0.9300
C1—H1D0.9700C23—C241.3900
C2—C31.533 (9)C23—H23A0.9300
C2—H2B0.9700C24—C251.3900
C2—H2C0.9700C24—H24A0.9300
C3—H3B0.9700C25—H25A0.9300
C3—H3C0.9700C26—C271.378 (8)
C4—C111.469 (8)C27—C281.371 (12)
C4—C51.504 (7)C27—H27A0.9300
C5—C101.388 (9)C28—C291.384 (12)
C5—C61.400 (10)C28—H28A0.9300
C6—C71.387 (10)C29—C301.371 (10)
C6—H6C0.9300C29—H29A0.9300
C7—C81.383 (14)C30—H30A0.9300
N1—Ni1—N494.0 (2)C6—C7—H7B119.6
N4—Ni1—N694.2 (2)C7—C8—C9119.4 (8)
N1—Ni1—N691.2 (2)C7—C8—H8B120.3
N4—Ni1—N2168.4 (2)C9—C8—H8B120.3
N1—Ni1—N294.7 (2)C10—C9—C8120.2 (8)
N6—Ni1—N293.3 (2)C10—C9—H9A119.9
N4—Ni1—N577.5 (2)C8—C9—H9A119.9
N1—Ni1—N590.7 (2)C9—C10—C5119.9 (7)
N6—Ni1—N5171.5 (2)C9—C10—H10A120.1
N2—Ni1—N594.74 (19)C5—C10—H10A120.1
N4—Ni1—N393.2 (2)N3—C11—C12120.8 (6)
N1—Ni1—N3172.5 (2)N3—C11—C4115.3 (5)
N6—Ni1—N390.6 (2)C12—C11—C4123.9 (6)
N2—Ni1—N378.0 (2)C13—C12—C11120.5 (7)
N5—Ni1—N388.5 (2)C13—C12—H12A119.8
O4—Cl1—O3113.1 (5)C11—C12—H12A119.8
O4—Cl1—O1109.3 (5)C12—C13—C14119.0 (7)
O3—Cl1—O1109.6 (4)C12—C13—H13A120.5
O4—Cl1—O2105.7 (6)C14—C13—H13A120.5
O3—Cl1—O2110.2 (5)C15—C14—C13118.3 (7)
O1—Cl1—O2108.9 (5)C15—C14—H14A120.8
O6—Cl2—O8111.9 (7)C13—C14—H14A120.8
O6—Cl2—O5105.4 (5)N3—C15—C14122.5 (7)
O8—Cl2—O5115.6 (6)N3—C15—H15A118.7
O6—Cl2—O7114.6 (8)C14—C15—H15A118.7
O8—Cl2—O7103.8 (5)C17—C16—N6110.9 (7)
O5—Cl2—O7105.7 (6)C17—C16—H16A109.5
C1—N1—Ni1117.7 (4)N6—C16—H16A109.5
C1—N1—H1A107.9C17—C16—H16B109.5
Ni1—N1—H1A107.9N6—C16—H16B109.5
C1—N1—H1B107.9H16A—C16—H16B108.0
Ni1—N1—H1B107.9C16—C17—C18118.2 (7)
H1A—N1—H1B107.2C16—C17—H17A107.8
C4—N2—C3119.0 (5)C18—C17—H17A107.8
C4—N2—Ni1115.4 (4)C16—C17—H17B107.8
C3—N2—Ni1125.7 (4)C18—C17—H17B107.8
C15—N3—C11118.7 (5)H17A—C17—H17B107.1
C15—N3—Ni1128.0 (5)N4—C18—C17113.0 (6)
C11—N3—Ni1113.2 (4)N4—C18—H18A109.0
C19—N4—C18118.5 (5)C17—C18—H18A109.0
C19—N4—Ni1116.0 (4)N4—C18—H18B109.0
C18—N4—Ni1125.4 (4)C17—C18—H18B109.0
C26—N5—C30118.5 (5)H18A—C18—H18B107.8
C26—N5—Ni1114.4 (4)N4—C19—C26117.1 (5)
C30—N5—Ni1127.1 (4)N4—C19—C20124.7 (6)
C16—N6—Ni1118.6 (4)C26—C19—C20118.2 (5)
C16—N6—H6A107.7C21—C20—C25120.0
Ni1—N6—H6A107.7C21—C20—C19119.9 (3)
C16—N6—H6B107.7C25—C20—C19120.1 (3)
Ni1—N6—H6B107.7C20—C21—C22120.0
H6A—N6—H6B107.1C20—C21—H21A120.0
N1—C1—C2111.8 (5)C22—C21—H21A120.0
N1—C1—H1C109.2C21—C22—C23120.0
C2—C1—H1C109.2C21—C22—H22A120.0
N1—C1—H1D109.2C23—C22—H22A120.0
C2—C1—H1D109.2C22—C23—C24120.0
H1C—C1—H1D107.9C22—C23—H23A120.0
C1—C2—C3115.6 (6)C24—C23—H23A120.0
C1—C2—H2B108.4C25—C24—C23120.0
C3—C2—H2B108.4C25—C24—H24A120.0
C1—C2—H2C108.4C23—C24—H24A120.0
C3—C2—H2C108.4C24—C25—C20120.0
H2B—C2—H2C107.4C24—C25—H25A120.0
N2—C3—C2112.7 (5)C20—C25—H25A120.0
N2—C3—H3B109.1N5—C26—C27122.1 (6)
C2—C3—H3B109.1N5—C26—C19114.5 (5)
N2—C3—H3C109.1C27—C26—C19123.3 (6)
C2—C3—H3C109.1C28—C27—C26119.1 (7)
H3B—C3—H3C107.8C28—C27—H27A120.4
N2—C4—C11118.2 (5)C26—C27—H27A120.4
N2—C4—C5123.6 (5)C27—C28—C29119.4 (7)
C11—C4—C5118.2 (5)C27—C28—H28A120.3
C10—C5—C6120.4 (6)C29—C28—H28A120.3
C10—C5—C4119.6 (6)C30—C29—C28118.5 (7)
C6—C5—C4120.0 (5)C30—C29—H29A120.8
C7—C6—C5119.2 (7)C28—C29—H29A120.8
C7—C6—H6C120.4N5—C30—C29122.3 (6)
C5—C6—H6C120.4N5—C30—H30A118.8
C8—C7—C6120.8 (8)C29—C30—H30A118.8
C8—C7—H7B119.6
N4—Ni1—N1—C1158.5 (5)C4—C5—C6—C7175.7 (8)
N6—Ni1—N1—C1107.3 (5)C5—C6—C7—C82.3 (15)
N2—Ni1—N1—C113.9 (5)C6—C7—C8—C91.6 (18)
N5—Ni1—N1—C181.0 (5)C7—C8—C9—C101.6 (19)
N4—Ni1—N2—C440.7 (11)C8—C9—C10—C52.3 (16)
N1—Ni1—N2—C4178.9 (4)C6—C5—C10—C93.1 (14)
N6—Ni1—N2—C489.6 (4)C4—C5—C10—C9175.7 (8)
N5—Ni1—N2—C487.8 (4)C15—N3—C11—C123.1 (9)
N3—Ni1—N2—C40.3 (4)Ni1—N3—C11—C12176.9 (5)
N4—Ni1—N2—C3140.3 (9)C15—N3—C11—C4179.1 (6)
N1—Ni1—N2—C32.1 (5)Ni1—N3—C11—C40.9 (6)
N6—Ni1—N2—C389.4 (5)N2—C4—C11—N31.2 (8)
N5—Ni1—N2—C393.2 (5)C5—C4—C11—N3179.7 (5)
N3—Ni1—N2—C3179.3 (5)N2—C4—C11—C12176.5 (6)
N4—Ni1—N3—C157.8 (6)C5—C4—C11—C122.6 (9)
N6—Ni1—N3—C1586.4 (6)N3—C11—C12—C131.1 (11)
N2—Ni1—N3—C15179.6 (6)C4—C11—C12—C13178.7 (6)
N5—Ni1—N3—C1585.2 (6)C11—C12—C13—C140.8 (12)
N4—Ni1—N3—C11172.2 (4)C12—C13—C14—C150.7 (12)
N6—Ni1—N3—C1193.6 (4)C11—N3—C15—C143.2 (11)
N2—Ni1—N3—C110.4 (4)Ni1—N3—C15—C14176.8 (6)
N5—Ni1—N3—C1194.8 (4)C13—C14—C15—N31.3 (12)
N1—Ni1—N4—C1994.7 (4)Ni1—N6—C16—C1750.9 (8)
N6—Ni1—N4—C19173.8 (4)N6—C16—C17—C1876.4 (10)
N2—Ni1—N4—C1943.5 (12)C19—N4—C18—C17155.7 (7)
N5—Ni1—N4—C194.8 (4)Ni1—N4—C18—C1728.1 (10)
N3—Ni1—N4—C1982.9 (4)C16—C17—C18—N462.6 (11)
N1—Ni1—N4—C1881.6 (6)C18—N4—C19—C26174.0 (6)
N6—Ni1—N4—C189.9 (6)Ni1—N4—C19—C262.6 (6)
N2—Ni1—N4—C18140.2 (9)C18—N4—C19—C204.4 (9)
N5—Ni1—N4—C18171.4 (6)Ni1—N4—C19—C20179.0 (4)
N3—Ni1—N4—C18100.8 (6)N4—C19—C20—C2188.4 (7)
N4—Ni1—N5—C266.5 (4)N4—C19—C20—C2590.7 (6)
N1—Ni1—N5—C26100.4 (4)C26—C19—C20—C2193.2 (6)
N2—Ni1—N5—C26164.9 (4)C26—C19—C20—C2587.7 (6)
N3—Ni1—N5—C2687.1 (4)C25—C20—C21—C220.0
N4—Ni1—N5—C30175.2 (5)C19—C20—C21—C22179.1 (6)
N1—Ni1—N5—C3081.3 (5)C20—C21—C22—C230.0
N2—Ni1—N5—C3013.5 (5)C21—C22—C23—C240.0
N3—Ni1—N5—C3091.2 (5)C22—C23—C24—C250.0
N4—Ni1—N6—C1620.8 (5)C23—C24—C25—C200.0
N1—Ni1—N6—C1673.3 (5)C21—C20—C25—C240.0
N2—Ni1—N6—C16168.1 (5)C19—C20—C25—C24179.1 (6)
N3—Ni1—N6—C16114.0 (5)C30—N5—C26—C272.3 (9)
Ni1—N1—C1—C251.1 (7)Ni1—N5—C26—C27176.2 (5)
N1—C1—C2—C381.2 (8)C30—N5—C26—C19174.4 (5)
C4—N2—C3—C2160.8 (6)Ni1—N5—C26—C197.1 (6)
Ni1—N2—C3—C218.1 (8)N4—C19—C26—N53.1 (7)
C1—C2—C3—N260.4 (8)C20—C19—C26—N5175.4 (4)
C3—N2—C4—C11180.0 (5)N4—C19—C26—C27179.8 (6)
Ni1—N2—C4—C110.9 (6)C20—C19—C26—C271.2 (8)
C3—N2—C4—C51.0 (9)N5—C26—C27—C281.8 (10)
Ni1—N2—C4—C5179.9 (4)C19—C26—C27—C28174.6 (7)
N2—C4—C5—C662.1 (9)C26—C27—C28—C290.4 (12)
N2—C4—C5—C10116.7 (8)C27—C28—C29—C302.0 (12)
C11—C4—C5—C6116.9 (7)C26—N5—C30—C290.6 (10)
C11—C4—C5—C1064.3 (9)Ni1—N5—C30—C29177.7 (5)
C10—C5—C6—C73.1 (13)C28—C29—C30—N51.5 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.902.303.130 (8)154
N1—H1B···O7ii0.902.483.265 (11)146
N1—H1B···O8ii0.902.353.199 (10)158
N6—H6A···O3i0.902.363.164 (9)149
N6—H6B···O50.902.213.080 (8)163
C3—H3C···O40.972.553.420 (11)150
C23—H23A···O6iii0.932.493.155 (9)128
C25—H25A···O5ii0.932.343.212 (8)155
C28—H28A···O7iv0.932.483.393 (13)169
C30—H30A···O20.932.513.202 (11)131
Symmetry codes: (i) x+1, y+1/2, z; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C15H17N3)2](ClO4)2
Mr736.24
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)10.0632 (2), 16.5301 (3), 10.2627 (1)
β (°) 101.991 (1)
V3)1669.91 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.50 × 0.44 × 0.20
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.691, 0.857
No. of measured, independent and
observed [I > 2σ(I)'] reflections
10219, 5925, 4981
Rint0.078
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.199, 1.03
No. of reflections5925
No. of parameters407
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.60
Absolute structureFlack (1983), 1608 Friedel pairs
Absolute structure parameter0.02 (2)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Ni1—N12.086 (5)Ni1—N42.086 (5)
Ni1—N22.097 (4)Ni1—N52.104 (5)
Ni1—N32.124 (5)Ni1—N62.087 (5)
N1—Ni1—N494.0 (2)N6—Ni1—N5171.5 (2)
N4—Ni1—N694.2 (2)N2—Ni1—N594.74 (19)
N1—Ni1—N691.2 (2)N4—Ni1—N393.2 (2)
N4—Ni1—N2168.4 (2)N1—Ni1—N3172.5 (2)
N1—Ni1—N294.7 (2)N6—Ni1—N390.6 (2)
N6—Ni1—N293.3 (2)N2—Ni1—N378.0 (2)
N4—Ni1—N577.5 (2)N5—Ni1—N388.5 (2)
N1—Ni1—N590.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.902.303.130 (8)154
N1—H1B···O7ii0.902.483.265 (11)146
N1—H1B···O8ii0.902.353.199 (10)158
N6—H6A···O3i0.902.363.164 (9)149
N6—H6B···O50.902.213.080 (8)163
C3—H3C···O40.972.553.420 (11)150
C23—H23A···O6iii0.932.493.155 (9)128
C25—H25A···O5ii0.932.343.212 (8)155
C28—H28A···O7iv0.932.483.393 (13)169
C30—H30A···O20.932.513.202 (11)131
Symmetry codes: (i) x+1, y+1/2, z; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x+1, y1/2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds