Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, C13H15NO4, the pyrrolidine ring exhibits an envelope conformation with two chiral centres. In the crystal structure, the mol­ecules are linked by N—H...O, O—H...O and C—H...O intermolecular hydrogen bonds to form a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803009103/ob6226sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803009103/ob6226Isup2.hkl
Contains datablock I

CCDC reference: 214646

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.043
  • wR factor = 0.128
  • Data-to-parameter ratio = 17.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Kainic acid and its derivatives have received much attention for the imminohistochemical, neurochemical and behavioural studies in animal system (Mikulecka et al., 1999; Magnone et al., 2000; Jousselin-Hosaja et al., 2001). On the other hand, it is also a precursor in a long step to synthesize a natural product components such as clausenamide, a liver protecting agent, obtained from the leaves of the plant Clausena lansium (Hartwig et al., 1987). The title compound, (I) (Fig. 1), was obtained as reduced kainic acid in one of the several steps to synthesize the possible derivatives of clausenamide.

The pyrrolidine ring C1/C2/N1/C3/C4 has an envelope conformation since the C2/N1/C3/C4 moiety is almost planar; the C2—N1—C3—C4 torsion angle is −0.68 (14)°. The relative configuration of the chiral centres at atoms C1 and C4 are R and S (or S and R), respectively. The bond lengths and angles of the molecule (Table 1) are in agreement with literature values (Allen et al., 1998). The benzyl C7/C8/C9/C10/C11/C12/C13 and the ester O3/O4/C4/C5/C6 groups are planar and make angle with the pyrrolidine ring of 77.75 (7) and 48.48 (6)°, respectively. The crystal packing is stablized by intermolecular hydrogen bonds, N1—H1A···O4i, O1—H1B···O2ii and C11—H11A···O2iii (symmetry codes as in Table 2) in a three-dimensional network (Fig. 2).

Experimental top

The synthetic approach to the title compound, (I), began with condensation between readily available glycine methyl ester and methyl malonate potassium salt in equimolar amounts to give a diester in 92% yield. Dieckmann cyclization of this diester with sodium/methanol in toluene under reflux gave a β,β-diketoester, 2,4-dioxo-pyrrolidine-3-carboxylic acid methyl ester, in 91% yield. Alkylation of this β,β-diketoester was successfully carried out using benzylbromide in the presence of tetrahydrofuran and tetrabutylammonium flouride (TBAF) to give 3-benzyl-2,4-dioxo-pyrrolidine-3-carboxylic acid methyl ester in 55% yield. Reduction of the alkylated diketoester using NaBH4/MeOH gave only one isomer of (I) in 65% yield. Suitable crystals of (I) for X-ray investigation were obtained by slow evaporation from an ethyl acetate–petroleum ether solution.

Refinement top

After checking their location in the difference Fourier map, all H atoms were included in the refinement in geometrically determined position, and allowed to ride on the parent C, N or O atoms with C—H = 0.97 Å, N—H = 0.89 Å and O—H = 0.85 Å.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, (I), with ellipsoids shown at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of (I), viewed down the b axis. The dashed lines denote the N—H···O, O—H···O and C—H···O hydrogen bonds.
Methyl (3SR,4RS)-3-benzyl-4-hydroxy-2-oxopyrrolidine-3-carboxylate top
Crystal data top
C13H15NO4Dx = 1.331 Mg m3
Mr = 249.26Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 5914 reflections
a = 14.7891 (11) Åθ = 2.6–27.5°
b = 10.8965 (8) ŵ = 0.10 mm1
c = 15.4391 (11) ÅT = 293 K
V = 2488.0 (3) Å3Slab, colourless
Z = 80.48 × 0.36 × 0.14 mm
F(000) = 1056
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2429 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 27.5°, θmin = 2.6°
Detector resolution: 83.66 pixels mm-1h = 1912
ω scansk = 1413
15920 measured reflectionsl = 2019
2859 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0755P)2 + 0.3864P]
where P = (Fo2 + 2Fc2)/3
2859 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C13H15NO4V = 2488.0 (3) Å3
Mr = 249.26Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.7891 (11) ŵ = 0.10 mm1
b = 10.8965 (8) ÅT = 293 K
c = 15.4391 (11) Å0.48 × 0.36 × 0.14 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2429 reflections with I > 2σ(I)
15920 measured reflectionsRint = 0.019
2859 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.06Δρmax = 0.33 e Å3
2859 reflectionsΔρmin = 0.17 e Å3
163 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.18617 (7)0.65338 (9)0.24409 (7)0.0395 (2)
H1A0.24000.63400.26020.047*
O10.02326 (7)0.84984 (8)0.15162 (7)0.0537 (3)
H1B0.02040.88730.17100.080*
O20.12050 (6)0.46970 (8)0.27650 (6)0.0447 (2)
O30.02458 (7)0.63882 (9)0.36018 (6)0.0541 (3)
O40.12282 (6)0.59980 (14)0.25449 (8)0.0682 (3)
C10.06201 (8)0.77869 (10)0.21727 (8)0.0384 (3)
H1C0.04750.81540.27350.046*
C20.16499 (8)0.77190 (11)0.20736 (8)0.0420 (3)
H2A0.18270.77620.14690.050*
H2B0.19460.83740.23910.050*
C30.11673 (7)0.57630 (11)0.25124 (7)0.0328 (2)
C40.03200 (7)0.64140 (10)0.21759 (7)0.0328 (3)
C50.04764 (8)0.62377 (11)0.27820 (8)0.0404 (3)
C60.09548 (12)0.61748 (17)0.42362 (11)0.0694 (5)
H6A0.07190.63080.48080.104*
H6B0.11670.53450.41870.104*
H6C0.14470.67310.41330.104*
C70.00697 (8)0.59029 (12)0.12725 (8)0.0403 (3)
H7B0.02100.51050.13500.048*
H7A0.03800.64400.10170.048*
C80.08392 (8)0.57662 (12)0.06375 (7)0.0386 (3)
C90.13525 (10)0.47044 (14)0.06274 (9)0.0513 (3)
H9A0.12290.40840.10240.062*
C100.20459 (12)0.45507 (19)0.00378 (11)0.0688 (5)
H10A0.23850.38320.00430.083*
C110.22365 (12)0.5451 (2)0.05541 (10)0.0736 (6)
H11A0.27040.53460.09510.088*
C120.17306 (14)0.65126 (18)0.05571 (9)0.0685 (5)
H12A0.18580.71280.09560.082*
C130.10325 (12)0.66659 (14)0.00331 (8)0.0531 (3)
H13A0.06900.73820.00220.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0219 (5)0.0471 (5)0.0496 (6)0.0026 (4)0.0018 (4)0.0004 (4)
O10.0561 (6)0.0449 (5)0.0600 (6)0.0152 (4)0.0057 (5)0.0066 (4)
O20.0370 (5)0.0430 (5)0.0540 (5)0.0015 (3)0.0019 (4)0.0078 (4)
O30.0438 (5)0.0706 (7)0.0479 (5)0.0145 (4)0.0172 (4)0.0111 (4)
O40.0232 (5)0.1057 (10)0.0755 (7)0.0037 (5)0.0044 (4)0.0009 (7)
C10.0353 (6)0.0355 (6)0.0445 (6)0.0008 (4)0.0044 (5)0.0033 (4)
C20.0350 (6)0.0429 (6)0.0482 (6)0.0092 (5)0.0035 (5)0.0018 (5)
C30.0236 (5)0.0403 (6)0.0347 (5)0.0006 (4)0.0009 (4)0.0028 (4)
C40.0211 (5)0.0376 (6)0.0397 (6)0.0001 (4)0.0015 (4)0.0021 (4)
C50.0250 (5)0.0435 (6)0.0525 (7)0.0007 (4)0.0063 (5)0.0026 (5)
C60.0669 (11)0.0759 (11)0.0656 (10)0.0140 (8)0.0375 (8)0.0086 (8)
C70.0279 (5)0.0489 (6)0.0443 (6)0.0009 (5)0.0042 (4)0.0061 (5)
C80.0342 (6)0.0458 (6)0.0359 (6)0.0034 (5)0.0055 (4)0.0065 (5)
C90.0545 (8)0.0541 (8)0.0452 (7)0.0092 (6)0.0008 (6)0.0076 (6)
C100.0567 (9)0.0944 (12)0.0554 (9)0.0218 (9)0.0006 (7)0.0240 (8)
C110.0483 (8)0.1259 (17)0.0467 (8)0.0147 (10)0.0084 (6)0.0302 (9)
C120.0790 (12)0.0898 (12)0.0367 (7)0.0329 (10)0.0031 (7)0.0043 (7)
C130.0643 (9)0.0552 (8)0.0399 (6)0.0055 (6)0.0057 (6)0.0005 (5)
Geometric parameters (Å, º) top
N1—C31.3313 (15)C6—H6A0.9600
N1—C21.4448 (16)C6—H6B0.9600
N1—H1A0.8600C6—H6C0.9600
O1—C11.3988 (15)C7—C81.5094 (17)
O1—H1B0.8200C7—H7B0.9700
O2—C31.2266 (15)C7—H7A0.9700
O3—C51.3210 (17)C8—C131.3833 (19)
O3—C61.4535 (16)C8—C91.3839 (19)
O4—C51.1994 (15)C9—C101.381 (2)
C1—C21.5325 (17)C9—H9A0.9300
C1—C41.5605 (15)C10—C111.370 (3)
C1—H1C0.9800C10—H10A0.9300
C2—H2A0.9700C11—C121.378 (3)
C2—H2B0.9700C11—H11A0.9300
C3—C41.5307 (15)C12—C131.387 (2)
C4—C51.5166 (15)C12—H12A0.9300
C4—C71.5468 (16)C13—H13A0.9300
C3—N1—C2115.41 (10)O3—C6—H6B109.5
C3—N1—H1A122.3H6A—C6—H6B109.5
C2—N1—H1A122.3O3—C6—H6C109.5
C1—O1—H1B109.5H6A—C6—H6C109.5
C5—O3—C6116.07 (12)H6B—C6—H6C109.5
O1—C1—C2111.20 (10)C8—C7—C4116.16 (9)
O1—C1—C4114.65 (10)C8—C7—H7B108.2
C2—C1—C4103.69 (9)C4—C7—H7B108.2
O1—C1—H1C109.0C8—C7—H7A108.2
C2—C1—H1C109.0C4—C7—H7A108.2
C4—C1—H1C109.0H7B—C7—H7A107.4
N1—C2—C1102.68 (9)C13—C8—C9118.13 (13)
N1—C2—H2A111.2C13—C8—C7121.60 (12)
C1—C2—H2A111.2C9—C8—C7120.23 (12)
N1—C2—H2B111.2C10—C9—C8121.06 (15)
C1—C2—H2B111.2C10—C9—H9A119.5
H2A—C2—H2B109.1C8—C9—H9A119.5
O2—C3—N1126.06 (10)C11—C10—C9120.38 (16)
O2—C3—C4125.73 (10)C11—C10—H10A119.8
N1—C3—C4108.12 (10)C9—C10—H10A119.8
C5—C4—C3111.57 (9)C10—C11—C12119.45 (15)
C5—C4—C7108.96 (9)C10—C11—H11A120.3
C3—C4—C7109.58 (9)C12—C11—H11A120.3
C5—C4—C1110.14 (9)C11—C12—C13120.20 (15)
C3—C4—C1102.27 (8)C11—C12—H12A119.9
C7—C4—C1114.23 (10)C13—C12—H12A119.9
O4—C5—O3123.98 (12)C8—C13—C12120.77 (15)
O4—C5—C4124.00 (12)C8—C13—H13A119.6
O3—C5—C4112.02 (10)C12—C13—H13A119.6
O3—C6—H6A109.5
C3—N1—C2—C117.87 (14)C3—C4—C5—O4136.14 (14)
O1—C1—C2—N1150.18 (10)C7—C4—C5—O415.02 (17)
C4—C1—C2—N126.48 (12)C1—C4—C5—O4111.00 (15)
C2—N1—C3—O2176.15 (11)C3—C4—C5—O344.32 (13)
C2—N1—C3—C40.68 (14)C7—C4—C5—O3165.44 (10)
O2—C3—C4—C548.98 (15)C1—C4—C5—O368.54 (13)
N1—C3—C4—C5134.17 (10)C5—C4—C7—C8168.08 (10)
O2—C3—C4—C771.78 (14)C3—C4—C7—C845.75 (14)
N1—C3—C4—C7105.07 (11)C1—C4—C7—C868.30 (13)
O2—C3—C4—C1166.68 (11)C4—C7—C8—C1395.45 (14)
N1—C3—C4—C116.47 (11)C4—C7—C8—C986.89 (14)
O1—C1—C4—C593.73 (12)C13—C8—C9—C100.8 (2)
C2—C1—C4—C5144.85 (10)C7—C8—C9—C10178.49 (13)
O1—C1—C4—C3147.55 (10)C8—C9—C10—C110.3 (2)
C2—C1—C4—C326.13 (11)C9—C10—C11—C120.0 (2)
O1—C1—C4—C729.26 (13)C10—C11—C12—C130.2 (2)
C2—C1—C4—C792.16 (11)C9—C8—C13—C121.0 (2)
C6—O3—C5—O43.5 (2)C7—C8—C13—C12178.65 (12)
C6—O3—C5—C4176.93 (12)C11—C12—C13—C80.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.862.082.8847 (14)157
O1—H1B···O2ii0.821.912.7309 (14)176
C11—H11A···O2iii0.932.563.4747 (19)169
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC13H15NO4
Mr249.26
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)14.7891 (11), 10.8965 (8), 15.4391 (11)
V3)2488.0 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.48 × 0.36 × 0.14
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15920, 2859, 2429
Rint0.019
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.128, 1.06
No. of reflections2859
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.17

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
N1—C31.3313 (15)C4—C51.5166 (15)
N1—C21.4448 (16)C4—C71.5468 (16)
O1—C11.3988 (15)C7—C81.5094 (17)
O2—C31.2266 (15)C8—C131.3833 (19)
O3—C51.3210 (17)C8—C91.3839 (19)
O3—C61.4535 (16)C9—C101.381 (2)
O4—C51.1994 (15)C10—C111.370 (3)
C3—C41.5307 (15)
C3—N1—C2115.41 (10)C5—O3—C6116.07 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.862.082.8847 (14)157
O1—H1B···O2ii0.821.912.7309 (14)176
C11—H11A···O2iii0.932.563.4747 (19)169
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1/2, y+1, z1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds