Download citation
Download citation
link to html
The molecular structure of the title compound, C18H16N2S4, has a center of symmetry. All the C and S atoms in the central alkyl chain are coplanar, and this plane is almost perpendic­ular to the benzo­thia­zolyl rings. The mol­ecules are linked together by intermolecular S...S interactions to form a one-dimensional chain.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803005452/ob6224sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803005452/ob6224Isup2.hkl
Contains datablock I

CCDC reference: 209945

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.042
  • wR factor = 0.081
  • Data-to-parameter ratio = 14.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
ABSTM_02 Alert C The ratio of Tmax/Tmin expected RT(exp) is > 1.10 Absorption corrections should be applied. Tmin and Tmax expected: 0.877 0.969 RT(exp) = 1.105 REFLT_03 From the CIF: _diffrn_reflns_theta_max 28.29 From the CIF: _reflns_number_total 2020 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 2163 Completeness (_total/calc) 93.39% Alert C: < 95% complete
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

One of reasons for the recent intensive interest in design flexible multidentate ligand is to develop a new family of microporous, helicate materials, and other coordination polymers with unusual porous structures (Cai et al., 2001; Albada et al., 2000; Zhang et al., 2002). Moreover, the flexiblity and conformational freedom of such ligands offer the possibility of generating unique frameworks with useful properties (Bu et al., 2001; Hou et al., 2002). As part of our systematic investigation of the coordination chemistry of flexible ligand, we report here the synthesis and crystal structure of the title compound, (I).

The title molecule has a center of symmetry at the mid-point of the central C—C bond (Fig. 1). The C1—C2 and C1—C1i bond lengths are all close to the standard value for a single-bond length (see Table 1). All the C and S atoms between the two benzothiazolyl rings are coplanar; this plane is almost perpendicular to the planes of the benzothiazolyl rings, which are parallel to each other. The S—C bond distances are in the range 1.727 (2)–1.809 (3) Å, which are similar to those of S—C bonds of the analogous compound 1,5-bis(benzothiazolyl)-3-thiapentane (Grapperhaus et al., 2002), the C atom in the longest C—S bond belonging to the methylene group. The molecules are linked together by an intermolecular S2···S2(-x, −y, 1 − z) interaction of 3.485 (2) Å to form a one-dimensional chain.

Experimental top

The title compound, (I), was prepared from 2-mercaptobenzothiazole and 1,4-dibromobutane in 56% yield, using the similar reaction reported by Chen et al. (2003). Crystals of (I) suitable for X-ray analysis were grown from a chloroform solution. Calculated (%) for C18H16N2S4: C 55.64, H 4.15, N 7.21; found (%): C 55.48, H 4.10, N 7.18.

Refinement top

All H atoms were located from difference syntheses and refined isotropically. The C—H distances are in the range 0.89 (2)–0.98 (2) Å.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A View of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.
(I) top
Crystal data top
C18H16N2S4F(000) = 404
Mr = 388.57Dx = 1.49 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.9072 (18) ÅCell parameters from 887 reflections
b = 4.9003 (8) Åθ = 5.5–46.2°
c = 16.767 (3) ŵ = 0.55 mm1
β = 104.868 (3)°T = 293 K
V = 866.2 (2) Å3Block, colourless
Z = 20.25 × 0.20 × 0.06 mm
Data collection top
Bruker SMART
diffractometer
Rint = 0.050
ϕ and ω scansθmax = 28.3°, θmin = 1.9°
5025 measured reflectionsh = 1414
2020 independent reflectionsk = 66
1248 reflections with I > 2σ(I)l = 1722
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0257P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.081(Δ/σ)max = 0.001
S = 0.84Δρmax = 0.34 e Å3
2020 reflectionsΔρmin = 0.25 e Å3
141 parameters
Crystal data top
C18H16N2S4V = 866.2 (2) Å3
Mr = 388.57Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.9072 (18) ŵ = 0.55 mm1
b = 4.9003 (8) ÅT = 293 K
c = 16.767 (3) Å0.25 × 0.20 × 0.06 mm
β = 104.868 (3)°
Data collection top
Bruker SMART
diffractometer
1248 reflections with I > 2σ(I)
5025 measured reflectionsRint = 0.050
2020 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.081All H-atom parameters refined
S = 0.84Δρmax = 0.34 e Å3
2020 reflectionsΔρmin = 0.25 e Å3
141 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.18452 (6)0.44087 (13)0.50542 (4)0.0512 (2)
S20.06435 (6)0.06905 (13)0.60430 (4)0.0454 (2)
N0.30799 (18)0.1533 (3)0.64017 (11)0.0377 (5)
C20.3415 (3)0.5880 (5)0.52488 (19)0.0483 (7)
C10.4362 (2)0.4279 (5)0.49193 (18)0.0422 (6)
C30.2027 (2)0.2190 (4)0.58924 (14)0.0371 (6)
C40.2856 (2)0.0360 (4)0.69731 (14)0.0343 (5)
C50.3778 (3)0.1570 (5)0.75961 (15)0.0425 (6)
C60.3417 (3)0.3499 (5)0.80885 (16)0.0486 (7)
C70.2159 (3)0.4198 (5)0.79782 (17)0.0510 (7)
C80.1227 (3)0.3018 (5)0.73710 (16)0.0462 (7)
C90.1582 (2)0.1086 (4)0.68654 (13)0.0351 (5)
H10.462 (2)0.111 (4)0.7654 (13)0.043 (7)*
H20.405 (2)0.434 (4)0.8495 (14)0.047 (7)*
H30.198 (2)0.546 (4)0.8316 (14)0.050 (7)*
H40.0397 (19)0.353 (4)0.7272 (12)0.033 (6)*
H50.374 (2)0.621 (4)0.5844 (14)0.052 (7)*
H60.325 (2)0.756 (5)0.4976 (14)0.062 (8)*
H70.4468 (18)0.250 (4)0.5191 (12)0.038 (6)*
H80.402 (2)0.398 (4)0.4328 (14)0.042 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0495 (4)0.0549 (4)0.0510 (4)0.0046 (3)0.0164 (3)0.0151 (4)
S20.0337 (4)0.0553 (4)0.0472 (4)0.0005 (3)0.0105 (3)0.0071 (3)
N0.0353 (12)0.0392 (11)0.0401 (12)0.0015 (9)0.0121 (10)0.0001 (10)
C20.0632 (19)0.0383 (15)0.0494 (18)0.0044 (14)0.0256 (15)0.0014 (15)
C10.0548 (18)0.0344 (14)0.0427 (16)0.0051 (12)0.0217 (14)0.0024 (13)
C30.0397 (15)0.0367 (13)0.0379 (13)0.0015 (11)0.0155 (12)0.0012 (11)
C40.0367 (14)0.0330 (12)0.0347 (13)0.0002 (11)0.0117 (11)0.0049 (11)
C50.0360 (16)0.0464 (15)0.0441 (15)0.0017 (13)0.0082 (13)0.0007 (13)
C60.0513 (19)0.0510 (16)0.0414 (16)0.0081 (14)0.0079 (14)0.0051 (14)
C70.062 (2)0.0468 (16)0.0496 (17)0.0026 (15)0.0244 (16)0.0107 (14)
C80.0401 (17)0.0488 (16)0.0538 (17)0.0035 (14)0.0197 (15)0.0048 (14)
C90.0343 (14)0.0377 (13)0.0353 (13)0.0001 (11)0.0125 (11)0.0021 (11)
Geometric parameters (Å, º) top
S1—C31.747 (2)C1—H80.98 (2)
S1—C21.809 (3)C4—C51.384 (3)
S2—C91.727 (2)C4—C91.399 (3)
S2—C31.754 (2)C5—C61.377 (3)
N—C31.284 (3)C5—H10.93 (2)
N—C41.400 (3)C6—C71.380 (4)
C2—C11.510 (3)C6—H20.93 (2)
C2—H50.98 (2)C7—C81.369 (3)
C2—H60.94 (2)C7—H30.89 (2)
C1—C1i1.522 (5)C8—C91.390 (3)
C1—H70.976 (19)C8—H40.913 (19)
C3—S1—C2101.31 (13)C5—C4—C9119.6 (2)
C9—S2—C388.30 (11)C5—C4—N125.4 (2)
C3—N—C4109.75 (19)C9—C4—N115.0 (2)
C1—C2—S1115.56 (18)C6—C5—C4118.8 (2)
C1—C2—H5110.8 (13)C6—C5—H1122.2 (13)
S1—C2—H5109.1 (13)C4—C5—H1119.0 (13)
C1—C2—H6109.9 (13)C5—C6—C7121.2 (3)
S1—C2—H6102.0 (15)C5—C6—H2117.9 (14)
H5—C2—H6109.0 (19)C7—C6—H2120.9 (14)
C2—C1—C1i111.9 (2)C8—C7—C6121.2 (3)
C2—C1—H7107.6 (11)C8—C7—H3121.6 (16)
C1i—C1—H7109.8 (12)C6—C7—H3117.2 (16)
C2—C1—H8109.4 (13)C7—C8—C9118.1 (2)
C1i—C1—H8109.9 (12)C7—C8—H4122.2 (13)
H7—C1—H8108.1 (17)C9—C8—H4119.6 (13)
N—C3—S1126.06 (18)C8—C9—C4121.1 (2)
N—C3—S2117.06 (17)C8—C9—S2129.0 (2)
S1—C3—S2116.88 (14)C4—C9—S2109.90 (16)
C3—S1—C2—C186.1 (2)C4—C5—C6—C71.1 (4)
S1—C2—C1—C1i177.7 (3)C5—C6—C7—C80.6 (4)
C4—N—C3—S1177.95 (15)C6—C7—C8—C90.0 (4)
C4—N—C3—S21.2 (2)C7—C8—C9—C40.1 (3)
C2—S1—C3—N10.6 (2)C7—C8—C9—S2178.60 (19)
C2—S1—C3—S2170.25 (13)C5—C4—C9—C80.4 (3)
C9—S2—C3—N1.60 (18)N—C4—C9—C8177.75 (19)
C9—S2—C3—S1177.61 (13)C5—C4—C9—S2179.31 (17)
C3—N—C4—C5178.0 (2)N—C4—C9—S21.2 (2)
C3—N—C4—C90.0 (3)C3—S2—C9—C8177.4 (2)
C9—C4—C5—C61.0 (3)C3—S2—C9—C41.45 (16)
N—C4—C5—C6177.0 (2)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H16N2S4
Mr388.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.9072 (18), 4.9003 (8), 16.767 (3)
β (°) 104.868 (3)
V3)866.2 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.55
Crystal size (mm)0.25 × 0.20 × 0.06
Data collection
DiffractometerBruker SMART
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5025, 2020, 1248
Rint0.050
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.081, 0.84
No. of reflections2020
No. of parameters141
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.34, 0.25

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL.

Selected bond lengths (Å) top
S1—C31.747 (2)S2—C31.754 (2)
S1—C21.809 (3)C2—C11.510 (3)
S2—C91.727 (2)C1—C1i1.522 (5)
Symmetry code: (i) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds