Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C30H28N2O6, is a soluble precursor (`latent pigment') of quinacridone pigments. The mol­ecule has inversion symmetry. The tert-butoxy­carbonyl group attached to the N atom of the acridine skeleton is twisted by 55.57 (8)° from the heterocyclic ring to which it is attached. The condensed ring system is not entirely planar, and the dihedral angle between the cental benzene ring and the neighboring ring is 174.56 (6)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803005324/ob6222sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803005324/ob6222Isup2.hkl
Contains datablock I

CCDC reference: 209953

Key indicators

  • Single-crystal X-ray study
  • T = 93 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.042
  • wR factor = 0.075
  • Data-to-parameter ratio = 13.0

checkCIF results

No syntax errors found
Problems with publication fields


Red Alert Alert Level A:
PUBL_003 Alert A The contact author's name is missing, _publ_contact_author_name. ADDSYM reports no extra symmetry
1 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
0 Alert Level C = Please check

Comment top

The title compound, (I), is a soluble yellow precursor (`latent pigment') (Zambounis et al., 1996, 1997) of quinacridone pigments (QA) (Herbst & Hunger, 1997) that are known as industrially important red pigments. The soluble precursor is prepared by replacing the H atom of the NH group with a tert-butoxycarbonyl (t-BOC) group, hereafter called t-BOC QA. The insoluble parent QA can then be regenerated by thermochemical treatment of the precursor. The present `latent pigment technology' is a versatile and promising technique for the preparation of nano pigment particles, as well as transparent pigmented thin films, etc. The crystal structure of the parent QA has previously been reported by Potts et al. (1994) and by us (Mizuguchi et al., 2002). The present paper describes the crystal structure of t-BOC QA, (I).

The title compound crystallizes in space group P21/n and the molecule belongs to the molecular symmetry of Ci (Fig. 1). The t-BOC groups attached to the N atom of the acridine skeleton are symmetrically twisted to the heterocyclic ring by 55.57 (8)° (N1/C11/O2/O3 and N1/C1/C2/C7/C8/C10). The condensed ring system is not entirely planar. The dihedral angles between two condensed rings are 174.56 (6)° [N1/C1/C2/C7/C8/C10 and C8–C10/C8i–C10i; symmetry code: (i) 1 − x, −y, 1 − z] and 179.11 (8)° (N1/C1/C2/C7/C8/C10 and C2–C7). The molecules are stacked along the a axis.

Experimental top

The title compound (I) was prepared according to the method described in the literature (Zambounis et al., 1996). Single crystals of (I) were grown from an acetonitrile solution.

Refinement top

All H atoms were positioned by calculation but not refined.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: TEXSAN (Molecular Structure Corporation, 2001); program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: TEXSAN; molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), showing ellipsoids at the 50% probability level for non-H atoms.
(I) top
Crystal data top
C30H28N2O6F(000) = 540
Mr = 512.56Dx = 1.373 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.5418 Å
a = 14.020 (2) ÅCell parameters from 8483 reflections
b = 6.5225 (8) Åθ = 3.3–68.1°
c = 14.153 (2) ŵ = 0.79 mm1
β = 106.704 (9)°T = 93 K
V = 1239.6 (3) Å3Hexagonal, colorless
Z = 20.15 × 0.15 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID Imaging Plate
diffractometer
1276 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.043
48 frames, delta ω = 15 deg scansθmax = 68.1°
Absorption correction: multi-scan
(Higashi, 1995)
h = 1616
Tmin = 0.791, Tmax = 0.924k = 77
10974 measured reflectionsl = 1716
2242 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.015P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075(Δ/σ)max = 0.001
S = 1.22Δρmax = 0.22 e Å3
2240 reflectionsΔρmin = 0.30 e Å3
172 parameters
Crystal data top
C30H28N2O6V = 1239.6 (3) Å3
Mr = 512.56Z = 2
Monoclinic, P21/nCu Kα radiation
a = 14.020 (2) ŵ = 0.79 mm1
b = 6.5225 (8) ÅT = 93 K
c = 14.153 (2) Å0.15 × 0.15 × 0.10 mm
β = 106.704 (9)°
Data collection top
Rigaku R-AXIS RAPID Imaging Plate
diffractometer
2242 independent reflections
Absorption correction: multi-scan
(Higashi, 1995)
1276 reflections with F2 > 2σ(F2)
Tmin = 0.791, Tmax = 0.924Rint = 0.043
10974 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042172 parameters
wR(F2) = 0.075H-atom parameters constrained
S = 1.22Δρmax = 0.22 e Å3
2240 reflectionsΔρmin = 0.30 e Å3
Special details top

Refinement. Refinement using reflections with F2 > −10.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4729 (1)0.2002 (3)0.7325 (1)0.0310 (5)
O20.6930 (1)0.5357 (3)0.4293 (1)0.0311 (5)
O30.7469 (1)0.2143 (2)0.4809 (1)0.0248 (5)
N10.6229 (1)0.3498 (3)0.5324 (1)0.0226 (6)
C10.5124 (2)0.2518 (4)0.6691 (2)0.0248 (7)
C20.5692 (2)0.4438 (4)0.6753 (2)0.0232 (7)
C30.5717 (2)0.5818 (4)0.7523 (2)0.0272 (8)
C40.6264 (2)0.7592 (4)0.7642 (2)0.0281 (7)
C50.6807 (2)0.8019 (4)0.6975 (2)0.0272 (7)
C60.6798 (2)0.6708 (4)0.6210 (2)0.0258 (7)
C70.6224 (2)0.4897 (4)0.6082 (2)0.0240 (7)
C80.5619 (2)0.1732 (4)0.5160 (2)0.0228 (7)
C90.5527 (2)0.0484 (4)0.4339 (2)0.0246 (7)
C100.5076 (2)0.1237 (4)0.5820 (2)0.0211 (7)
C110.6905 (2)0.3809 (4)0.4740 (2)0.0266 (8)
C120.8130 (2)0.1908 (4)0.4146 (2)0.0276 (7)
C130.8959 (2)0.3490 (4)0.4427 (2)0.0362 (8)
C140.7512 (2)0.2046 (4)0.3082 (2)0.0314 (7)
C150.8531 (2)0.0251 (4)0.4405 (2)0.0333 (8)
H10.53470.54950.79880.0352*
H20.62740.85180.81720.0383*
H30.72140.92790.70510.0381*
H40.71860.70420.57540.0367*
H50.59090.08090.38770.0325*
H60.93290.33590.50940.0459*
H70.86580.48600.43390.0459*
H80.93780.33990.40130.0459*
H90.71790.33570.29470.0413*
H100.79130.19020.26390.0413*
H110.70060.10050.29190.0413*
H120.89640.06310.40200.0411*
H130.79920.12250.42700.0411*
H140.88900.03470.50850.0411*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.036 (1)0.035 (1)0.0247 (9)0.0042 (9)0.0127 (8)0.0023 (9)
O20.034 (1)0.029 (1)0.0327 (10)0.0014 (9)0.0135 (8)0.0048 (9)
O30.0224 (9)0.029 (1)0.0231 (9)0.0021 (9)0.0073 (7)0.0001 (8)
N10.021 (1)0.026 (1)0.021 (1)0.001 (1)0.0079 (9)0.0022 (9)
C10.021 (1)0.028 (2)0.022 (1)0.006 (1)0.001 (1)0.002 (1)
C20.021 (1)0.026 (2)0.020 (1)0.001 (1)0.003 (1)0.000 (1)
C30.025 (1)0.032 (2)0.022 (1)0.003 (1)0.004 (1)0.002 (1)
C40.028 (1)0.031 (2)0.022 (1)0.000 (1)0.002 (1)0.005 (1)
C50.023 (1)0.028 (2)0.025 (1)0.001 (1)0.002 (1)0.000 (1)
C60.021 (1)0.030 (2)0.023 (1)0.002 (1)0.002 (1)0.002 (1)
C70.023 (1)0.026 (2)0.020 (1)0.003 (1)0.001 (1)0.001 (1)
C80.018 (1)0.024 (1)0.024 (1)0.003 (1)0.002 (1)0.002 (1)
C90.019 (1)0.032 (2)0.022 (1)0.002 (1)0.004 (1)0.003 (1)
C100.020 (1)0.025 (1)0.018 (1)0.003 (1)0.004 (1)0.000 (1)
C110.024 (1)0.033 (2)0.020 (1)0.005 (1)0.002 (1)0.005 (1)
C120.025 (1)0.034 (2)0.026 (1)0.004 (1)0.010 (1)0.003 (1)
C130.029 (2)0.043 (2)0.039 (2)0.006 (1)0.013 (1)0.007 (1)
C140.034 (1)0.034 (2)0.027 (1)0.001 (1)0.011 (1)0.001 (1)
C150.032 (2)0.033 (2)0.035 (2)0.004 (1)0.010 (1)0.000 (1)
Geometric parameters (Å, º) top
O1—C11.229 (3)C6—H40.981
O2—C111.198 (3)C8—C91.393 (3)
O3—C111.331 (3)C8—C101.403 (3)
O3—C121.504 (3)C9—C10i1.384 (3)
N1—C71.410 (3)C9—H50.980
N1—C81.413 (3)C12—C131.520 (3)
N1—C111.439 (3)C12—C141.509 (3)
C1—C21.474 (3)C12—C151.522 (3)
C1—C101.474 (3)C13—H60.940
C2—C31.406 (3)C13—H70.981
C2—C71.398 (3)C13—H80.944
C3—C41.371 (3)C14—H90.966
C3—H10.972C14—H100.960
C4—C51.401 (3)C14—H110.961
C4—H20.960C15—H120.958
C5—C61.377 (3)C15—H130.963
C5—H30.989C15—H140.951
C6—C71.411 (3)
O1···O2ii3.249 (2)C4···C10vi3.551 (3)
O1···C13iii3.460 (3)C5···C10vi3.269 (3)
O1···C4iv3.543 (3)C5···C9ii3.409 (3)
O2···C1ii3.138 (3)C5···C7vii3.510 (3)
O2···C2ii3.550 (3)C5···C8vi3.575 (3)
O2···C10ii3.552 (3)C6···C8ii3.535 (3)
O3···C4v3.545 (3)C6···C10ii3.551 (3)
N1···C7ii3.598 (3)C7···C8ii3.462 (3)
C2···C5v3.572 (3)C13···C13viii3.509 (5)
C4···C9ii3.420 (3)
C11—O3—C12119.8 (2)C1—C10—C8121.5 (2)
C7—N1—C8121.2 (2)C1—C10—C9i118.4 (2)
C7—N1—C11119.6 (2)C8—C10—C9i120.1 (2)
C8—N1—C11119.2 (2)O2—C11—O3128.3 (2)
O1—C1—C2122.6 (2)O2—C11—N1123.2 (2)
O1—C1—C10122.2 (2)O3—C11—N1108.5 (2)
C2—C1—C10115.2 (2)O3—C12—C13109.2 (2)
C1—C2—C3118.9 (2)O3—C12—C14109.7 (2)
C1—C2—C7121.8 (2)O3—C12—C15101.3 (2)
C3—C2—C7119.4 (2)C13—C12—C14113.4 (2)
C2—C3—C4121.6 (2)C13—C12—C15111.3 (2)
C2—C3—H1119.1C14—C12—C15111.2 (2)
C4—C3—H1119.3C12—C13—H6111.2
C3—C4—C5118.5 (2)C12—C13—H7108.5
C3—C4—H2120.6C12—C13—H8111.1
C5—C4—H2120.8H6—C13—H7107.7
C4—C5—C6121.5 (2)H6—C13—H8110.8
C4—C5—H3120.1H7—C13—H8107.4
C6—C5—H3118.5C12—C14—H9110.9
C5—C6—C7119.8 (2)C12—C14—H10111.7
C5—C6—H4119.8C12—C14—H11111.7
C7—C6—H4120.3H9—C14—H10107.3
N1—C7—C2119.9 (2)H9—C14—H11107.2
N1—C7—C6120.8 (2)H10—C14—H11107.8
C2—C7—C6119.2 (2)C12—C15—H12110.7
N1—C8—C9121.3 (2)C12—C15—H13110.4
N1—C8—C10119.8 (2)C12—C15—H14110.8
C9—C8—C10118.9 (2)H12—C15—H13107.8
C8—C9—C10i121.0 (2)H12—C15—H14108.8
C8—C9—H5119.5H13—C15—H14108.3
C10i—C9—H5119.5
O1—C1—C2—C35.4 (3)C2—C1—C10—C9i173.6 (2)
O1—C1—C2—C7173.1 (2)C2—C3—C4—C50.0 (4)
O1—C1—C10—C8172.9 (2)C2—C7—N1—C86.9 (3)
O1—C1—C10—C9i7.4 (3)C2—C7—N1—C11169.6 (2)
O2—C11—O3—C1210.8 (4)C2—C7—C6—C51.6 (3)
O2—C11—N1—C756.1 (3)C3—C2—C1—C10175.6 (2)
O2—C11—N1—C8127.2 (2)C3—C2—C7—C61.9 (3)
O3—C11—N1—C7122.9 (2)C3—C4—C5—C60.2 (4)
O3—C11—N1—C853.7 (3)C4—C3—C2—C71.1 (3)
N1—C7—C2—C10.3 (3)C4—C5—C6—C70.6 (4)
N1—C7—C2—C3178.2 (2)C6—C7—N1—C8176.9 (2)
N1—C7—C6—C5177.9 (2)C6—C7—N1—C116.6 (3)
N1—C8—C9—C10i179.6 (2)C7—N1—C8—C9171.9 (2)
N1—C8—C10—C10.1 (3)C7—N1—C8—C106.7 (3)
N1—C8—C10—C9i179.6 (2)C7—C2—C1—C105.9 (3)
N1—C11—O3—C12170.3 (2)C9—C8—N1—C1111.5 (3)
C1—C2—C3—C4177.5 (2)C10—C8—N1—C11169.9 (2)
C1—C2—C7—C6176.6 (2)C11—O3—C12—C1368.2 (2)
C1—C10—C8—C9178.7 (2)C11—O3—C12—C1456.7 (3)
C1—C10—C9i—C8i178.7 (2)C11—O3—C12—C15174.3 (2)
C2—C1—C10—C86.1 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x1/2, y+1/2, z+1/2; (iv) x, y1, z; (v) x+3/2, y1/2, z+3/2; (vi) x, y+1, z; (vii) x+3/2, y+1/2, z+3/2; (viii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC30H28N2O6
Mr512.56
Crystal system, space groupMonoclinic, P21/n
Temperature (K)93
a, b, c (Å)14.020 (2), 6.5225 (8), 14.153 (2)
β (°) 106.704 (9)
V3)1239.6 (3)
Z2
Radiation typeCu Kα
µ (mm1)0.79
Crystal size (mm)0.15 × 0.15 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID Imaging Plate
diffractometer
Absorption correctionMulti-scan
(Higashi, 1995)
Tmin, Tmax0.791, 0.924
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
10974, 2242, 1276
Rint0.043
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.075, 1.22
No. of reflections2240
No. of parameters172
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.30

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO, TEXSAN (Molecular Structure Corporation, 2001), SHELXS86 (Sheldrick, 1985), TEXSAN, ORTEPIII (Burnett & Johnson, 1996).

Selected geometric parameters (Å, º) top
O1—C11.229 (3)C2—C31.406 (3)
O2—C111.198 (3)C2—C71.398 (3)
O3—C111.331 (3)C3—C41.371 (3)
O3—C121.504 (3)C4—C51.401 (3)
N1—C71.410 (3)C5—C61.377 (3)
N1—C81.413 (3)C6—C71.411 (3)
N1—C111.439 (3)C8—C91.393 (3)
C1—C21.474 (3)C8—C101.403 (3)
C1—C101.474 (3)C9—C10i1.384 (3)
O2—C11—N1—C756.1 (3)N1—C7—C2—C3178.2 (2)
O2—C11—N1—C8127.2 (2)C1—C2—C7—C6176.6 (2)
O3—C11—N1—C7122.9 (2)C1—C10—C8—C9178.7 (2)
O3—C11—N1—C853.7 (3)
Symmetry code: (i) x+1, y, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds