Download citation
Download citation
link to html
The title compound, C18H15N3, was synthesized by the reaction of 2-phenyl­methyl­idene-3,4-di­hydro­naphthalen-1(2H)-one with guanidine carbonate in ethyl­ene glycol under microwave irradiation. X-ray analysis revealed the formation of a pyrimidine ring. The partially saturated six-membered ring adopts a distorted boat conformation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803004616/ob6223sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803004616/ob6223Isup2.hkl
Contains datablock I

CCDC reference: 209920

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.038
  • wR factor = 0.102
  • Data-to-parameter ratio = 12.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Pyrimidine derivatives occupy a unique position as dynamic agents, both as esential components of nucleic acids and therapeutic agents (Mochida, 1982). Since microwave heating resulting the mass heating effect, much faster temperature increasing, achieving high temperatures required for reactions was used for organic synthesis by Gedye et al. (1986), the microwave chemistry has been a topic of continuing interest. Rate enhancement in many reactions has been reported in recent years. We report here the crystal structure of the title compound, (I), which was synthesized by the reaction of 2-phenylmethylidene-3,4-dihydronaphthalen-1(2H)-one with guanidine carbonate in ethylene glycol under microwave irradiation.

In (I), atoms C1, C2, N1, N2, C11 and C12 form a pyrimidine ring (Fig. 1). The N1—C1, N1—C2, N2—C1 and N2—C12 bond lengths of 1.3431 (19), 1.3471 (17), 1.3442 (18) and 1.3469 (17) Å are slightly longer than those of ethyl 2-amino-4-(3-nitrophenyl)-1,4-dihydro-2H-pyrano[3,2-h]quinoline-3-carboxylate (Wang et al., 2003). In addition, the N3—C1 bond lenth of 1.3603 (19) Å is shorter than the typical Csp2—N bond distance (Lorente et al., 1995). The six-membered ring C2/C3/C8/C9/C10/C11 adopts a distorted boat conformation; atoms C2, C3, C8 and C9 are on one plane, while C10 and C11 deviate from the plane by 0.857 (3) and 0.437 (3) Å, respectively. The torsion angle C8—C9—-C10–C11 is −52.98 (18)°. The dihedral angles between this plane and the C3–C8 phenyl ring, the C13–C18 phenyl ring and the pyrimidine ring are 1.6 (1), 68.39 (6) and 22.6 (1)°, respectively.

In the crystal, the molecules are linked by the N—H···N hydrogen bonds, forming polymers (Fig. 2 and Table 2). The hydrogen bonds are formed between the amino group and atoms N1 and N2 of the pyrimidine ring of adjacent molecules.

Experimental top

The title compound, (I), was prepared by the reaction of 2-phenylmethylidene-3,4-dihydronaphthalen-1(2H)-one with guanidine carbonate in ethylene glycol under microwave irradiation (m.p. 447–448 K). Single crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a acetone and petroleum ether solution.

Refinement top

Atoms H3A and H3B were refined isotropically. The positions of the other H atoms were fixed geometrically with C—H distances of 0.93 (CH) or 0.97 Å (CH2).

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1997); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure drawing for (I), showing ellipsoids at the 50% probability level and the atom-numbering scheme.
[Figure 2] Fig. 2. The molecular packing diagram in the crystal for (I).
2-amino-4-phenyl-5,6-dihydrobenzo[h]quinazoline top
Crystal data top
C18H15N3F(000) = 576
Mr = 273.33Dx = 1.303 Mg m3
Monoclinic, P21/cMelting point = 447–448 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.902 (2) ÅCell parameters from 25 reflections
b = 6.906 (1) Åθ = 3.0–12.6°
c = 18.577 (3) ŵ = 0.08 mm1
β = 94.85 (1)°T = 296 K
V = 1393.6 (4) Å3Block, yellow
Z = 40.58 × 0.54 × 0.24 mm
Data collection top
Siemens P4
diffractometer
Rint = 0.022
Radiation source: normal-focus sealed tubeθmax = 25.0°, θmin = 1.9°
Graphite monochromatorh = 012
ω scansk = 08
2919 measured reflectionsl = 2222
2448 independent reflections3 standard reflections every 97 reflections
1810 reflections with I > 2σ(I) intensity decay: 1.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0602P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
2448 reflectionsΔρmax = 0.15 e Å3
199 parametersΔρmin = 0.18 e Å3
2 restraintsExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.043 (3)
Crystal data top
C18H15N3V = 1393.6 (4) Å3
Mr = 273.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.902 (2) ŵ = 0.08 mm1
b = 6.906 (1) ÅT = 296 K
c = 18.577 (3) Å0.58 × 0.54 × 0.24 mm
β = 94.85 (1)°
Data collection top
Siemens P4
diffractometer
Rint = 0.022
2919 measured reflections3 standard reflections every 97 reflections
2448 independent reflections intensity decay: 1.0%
1810 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0382 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.15 e Å3
2448 reflectionsΔρmin = 0.18 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.81730 (11)0.17629 (17)0.71624 (6)0.0400 (3)
N20.89605 (10)0.45988 (18)0.66146 (6)0.0394 (3)
N30.98173 (14)0.3452 (2)0.77085 (8)0.0564 (4)
C10.89514 (13)0.3265 (2)0.71412 (8)0.0386 (4)
C20.72585 (12)0.1698 (2)0.66278 (7)0.0362 (4)
C30.63317 (13)0.0136 (2)0.66516 (7)0.0382 (4)
C40.65687 (15)0.1548 (2)0.70558 (8)0.0457 (4)
H40.73310.17170.73130.055*
C50.56794 (17)0.2965 (2)0.70770 (9)0.0545 (5)
H50.58500.40980.73370.065*
C60.45352 (17)0.2697 (3)0.67108 (9)0.0554 (5)
H60.39290.36370.67330.066*
C70.42935 (15)0.1043 (3)0.63135 (8)0.0493 (4)
H70.35180.08730.60720.059*
C80.51843 (13)0.0382 (2)0.62648 (8)0.0410 (4)
C90.49366 (14)0.2206 (3)0.58360 (9)0.0522 (5)
H9A0.46710.32170.61500.063*
H9B0.42790.19780.54600.063*
C100.60837 (15)0.2862 (3)0.54961 (8)0.0506 (4)
H10A0.62760.19420.51270.061*
H10B0.59330.41110.52670.061*
C110.71635 (13)0.3018 (2)0.60602 (8)0.0371 (4)
C120.80931 (12)0.4404 (2)0.60587 (7)0.0364 (4)
C130.82260 (13)0.5716 (2)0.54317 (8)0.0397 (4)
C140.84315 (14)0.7687 (2)0.55284 (9)0.0474 (4)
H140.84490.82210.59890.057*
C150.86105 (15)0.8857 (3)0.49434 (11)0.0599 (5)
H150.87331.01790.50120.072*
C160.86099 (16)0.8083 (3)0.42585 (11)0.0657 (6)
H160.87440.88750.38680.079*
C170.84098 (15)0.6137 (3)0.41569 (10)0.0624 (5)
H170.84090.56090.36960.075*
C180.82096 (14)0.4958 (3)0.47366 (8)0.0509 (4)
H180.80620.36440.46610.061*
H3A0.9949 (16)0.2419 (19)0.7981 (8)0.061 (5)*
H3B1.0409 (13)0.430 (2)0.7671 (10)0.069 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0399 (7)0.0390 (7)0.0396 (7)0.0008 (6)0.0051 (6)0.0016 (6)
N20.0369 (7)0.0391 (7)0.0411 (7)0.0003 (5)0.0036 (5)0.0011 (6)
N30.0581 (10)0.0503 (9)0.0560 (9)0.0122 (8)0.0230 (8)0.0111 (8)
C10.0369 (8)0.0371 (8)0.0403 (8)0.0012 (7)0.0051 (7)0.0014 (7)
C20.0350 (8)0.0377 (8)0.0355 (8)0.0029 (6)0.0011 (6)0.0025 (6)
C30.0414 (8)0.0401 (9)0.0334 (7)0.0026 (7)0.0052 (6)0.0036 (7)
C40.0504 (10)0.0456 (10)0.0413 (9)0.0026 (8)0.0054 (7)0.0029 (7)
C50.0724 (12)0.0439 (10)0.0483 (10)0.0095 (9)0.0115 (9)0.0041 (8)
C60.0619 (11)0.0535 (11)0.0518 (10)0.0221 (9)0.0104 (8)0.0061 (9)
C70.0448 (9)0.0581 (11)0.0449 (9)0.0111 (8)0.0036 (7)0.0085 (8)
C80.0407 (8)0.0453 (9)0.0370 (8)0.0042 (7)0.0039 (6)0.0073 (7)
C90.0392 (9)0.0560 (11)0.0590 (10)0.0046 (8)0.0103 (8)0.0031 (9)
C100.0466 (9)0.0557 (10)0.0473 (9)0.0079 (8)0.0096 (7)0.0108 (8)
C110.0345 (8)0.0387 (8)0.0374 (8)0.0000 (7)0.0007 (6)0.0002 (7)
C120.0353 (8)0.0350 (8)0.0387 (8)0.0039 (6)0.0013 (6)0.0001 (6)
C130.0308 (8)0.0452 (9)0.0426 (9)0.0013 (7)0.0004 (6)0.0061 (7)
C140.0410 (9)0.0456 (10)0.0546 (10)0.0010 (7)0.0009 (7)0.0059 (8)
C150.0467 (10)0.0495 (10)0.0836 (14)0.0020 (8)0.0064 (9)0.0214 (10)
C160.0471 (11)0.0805 (15)0.0706 (13)0.0016 (10)0.0123 (9)0.0361 (11)
C170.0540 (11)0.0865 (15)0.0478 (10)0.0040 (10)0.0096 (8)0.0133 (10)
C180.0500 (10)0.0549 (10)0.0477 (9)0.0008 (8)0.0049 (7)0.0039 (8)
Geometric parameters (Å, º) top
N1—C11.3431 (19)C9—C101.517 (2)
N1—C21.3471 (17)C9—H9A0.9700
N2—C11.3442 (18)C9—H9B0.9700
N2—C121.3469 (17)C10—C111.512 (2)
N3—C11.3603 (19)C10—H10A0.9700
N3—H3A0.880 (9)C10—H10B0.9700
N3—H3B0.876 (9)C11—C121.394 (2)
C2—C111.392 (2)C12—C131.492 (2)
C2—C31.481 (2)C13—C141.389 (2)
C3—C41.397 (2)C13—C181.392 (2)
C3—C81.399 (2)C14—C151.381 (2)
C4—C51.380 (2)C14—H140.9300
C4—H40.9300C15—C161.380 (3)
C5—C61.382 (2)C15—H150.9300
C5—H50.9300C16—C171.372 (3)
C6—C71.373 (2)C16—H160.9300
C6—H60.9300C17—C181.382 (2)
C7—C81.391 (2)C17—H170.9300
C7—H70.9300C18—H180.9300
C8—C91.503 (2)
C1—N1—C2115.74 (12)C10—C9—H9B109.5
C1—N2—C12116.21 (12)H9A—C9—H9B108.1
C1—N3—H3A116.0 (12)C11—C10—C9110.71 (13)
C1—N3—H3B118.0 (12)C11—C10—H10A109.5
H3A—N3—H3B119.9 (17)C9—C10—H10A109.5
N1—C1—N2126.45 (12)C11—C10—H10B109.5
N1—C1—N3116.72 (13)C9—C10—H10B109.5
N2—C1—N3116.83 (14)H10A—C10—H10B108.1
N1—C2—C11122.67 (13)C2—C11—C12116.35 (13)
N1—C2—C3117.81 (12)C2—C11—C10118.82 (13)
C11—C2—C3119.52 (13)C12—C11—C10124.83 (13)
C4—C3—C8119.60 (14)N2—C12—C11122.05 (13)
C4—C3—C2121.79 (13)N2—C12—C13115.43 (13)
C8—C3—C2118.60 (13)C11—C12—C13122.48 (12)
C5—C4—C3120.48 (15)C14—C13—C18118.54 (15)
C5—C4—H4119.8C14—C13—C12121.31 (14)
C3—C4—H4119.8C18—C13—C12120.07 (14)
C4—C5—C6119.86 (16)C15—C14—C13120.24 (17)
C4—C5—H5120.1C15—C14—H14119.9
C6—C5—H5120.1C13—C14—H14119.9
C7—C6—C5120.01 (16)C16—C15—C14120.64 (18)
C7—C6—H6120.0C16—C15—H15119.7
C5—C6—H6120.0C14—C15—H15119.7
C6—C7—C8121.35 (15)C17—C16—C15119.61 (17)
C6—C7—H7119.3C17—C16—H16120.2
C8—C7—H7119.3C15—C16—H16120.2
C7—C8—C3118.63 (15)C16—C17—C18120.24 (19)
C7—C8—C9122.18 (14)C16—C17—H17119.9
C3—C8—C9119.14 (13)C18—C17—H17119.9
C8—C9—C10110.69 (13)C17—C18—C13120.71 (17)
C8—C9—H9A109.5C17—C18—H18119.6
C10—C9—H9A109.5C13—C18—H18119.6
C8—C9—H9B109.5
C2—N1—C1—N25.6 (2)N1—C2—C11—C121.8 (2)
C2—N1—C1—N3174.53 (13)C3—C2—C11—C12177.68 (13)
C12—N2—C1—N10.6 (2)N1—C2—C11—C10178.31 (13)
C12—N2—C1—N3179.57 (13)C3—C2—C11—C102.2 (2)
C1—N1—C2—C114.2 (2)C9—C10—C11—C235.1 (2)
C1—N1—C2—C3176.37 (12)C9—C10—C11—C12144.99 (15)
N1—C2—C3—C420.1 (2)C1—N2—C12—C116.1 (2)
C11—C2—C3—C4159.39 (13)C1—N2—C12—C13171.58 (12)
N1—C2—C3—C8158.98 (13)C2—C11—C12—N27.2 (2)
C11—C2—C3—C821.5 (2)C10—C11—C12—N2172.89 (14)
C8—C3—C4—C50.1 (2)C2—C11—C12—C13170.33 (13)
C2—C3—C4—C5178.94 (13)C10—C11—C12—C139.6 (2)
C3—C4—C5—C61.6 (2)N2—C12—C13—C1448.08 (19)
C4—C5—C6—C71.5 (2)C11—C12—C13—C14134.24 (15)
C5—C6—C7—C80.5 (2)N2—C12—C13—C18128.54 (15)
C6—C7—C8—C32.2 (2)C11—C12—C13—C1849.1 (2)
C6—C7—C8—C9179.69 (14)C18—C13—C14—C150.2 (2)
C4—C3—C8—C72.0 (2)C12—C13—C14—C15176.87 (13)
C2—C3—C8—C7177.07 (13)C13—C14—C15—C161.2 (2)
C4—C3—C8—C9179.58 (14)C14—C15—C16—C171.0 (3)
C2—C3—C8—C90.5 (2)C15—C16—C17—C180.0 (3)
C7—C8—C9—C10145.78 (15)C16—C17—C18—C131.0 (3)
C3—C8—C9—C1036.76 (19)C14—C13—C18—C170.9 (2)
C8—C9—C10—C1152.98 (18)C12—C13—C18—C17175.85 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···N1i0.88 (1)2.30 (1)3.162 (2)166 (2)
N3—H3A···N2ii0.88 (1)2.37 (1)3.1868 (19)154 (2)
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC18H15N3
Mr273.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.902 (2), 6.906 (1), 18.577 (3)
β (°) 94.85 (1)
V3)1393.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.58 × 0.54 × 0.24
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2919, 2448, 1810
Rint0.022
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.102, 1.01
No. of reflections2448
No. of parameters199
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.18

Computer programs: XSCANS (Siemens, 1994), XSCANS, SHELXTL (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
N1—C11.3431 (19)N3—C11.3603 (19)
N1—C21.3471 (17)C2—C111.392 (2)
N2—C11.3442 (18)C9—C101.517 (2)
N2—C121.3469 (17)C11—C121.394 (2)
C1—N1—C2115.74 (12)N1—C2—C11122.67 (13)
C1—N2—C12116.21 (12)N1—C2—C3117.81 (12)
N1—C1—N2126.45 (12)N2—C12—C11122.05 (13)
N1—C1—N3116.72 (13)N2—C12—C13115.43 (13)
N2—C1—N3116.83 (14)
C11—C2—C3—C821.5 (2)C8—C9—C10—C1152.98 (18)
C2—C3—C8—C90.5 (2)C3—C2—C11—C102.2 (2)
C3—C8—C9—C1036.76 (19)C9—C10—C11—C235.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···N1i0.876 (9)2.304 (10)3.162 (2)166.2 (17)
N3—H3A···N2ii0.880 (9)2.370 (12)3.1868 (19)154.4 (15)
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+2, y1/2, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds