Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title complex, [Zn(C10H6NO2)2(H2O)2]·2H2O, has a distorted octahedral coordination, in which the ZnII atom lies on a centre of symmetry. The coordination bond length of the aqua O atom, 2.208 (2) Å, in the axial direction is longer than those of the carboxyl­ato O atom and the ring N atom of the bidentate iso­quinoline-1-carboxyl­ate ligand in the equatorial plane [2.068 (2) and 2.084 (3) Å, respectively].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803008006/ob6235sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803008006/ob6235Isup2.hkl
Contains datablock I

CCDC reference: 214564

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.036
  • wR factor = 0.129
  • Data-to-parameter ratio = 15.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_369 Alert C Long C(sp2)-C(sp2) Bond C(1) - C(10) = 1.54 Ang.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Isoquinoline-1-carboxylic acid (IQCA) inhibits the copper enzyme, dopamine β-hydroxylase (Townes et al., 1990). Up to this time, the crystal structure of the CuII (Tomas et al., 1999), SnIV (Smith et al., 1995), CoII and NiII complexes (Okabe & Muranishi, 2002) of IQCA have been reported clarifying the coordination modes of the complexes. In this study, we aimed to determine the structure of the ZnII complex (I), because ZnII has many important biological functions, for example, as a catalytic ion in many enzymes like the alcohol dehydrogenaze (Esposito et al., 2002), a zinc finger motif in a ribosomal protein (Dresios et al., 2002) or an insulin-mimetic complex in metallopharmaceutical compounds (Sakurai et al., 2002).

The molecular structure of (I) is shown in Fig. 1. The ZnII atom has a distorted octahedral coordination in the trans form defined by two N atoms and two O atoms of the two bidentate ligands in the equatorial plane, and two axial aqua O atoms. The coordination mode of (I) strongly resembles that of the CoII and NiII complexes (Okabe & Muranishi, 2002). The coordination bond length in the axial direction [Zn1—O1W 2.208 (2) Å] is longer than those in the equatorial plane (Table 1) which may be explained by a Jahn–Teller effect. The O—Zn—N chelate angle of the five-membered ring, 78.91 (10)°, is larger than in the CoII complex, 78.25 (7)°, but smaller than in both the NiII complex, 80.00 (9)° (Okabe & Muranishi, 2002), and the CuII complex, 82.96 (12)° for one of the two isoquinoline-1-carboxylate ligands and 83.15 (12)° for the second (Tomas, 1999)·The coordinated bond lengths of M—N are 2.096 (2) (CoII), 2.039 (3) (NiII), 2.084 (3) (ZnII), and 1.957 (3) and 1.969 (3) Å (CuII). These results indicate that the order of stability of these complexes corresponds to the well known Irving–Williams series, CoII < NiII < CuII > ZnII. In the crystal packing, the isoquinoline rings are stacked with respect to each other, with the mean distance of 3.392 (5) Å, in the similar manner to the CoII and NiII complexes (Okabe & Muranishi, 2002). Hydrogen bonds are formed between the coordinated water, the carboxylate group and the hydrated water molecules (Table 2).

Experimental top

Colorless plate-shaped crystals of (I) were obtained by slow evaporation of a methanol–water solution (90:10%, v/v) of a mixture of isoquinoline-1-carboxylic acid and ZnSO4·7H2O (molar ratio 4:1).

Refinement top

H atoms were treated by riding models.

Computing details top

Data collection: MSC/AFC (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC (Molecular Structure Corporation, 1992); data reduction: TEXSAN (Molecular Structure Corporation, Rigaku Corporation, 2000); program(s) used to solve structure: SIR97 (Altomare et al., 1999) & DIRDIF94 (Beurskens et al., 1994); program(s) used to refine structure: SHELXL97 (Scheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) drawing of (I) with the atomic numbering scheme. Ellipsoids for non-H atoms corresponding to 50% probability. Atoms marked with an asterisk (*) are at the symmetry-related positions (-x, −y, −z).
(I) top
Crystal data top
[Zn(C10H6NO2)2(H2O)2]·2H2OF(000) = 496.0
Mr = 481.77Dx = 1.628 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 12.224 (1) Åθ = 12.8–14.5°
b = 5.341 (2) ŵ = 1.30 mm1
c = 15.191 (1) ÅT = 296 K
β = 97.625 (7)°Plate, colorless
V = 983.0 (4) Å30.30 × 0.10 × 0.05 mm
Z = 2
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.026
ω–2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 015
Tmin = 0.855, Tmax = 0.937k = 06
2598 measured reflectionsl = 1919
2247 independent reflections3 standard reflections every 150 reflections
1477 reflections with I > 2σ(I) intensity decay: 0.4%
Refinement top
Refinement on F2H-atom parameters not refined
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.129(Δ/σ)max < 0.001
S = 0.82Δρmax = 0.32 e Å3
2247 reflectionsΔρmin = 0.33 e Å3
142 parameters
Crystal data top
[Zn(C10H6NO2)2(H2O)2]·2H2OV = 983.0 (4) Å3
Mr = 481.77Z = 2
Monoclinic, P21/nMo Kα radiation
a = 12.224 (1) ŵ = 1.30 mm1
b = 5.341 (2) ÅT = 296 K
c = 15.191 (1) Å0.30 × 0.10 × 0.05 mm
β = 97.625 (7)°
Data collection top
Rigaku AFC-5R
diffractometer
1477 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.026
Tmin = 0.855, Tmax = 0.9373 standard reflections every 150 reflections
2598 measured reflections intensity decay: 0.4%
2247 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036142 parameters
wR(F2) = 0.129H-atom parameters not refined
S = 0.82Δρmax = 0.32 e Å3
2247 reflectionsΔρmin = 0.33 e Å3
Special details top

Refinement. Refinement using reflections with F2 > −10.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.50000.50000.0264 (2)
O10.3933 (2)0.2219 (4)0.4469 (2)0.0303 (5)
O1W0.4452 (2)0.7422 (5)0.3848 (2)0.0337 (5)
O20.2180 (2)0.1079 (6)0.4315 (2)0.0429 (6)
O2W0.2002 (3)0.0193 (5)0.2538 (2)0.0503 (7)
N10.3594 (2)0.5840 (5)0.5583 (2)0.0243 (5)
C10.2756 (2)0.4290 (6)0.5373 (2)0.0230 (6)
C20.1770 (2)0.4453 (6)0.5775 (2)0.0243 (7)
C30.0875 (3)0.2744 (7)0.5626 (2)0.0329 (7)
C40.0027 (3)0.3026 (7)0.6068 (2)0.0382 (8)
C50.0097 (3)0.5038 (8)0.6654 (2)0.0398 (8)
C60.0740 (3)0.6715 (7)0.6807 (2)0.0350 (8)
C70.1691 (3)0.6463 (6)0.6382 (2)0.0267 (6)
C80.2596 (3)0.8088 (7)0.6562 (2)0.0330 (7)
C90.3518 (3)0.7722 (7)0.6173 (2)0.0324 (7)
C100.2962 (3)0.2363 (6)0.4663 (2)0.0261 (6)
H1A0.42170.87670.39890.0404*
H1B0.39810.67830.34780.0404*
H2A0.20590.03700.30780.0604*
H2B0.20970.12970.24420.0604*
H30.09000.14290.52280.0395*
H40.06000.18690.59780.0459*
H50.07200.52200.69390.0478*
H60.06860.80410.71960.0420*
H80.25620.94240.69500.0396*
H90.41170.87890.63150.0389*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0205 (2)0.0282 (3)0.0316 (3)0.0045 (2)0.0075 (2)0.0059 (3)
O10.025 (1)0.030 (1)0.038 (1)0.0048 (9)0.0086 (9)0.012 (1)
O1W0.036 (1)0.030 (1)0.035 (1)0.004 (1)0.0033 (9)0.001 (1)
O20.031 (1)0.056 (2)0.044 (1)0.017 (1)0.010 (1)0.024 (1)
O2W0.074 (2)0.044 (2)0.032 (1)0.008 (1)0.003 (1)0.000 (1)
N10.023 (1)0.027 (1)0.023 (1)0.002 (1)0.0037 (9)0.0035 (10)
C10.023 (1)0.023 (1)0.022 (1)0.000 (1)0.003 (1)0.000 (1)
C20.023 (1)0.026 (2)0.023 (1)0.000 (1)0.003 (1)0.003 (1)
C30.027 (2)0.035 (2)0.037 (2)0.004 (1)0.008 (1)0.005 (1)
C40.027 (2)0.044 (2)0.046 (2)0.007 (1)0.009 (1)0.004 (2)
C50.029 (2)0.050 (2)0.043 (2)0.004 (2)0.015 (1)0.005 (2)
C60.035 (2)0.037 (2)0.035 (2)0.006 (1)0.011 (1)0.000 (1)
C70.027 (1)0.028 (2)0.025 (1)0.005 (1)0.004 (1)0.001 (1)
C80.036 (2)0.032 (2)0.032 (2)0.002 (1)0.008 (1)0.008 (1)
C90.031 (2)0.031 (2)0.035 (2)0.006 (1)0.003 (1)0.009 (1)
C100.026 (1)0.026 (2)0.026 (1)0.002 (1)0.004 (1)0.003 (1)
Geometric parameters (Å, º) top
Zn1—O12.068 (2)C1—C101.535 (4)
Zn1—O1i2.068 (2)C2—C31.420 (4)
Zn1—O1W2.208 (2)C2—C71.427 (4)
Zn1—O1Wi2.208 (2)C3—C41.373 (5)
Zn1—N12.084 (3)C3—H30.930
Zn1—N1i2.084 (3)C4—C51.406 (6)
O1—C101.264 (4)C4—H40.930
O1W—H1A0.813C5—C61.356 (5)
O1W—H1B0.823C5—H50.930
O2—C101.237 (4)C6—C71.410 (5)
O2W—H2A0.820C6—H60.930
O2W—H2B0.820C7—C81.405 (5)
N1—C11.323 (4)C8—C91.354 (5)
N1—C91.358 (4)C8—H80.930
C1—C21.423 (4)C9—H90.930
O1···O1Wii2.831 (3)O2W···O2Wiii2.944 (3)
O1···O2Wiii3.492 (3)O2W···O2Wviii2.944 (3)
O1W···O2Wiii2.830 (4)C2···C4vii3.550 (4)
O1W···C10iv3.524 (4)C3···C8ii3.441 (5)
O1W···O2iv3.544 (4)C3···C4vii3.477 (5)
O1W···C9v3.593 (4)C3···C3vii3.594 (7)
O2···C4vi3.415 (4)C6···C8ix3.562 (5)
O2···C5vii3.458 (4)C9···C10iv3.384 (4)
O2···C9ii3.555 (4)
O1—Zn1—O1i180.00 (1)C1—C2—C7117.2 (3)
O1—Zn1—O1W90.11 (9)C3—C2—C7118.0 (3)
O1—Zn1—O1Wi89.89 (9)C2—C3—C4120.3 (3)
O1—Zn1—N178.91 (10)C2—C3—H3119.9
O1—Zn1—N1i101.09 (10)C4—C3—H3119.9
O1i—Zn1—O1W89.89 (9)C3—C4—C5120.9 (3)
O1i—Zn1—O1Wi90.11 (9)C3—C4—H4119.5
O1i—Zn1—N1101.09 (10)C5—C4—H4119.5
O1i—Zn1—N1i78.91 (10)C4—C5—C6120.4 (3)
O1W—Zn1—O1Wi180.0C4—C5—H5119.8
O1W—Zn1—N191.71 (9)C6—C5—H5119.8
O1W—Zn1—N1i88.29 (9)C5—C6—C7120.5 (3)
O1Wi—Zn1—N188.29 (9)C5—C6—H6119.8
O1Wi—Zn1—N1i91.71 (9)C7—C6—H6119.8
N1—Zn1—N1i180.0C2—C7—C6119.9 (3)
Zn1—O1—C10115.4 (2)C2—C7—C8118.1 (3)
Zn1—O1W—H1A112.9C6—C7—C8121.9 (3)
Zn1—O1W—H1B114.2C7—C8—C9120.4 (3)
H1A—O1W—H1B107.9C7—C8—H8119.8
H2A—O2W—H2B107.1C9—C8—H8119.8
Zn1—N1—C1114.8 (2)N1—C9—C8121.9 (3)
Zn1—N1—C9124.9 (2)N1—C9—H9119.1
C1—N1—C9120.2 (3)C8—C9—H9119.0
N1—C1—C2122.1 (3)O1—C10—O2124.3 (3)
N1—C1—C10113.2 (3)O1—C10—C1116.9 (3)
C2—C1—C10124.7 (3)O2—C10—C1118.8 (3)
C1—C2—C3124.8 (3)
Zn1—O1—C10—O2169.9 (3)N1—Zn1—O1—C104.7 (2)
Zn1—O1—C10—C19.3 (3)N1—Zn1—O1i—C10i175.3 (2)
Zn1—O1i—C10i—O2i169.9 (3)N1—C1—C2—C3175.3 (3)
Zn1—O1i—C10i—C1i9.3 (3)N1—C1—C2—C73.6 (4)
Zn1—N1—C1—C2174.1 (2)N1—C9—C8—C71.9 (5)
Zn1—N1—C1—C106.2 (3)C1—N1—C9—C80.3 (5)
Zn1—N1—C9—C8176.6 (2)C1—C2—C3—C4178.0 (3)
Zn1—N1i—C1i—C2i174.1 (2)C1—C2—C7—C6179.5 (3)
Zn1—N1i—C1i—C10i6.2 (3)C1—C2—C7—C81.9 (4)
Zn1—N1i—C9i—C8i176.6 (2)C2—C1—N1—C92.5 (4)
O1—Zn1—N1—C11.4 (2)C2—C3—C4—C51.8 (5)
O1—Zn1—N1—C9177.9 (3)C2—C7—C6—C50.9 (5)
O1—Zn1—N1i—C1i178.6 (2)C2—C7—C8—C90.7 (5)
O1—Zn1—N1i—C9i2.1 (3)C3—C2—C1—C105.0 (5)
O1—C10—C1—N110.5 (4)C3—C2—C7—C60.5 (4)
O1—C10—C1—C2169.8 (3)C3—C2—C7—C8177.1 (3)
O1W—Zn1—O1—C1087.0 (2)C3—C4—C5—C61.3 (5)
O1W—Zn1—O1i—C10i93.0 (2)C4—C3—C2—C70.9 (5)
O1W—Zn1—N1—C191.2 (2)C4—C5—C6—C70.1 (5)
O1W—Zn1—N1—C992.3 (3)C5—C6—C7—C8176.6 (3)
O1W—Zn1—N1i—C1i88.8 (2)C6—C7—C8—C9176.8 (3)
O1W—Zn1—N1i—C9i87.7 (3)C7—C2—C1—C10176.1 (3)
O2—C10—C1—N1168.8 (3)C9—N1—C1—C10177.1 (3)
O2—C10—C1—C210.9 (5)C9—N1—C1—C10177.1 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y+1, z; (v) x+1, y+2, z+1; (vi) x, y, z+1; (vii) x, y+1, z+1; (viii) x+1/2, y1/2, z+1/2; (ix) x+1/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O1iv0.812.032.831 (3)169
O1W—H1B···O2Wiii0.822.012.830 (4)172
O2W—H2A···O20.821.902.721 (4)175
O2W—H2B···O2Wviii0.822.172.944 (3)157
Symmetry codes: (iii) x+1/2, y+1/2, z+1/2; (iv) x, y+1, z; (viii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C10H6NO2)2(H2O)2]·2H2O
Mr481.77
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)12.224 (1), 5.341 (2), 15.191 (1)
β (°) 97.625 (7)
V3)983.0 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.30
Crystal size (mm)0.30 × 0.10 × 0.05
Data collection
DiffractometerRigaku AFC-5R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.855, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
2598, 2247, 1477
Rint0.026
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.129, 0.82
No. of reflections2247
No. of parameters142
No. of restraints?
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.32, 0.33

Computer programs: MSC/AFC (Molecular Structure Corporation, 1992), TEXSAN (Molecular Structure Corporation, Rigaku Corporation, 2000), SIR97 (Altomare et al., 1999) & DIRDIF94 (Beurskens et al., 1994), SHELXL97 (Scheldrick, 1997), ORTEPII (Johnson, 1976), TEXSAN.

Selected geometric parameters (Å, º) top
Zn1—O12.068 (2)Zn1—N12.084 (3)
Zn1—O1W2.208 (2)
O1—Zn1—O1W90.11 (9)O1W—Zn1—N191.71 (9)
O1—Zn1—N178.91 (10)Zn1—O1—C10115.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O1i0.812.032.831 (3)169
O1W—H1B···O2Wii0.822.012.830 (4)172
O2W—H2A···O20.821.902.721 (4)175
O2W—H2B···O2Wiii0.822.172.944 (3)157
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds