Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Hydro­thermal reaction of CuO, orotic acid and 1,10-phenanthroline in an aqueous solution resulted in the title compound, [Cu(orotate)(phen)] or [Cu(C5H2N2O4)(C12H8N2)], with a mononuclear structure. The coordination geometry around the CuII atom is distorted square planar. Through weak intermolecular Cu...O interactions and N—H...O hydrogen bonds, the crystal structure extends into a two-dimensional framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803007451/ob6231sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803007451/ob6231Isup2.hkl
Contains datablock I

CCDC reference: 214556

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.038
  • wR factor = 0.106
  • Data-to-parameter ratio = 10.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_369 Alert C Long C(sp2)-C(sp2) Bond C(1) - C(2) = 1.53 Ang.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The design and synthesis of novel inorganic-organic hybrid coordination complexes have attracted the attention of many chemists in recent years owing to their potential applications, such as selective guest absorption (Gardner et al., 1995), gas storage (Li et al., 1999), and heterogeneous catalysis (Dong et al., 2000). In the past, many complexes have been synthesized and characterized (Harvey et al., 2000). In this paper, we report the title compound, (I), which is a new cuprum coordination compound, [Cu(orotate)(phen)].

The Cu atom is four coordinated by two N atoms from phenanthroline, carboxylato O and N atoms from orotate (Fig. 1). The coordination geometry of the Cu atom can be regarded as a distorted square planar (Table 1). Through weak intermolecular Cu···O interactions and N—H···O hydrogen bonds, the crystal structure extends into a two-dimensional framework (Fig. 2). The distances Cu—O2(1 − x,1 − y,-z) and Cu—O4(2 − x,1 − y,-z) are 2.737 (3) and 2.771 (3) Å, respectively.

Experimental top

A mixture of CuO (0.2 mmol, 0.015 g), 1,10-phenanthroline (0.2 mmol, 0.04 g), orotic acid (0.3 mmol, 0.05 g) and H2O (15 ml) was sealed in a 25 ml Teflon-lined stainless steel reator and heated at 453 K for 72 h. After cooling, blue crystals of (I) were obtained (yield 68%).

Refinement top

The positions of all H atoms were generated geometrically (C—H bond fixed at 0.96 Å), assigned isotropic displacement parameters, and allowed to ride on their respective parent C atoms before the final cycle of least-squares refinement.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXTL (Siemens, 1994); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), showing 50% displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of (I) along the c axis.
Orotato(1,10-phenanthroline)copper(II) top
Crystal data top
[Cu(C5H2N2O4)(C12H8N2)]F(000) = 804
Mr = 397.83Dx = 1.801 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.6703 (2) ÅCell parameters from 80 reflections
b = 7.8597 (2) Åθ = 1.9–25.0°
c = 21.5279 (2) ŵ = 1.52 mm1
β = 90.916 (1)°T = 293 K
V = 1466.85 (5) Å3Block, blue
Z = 40.58 × 0.26 × 0.06 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
2560 independent reflections
Radiation source: fine-focus sealed tube2127 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 910
Tmin = 0.682, Tmax = 0.913k = 97
5179 measured reflectionsl = 2025
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0483P)2 + 1.9946P]
where P = (Fo2 + 2Fc2)/3
2560 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Cu(C5H2N2O4)(C12H8N2)]V = 1466.85 (5) Å3
Mr = 397.83Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.6703 (2) ŵ = 1.52 mm1
b = 7.8597 (2) ÅT = 293 K
c = 21.5279 (2) Å0.58 × 0.26 × 0.06 mm
β = 90.916 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2560 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2127 reflections with I > 2σ(I)
Tmin = 0.682, Tmax = 0.913Rint = 0.024
5179 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.08Δρmax = 0.43 e Å3
2560 reflectionsΔρmin = 0.52 e Å3
235 parameters
Special details top

Experimental. empirical from equivalent reflections (XEMP in SHELXTL; Siemens,1994)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.22423 (5)0.43152 (5)0.034154 (19)0.03421 (17)
O10.3815 (3)0.3674 (3)0.02713 (11)0.0408 (6)
N20.1386 (3)0.9050 (4)0.05854 (14)0.0390 (7)
H2A0.08250.99410.05290.047*
N40.2592 (3)0.2062 (4)0.07521 (14)0.0370 (7)
O20.5312 (3)0.4680 (3)0.10408 (12)0.0502 (7)
N10.2074 (3)0.6347 (4)0.02113 (13)0.0326 (6)
N30.0901 (3)0.4664 (4)0.11428 (13)0.0353 (7)
O30.2549 (4)1.0384 (4)0.13973 (13)0.0559 (8)
C70.3429 (5)0.0775 (5)0.0530 (2)0.0448 (9)
H7A0.39250.08980.01470.054*
C60.1874 (4)0.1869 (5)0.13119 (16)0.0353 (8)
O40.0025 (3)0.7776 (4)0.01688 (13)0.0604 (9)
C20.3174 (4)0.6363 (5)0.06778 (15)0.0324 (7)
C30.3390 (4)0.7599 (5)0.10965 (16)0.0375 (8)
H3A0.41380.74760.14080.045*
C40.2468 (4)0.9118 (5)0.10664 (15)0.0374 (8)
C170.0965 (4)0.3280 (4)0.15231 (15)0.0337 (8)
C10.4198 (4)0.4781 (5)0.06788 (16)0.0364 (8)
C50.1115 (4)0.7706 (5)0.01878 (16)0.0388 (9)
C100.1974 (5)0.0377 (5)0.16661 (18)0.0432 (9)
C160.0050 (4)0.5973 (5)0.13386 (18)0.0430 (9)
H16A0.00100.69330.10880.052*
C150.0762 (5)0.5964 (5)0.19078 (18)0.0496 (10)
H15A0.13400.69090.20270.059*
C130.0165 (4)0.3164 (5)0.20972 (16)0.0392 (8)
C110.1159 (5)0.0301 (6)0.22480 (19)0.0516 (11)
H11A0.12250.06730.24910.062*
C90.2867 (5)0.0958 (5)0.1410 (2)0.0509 (10)
H9A0.29610.19800.16240.061*
C140.0708 (5)0.4584 (5)0.22854 (18)0.0490 (10)
H14A0.12420.45780.26640.059*
C120.0295 (5)0.1624 (6)0.24490 (18)0.0503 (10)
H12A0.02320.15350.28270.060*
C80.3591 (5)0.0748 (5)0.0851 (2)0.0539 (11)
H8A0.41910.16190.06830.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0353 (3)0.0364 (3)0.0306 (3)0.00821 (18)0.00960 (17)0.00646 (19)
O10.0507 (15)0.0358 (13)0.0353 (13)0.0091 (12)0.0158 (11)0.0044 (12)
N20.0365 (16)0.0432 (18)0.0370 (16)0.0151 (13)0.0099 (13)0.0123 (14)
N40.0390 (16)0.0342 (16)0.0376 (16)0.0037 (13)0.0060 (13)0.0025 (13)
O20.0602 (18)0.0445 (16)0.0448 (15)0.0150 (13)0.0289 (13)0.0024 (13)
N10.0291 (14)0.0384 (16)0.0300 (15)0.0061 (13)0.0080 (11)0.0069 (13)
N30.0381 (16)0.0356 (16)0.0320 (15)0.0037 (13)0.0042 (12)0.0029 (13)
O30.070 (2)0.0505 (17)0.0462 (16)0.0142 (14)0.0250 (14)0.0216 (14)
C70.051 (2)0.0327 (19)0.050 (2)0.0062 (17)0.0097 (18)0.0006 (18)
C60.0330 (18)0.039 (2)0.0336 (18)0.0034 (15)0.0004 (15)0.0045 (16)
O40.0473 (16)0.072 (2)0.0613 (18)0.0302 (15)0.0312 (14)0.0330 (16)
C20.0347 (18)0.0346 (18)0.0279 (17)0.0017 (15)0.0028 (14)0.0001 (15)
C30.041 (2)0.042 (2)0.0289 (18)0.0067 (16)0.0143 (15)0.0004 (16)
C40.042 (2)0.045 (2)0.0249 (17)0.0051 (17)0.0077 (14)0.0036 (16)
C170.0328 (18)0.040 (2)0.0286 (17)0.0030 (15)0.0007 (14)0.0033 (15)
C10.042 (2)0.0357 (19)0.0311 (18)0.0049 (16)0.0069 (15)0.0025 (16)
C50.0342 (19)0.047 (2)0.0350 (19)0.0086 (16)0.0061 (15)0.0130 (17)
C100.046 (2)0.042 (2)0.041 (2)0.0050 (17)0.0068 (17)0.0108 (18)
C160.047 (2)0.043 (2)0.039 (2)0.0083 (17)0.0096 (17)0.0026 (17)
C150.059 (3)0.049 (2)0.040 (2)0.011 (2)0.0126 (18)0.0042 (19)
C130.040 (2)0.049 (2)0.0285 (18)0.0080 (17)0.0037 (15)0.0018 (16)
C110.060 (3)0.052 (3)0.043 (2)0.008 (2)0.0028 (19)0.018 (2)
C90.056 (3)0.034 (2)0.063 (3)0.0011 (18)0.006 (2)0.0127 (19)
C140.053 (2)0.063 (3)0.0310 (19)0.001 (2)0.0146 (17)0.0037 (19)
C120.057 (2)0.062 (3)0.032 (2)0.015 (2)0.0034 (18)0.0091 (19)
C80.057 (3)0.035 (2)0.069 (3)0.0102 (19)0.007 (2)0.002 (2)
Geometric parameters (Å, º) top
Cu—O11.949 (2)C2—C31.336 (5)
Cu—N11.998 (3)C2—C11.528 (5)
Cu—N42.004 (3)C3—C41.438 (5)
Cu—N32.083 (3)C3—H3A0.9300
O1—C11.276 (4)C17—C131.410 (5)
N2—C51.377 (4)C10—C91.411 (6)
N2—C41.387 (4)C10—C111.430 (6)
N2—H2A0.8600C16—C151.403 (5)
N4—C71.329 (5)C16—H16A0.9300
N4—C61.356 (4)C15—C141.356 (6)
O2—C11.234 (4)C15—H15A0.9300
N1—C51.354 (4)C13—C141.405 (6)
N1—C21.374 (4)C13—C121.433 (6)
N3—C161.331 (5)C11—C121.349 (6)
N3—C171.363 (4)C11—H11A0.9300
O3—C41.225 (4)C9—C81.360 (6)
C7—C81.389 (5)C9—H9A0.9300
C7—H7A0.9300C14—H14A0.9300
C6—C101.402 (5)C12—H12A0.9300
C6—C171.431 (5)C8—H8A0.9300
O4—C51.243 (4)
O1—Cu—N181.97 (10)N3—C17—C6117.1 (3)
O1—Cu—N487.76 (11)C13—C17—C6119.3 (3)
N1—Cu—N4168.99 (12)O2—C1—O1125.6 (3)
O1—Cu—N3165.97 (11)O2—C1—C2120.2 (3)
N1—Cu—N3110.06 (11)O1—C1—C2114.1 (3)
N4—Cu—N380.65 (11)O4—C5—N1122.7 (3)
C1—O1—Cu117.4 (2)O4—C5—N2118.4 (3)
C5—N2—C4126.9 (3)N1—C5—N2118.9 (3)
C5—N2—H2A116.6C6—C10—C9116.6 (4)
C4—N2—H2A116.6C6—C10—C11118.5 (4)
C7—N4—C6118.3 (3)C9—C10—C11124.8 (4)
C7—N4—Cu126.9 (3)N3—C16—C15122.7 (4)
C6—N4—Cu114.9 (2)N3—C16—H16A118.6
C5—N1—C2116.0 (3)C15—C16—H16A118.6
C5—N1—Cu131.2 (2)C14—C15—C16120.4 (4)
C2—N1—Cu112.7 (2)C14—C15—H15A119.8
C16—N3—C17117.0 (3)C16—C15—H15A119.8
C16—N3—Cu131.6 (2)C14—C13—C17117.2 (3)
C17—N3—Cu111.4 (2)C14—C13—C12124.4 (3)
N4—C7—C8122.4 (4)C17—C13—C12118.4 (4)
N4—C7—H7A118.8C12—C11—C10120.9 (4)
C8—C7—H7A118.8C12—C11—H11A119.6
N4—C6—C10123.1 (3)C10—C11—H11A119.6
N4—C6—C17116.0 (3)C8—C9—C10119.9 (4)
C10—C6—C17120.9 (3)C8—C9—H9A120.1
C3—C2—N1126.1 (3)C10—C9—H9A120.1
C3—C2—C1121.0 (3)C15—C14—C13119.1 (3)
N1—C2—C1113.0 (3)C15—C14—H14A120.5
C2—C3—C4120.1 (3)C13—C14—H14A120.5
C2—C3—H3A120.0C11—C12—C13122.0 (4)
C4—C3—H3A120.0C11—C12—H12A119.0
O3—C4—N2119.8 (3)C13—C12—H12A119.0
O3—C4—C3128.5 (3)C9—C8—C7119.7 (4)
N2—C4—C3111.7 (3)C9—C8—H8A120.1
N3—C17—C13123.6 (3)C7—C8—H8A120.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O4i0.862.072.895 (4)161
Symmetry code: (i) x, y+2, z.

Experimental details

Crystal data
Chemical formula[Cu(C5H2N2O4)(C12H8N2)]
Mr397.83
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.6703 (2), 7.8597 (2), 21.5279 (2)
β (°) 90.916 (1)
V3)1466.85 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.52
Crystal size (mm)0.58 × 0.26 × 0.06
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.682, 0.913
No. of measured, independent and
observed [I > 2σ(I)] reflections
5179, 2560, 2127
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 1.08
No. of reflections2560
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.52

Computer programs: SMART (Siemens, 1996), SMART, SAINT (Siemens, 1994), SHELXTL (Siemens, 1994), SHELXTL.

Selected geometric parameters (Å, º) top
Cu—O11.949 (2)Cu—N42.004 (3)
Cu—N11.998 (3)Cu—N32.083 (3)
O1—Cu—N181.97 (10)O1—Cu—N3165.97 (11)
O1—Cu—N487.76 (11)N1—Cu—N3110.06 (11)
N1—Cu—N4168.99 (12)N4—Cu—N380.65 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O4i0.862.072.895 (4)161
Symmetry code: (i) x, y+2, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds