Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the crystal structure of the title compound, 4,5-ethyl­ene­dioxy­[1,2,5]­thia­diazo­lotetra­thia­fulvalene, C8H4N2O2S5, a large number of short intermolecular S...S contacts are observed. The mol­ecules stack along the c axis in a face-to-face fashion.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802023723/ob6206sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802023723/ob6206Isup2.hkl
Contains datablock I

CCDC reference: 204684

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.017 Å
  • R factor = 0.063
  • wR factor = 0.174
  • Data-to-parameter ratio = 8.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_360 Alert C Short C(sp3)-C(sp3) Bond C(7) - C(8) = 1.40 Ang. General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 74.15 From the CIF: _reflns_number_total 1303 Count of symmetry unique reflns 1302 Completeness (_total/calc) 100.08% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1 Fraction of Friedel pairs measured 0.001 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

In recent years tetrathiafulvalene (TTF) derivatives with a fused 1,2,5-thiadiazole ring have received much attention as component molecules for organic conducting solids (Tomura et al., 1993; Underhill et al., 1993; Naito et al., 1996; Tomura & Yamashita, 1997). Intermolecular interactions caused by S···N and S···S heteroatom contacts may increase the dimensionality in the solid state (Yamashita & Tomura, 1998). The title unsymmetrical TTF derivative (I) contains a fused 1,2,5-thiadiazole ring and an ethylenedioxy group. Two superconductors based on bis(ethylenedioxy)tetrathiafulvalene (BEDO-TTF) are known to date (Beno et al., 1990; Kahlich et al., 1991). We report here the molecular and crystal structures of (I).

Compound (I) crystallizes in the Pna21 space group. Its molecular structure is shown in Fig. 1 and selected geometric parameters are given in Table 1. The molecule of (I) is bent slightly at the central C1=C4 bond. The dihedral angle between the two least-squares planes (S1/S2/S5/N1/N2/C1/C2/C3 and S3/S4/O1/O2/C4/C5/C6) is 12.4 (4)°. The maximum and r.m.s. deviations of fitted atoms from the least-squares plane for all non-H atoms are 0.49 (1) for C8 and 0.20 Å, respectively. The geometric parameters of the 1,2,5-thiadiazole ring in (I) are almost same as those of 3,4-diphenyl-1,2,5-thiadiazole (Mellini & Merlino, 1976).

Fig. 2 shows the packing of (I), viewed along the c axis. A large number of short intermolecular S···S contacts within the sum of the corresponding van der Waals radii (Pauling, 1960) are observed (Table 2), but no short heteroatom contacts involving the N and O atoms exist in the crystal. Two types of dimers are formed via the short S···S contacts. One is composed of two parallel molecules and the other is formed by a T-shaped molecular arrangement. The molecules stack along the c axis, where the distance between the molecular planes is 3.59 (1) Å. TTF derivatives with a fused 1,2,5-thiadiazole ring tend to stack in a head-to-tail fashion (Tomura & Yamashita, 2001). In the stacking of (I), however, the molecules overlap face-to-face with each other.

Experimental top

The title compound was synthesized according to the literature method of Tomura & Yamashita (1997). Orange crystals of (I) suitable for X-ray analysis were grown from a toluene solution.

Refinement top

All H atoms were placed in geometrically calculated positions and refined by using a riding model, with C—H set to 0.97 Å. The short C7—C8 bond length [1.40 (2) Å] may be due to the positional disorder of the C7 and C8 atoms. This type of the disorder is often observed in TTF derivatives with an ethylenedithio or ethylenedioxy group.

Computing details top

Data collection: CAD-4 EXPRESS Software (Enraf-Nonius, 1992); cell refinement: CAD-4 EXPRESS Software; data reduction: TEXSAN (Molecular Structure Corporation/Rigaku Corporation, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), with the atomic numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level..
[Figure 2] Fig. 2. Packing diagram of (I), viewed along the c axis. Dashed lines indicate the short intermolecular S···S contacts.
5-(4,5-ethylenedioxy-1,3-dithiol-2-ylidene)-1,3,2,4,6-diazatrithiapentalene top
Crystal data top
C8H4N2O2S5F(000) = 648
Mr = 320.43Dx = 1.892 Mg m3
Orthorhombic, Pna21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2c -2nCell parameters from 18 reflections
a = 21.7363 (10) Åθ = 14.1–42.7°
b = 12.9552 (6) ŵ = 9.43 mm1
c = 3.9938 (5) ÅT = 296 K
V = 1124.65 (16) Å3Needle, orange
Z = 40.40 × 0.04 × 0.02 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
791 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 74.2°, θmin = 4.0°
ω–2θ scansh = 270
Absorption correction: ψ scan
(North et al., 1968)
k = 016
Tmin = 0.116, Tmax = 0.834l = 40
1303 measured reflections3 standard reflections every 120 min
1303 independent reflections intensity decay: 0.4%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.174 w = 1/[σ2(Fo2) + (0.0859P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1303 reflectionsΔρmax = 0.61 e Å3
154 parametersΔρmin = 0.87 e Å3
1 restraintAbsolute structure: (Flack, 1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (10)
Crystal data top
C8H4N2O2S5V = 1124.65 (16) Å3
Mr = 320.43Z = 4
Orthorhombic, Pna21Cu Kα radiation
a = 21.7363 (10) ŵ = 9.43 mm1
b = 12.9552 (6) ÅT = 296 K
c = 3.9938 (5) Å0.40 × 0.04 × 0.02 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
791 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.116, Tmax = 0.8343 standard reflections every 120 min
1303 measured reflections intensity decay: 0.4%
1303 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.174Δρmax = 0.61 e Å3
S = 1.05Δρmin = 0.87 e Å3
1303 reflectionsAbsolute structure: (Flack, 1983)
154 parametersAbsolute structure parameter: 0.03 (10)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

6.8741 (0.0333) x + 3.9058 (0.0249) y + 3.5924 (0.0043) z = 6.0903 (0.0322)

* −0.1884 (0.0062) S1 * −0.2435 (0.0062) S2 * −0.1307 (0.0063) S3 * −0.2440 (0.0060) S4 * 0.2684 (0.0070) S5 * 0.1640 (0.0114) O1 * 0.0838 (0.0105) O2 * 0.1699 (0.0104) N1 * 0.1283 (0.0105) N2 * −0.2052 (0.0138) C1 * 0.0320 (0.0138) C2 * 0.0094 (0.0138) C3 * −0.1888 (0.0144) C4 * 0.0472 (0.0129) C5 * 0.0151 (0.0139) C6 * −0.2029 (0.0171) C7 * 0.4854 (0.0137) C8

Rms deviation of fitted atoms = 0.2001

8.9585 (0.0542) x + 3.1201 (0.0352) y + 3.5094 (0.0060) z = 5.8997 (0.0420)

Angle to previous plane (with approximate e.s.d.) = 6.61 (0.29)

* −0.0482 (0.0074) S1 * −0.0522 (0.0075) S2 * 0.0011 (0.0071) S5 * 0.0029 (0.0086) N1 * 0.0064 (0.0086) N2 * 0.0680 (0.0089) C1 * 0.0110 (0.0131) C2 * 0.0111 (0.0132) C3

Rms deviation of fitted atoms = 0.0353

5.4544 (0.0728) x + 4.9899 (0.0399) y + 3.5468 (0.0058) z = 6.1595 (0.0419)

Angle to previous plane (with approximate e.s.d.) = 12.43 (0.35)

* −0.0341 (0.0072) S3 * −0.0516 (0.0073) S4 * −0.0087 (0.0076) O1 * 0.0044 (0.0073) O2 * 0.0514 (0.0085) C4 * 0.0140 (0.0115) C5 * 0.0245 (0.0126) C6

Rms deviation of fitted atoms = 0.0324

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.30528 (12)0.8612 (2)0.1225 (12)0.0400 (10)
S20.37929 (13)1.0282 (2)0.2161 (11)0.0361 (8)
S30.42294 (13)0.7100 (2)0.0777 (11)0.0372 (8)
S40.49339 (12)0.8760 (2)0.2692 (10)0.0339 (9)
S50.21400 (13)1.1375 (2)0.1239 (13)0.0450 (10)
O10.5248 (4)0.5955 (6)0.089 (4)0.052 (3)
O20.5931 (3)0.7572 (6)0.240 (3)0.047 (3)
N10.2193 (4)1.0138 (7)0.221 (3)0.034 (3)
N20.2819 (4)1.1522 (6)0.061 (3)0.034 (3)
C10.3768 (5)0.9011 (8)0.062 (4)0.030 (3)
C20.2736 (5)0.9833 (8)0.112 (4)0.032 (3)
C30.3085 (5)1.0641 (8)0.049 (4)0.032 (3)
C40.4241 (5)0.8373 (8)0.079 (4)0.032 (3)
C50.5012 (5)0.6895 (8)0.000 (3)0.027 (3)
C60.5327 (5)0.7637 (8)0.150 (4)0.033 (3)
C70.5815 (6)0.5801 (12)0.105 (6)0.069 (6)
H7A0.60310.51990.02110.083*
H7B0.57120.56790.33760.083*
C80.6197 (5)0.6668 (9)0.080 (4)0.039 (4)
H8A0.65900.65140.18450.047*
H8B0.62730.68180.15400.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0326 (15)0.0237 (13)0.064 (3)0.0023 (11)0.010 (2)0.0012 (19)
S20.0299 (14)0.0264 (14)0.052 (2)0.0008 (12)0.0046 (18)0.0042 (19)
S30.0343 (15)0.0261 (13)0.051 (2)0.0009 (12)0.007 (2)0.0079 (19)
S40.0296 (14)0.0257 (14)0.047 (2)0.0016 (11)0.0014 (17)0.0053 (16)
S50.0346 (15)0.0323 (14)0.068 (3)0.0073 (13)0.002 (2)0.004 (2)
O10.047 (5)0.034 (4)0.074 (8)0.008 (4)0.021 (7)0.013 (6)
O20.028 (4)0.041 (5)0.071 (8)0.013 (4)0.001 (6)0.022 (6)
N10.026 (4)0.029 (5)0.046 (8)0.000 (4)0.002 (6)0.003 (6)
N20.021 (5)0.019 (4)0.063 (9)0.007 (4)0.001 (6)0.002 (5)
C10.033 (6)0.019 (5)0.037 (8)0.005 (5)0.015 (7)0.001 (6)
C20.035 (6)0.030 (6)0.031 (8)0.005 (5)0.006 (8)0.011 (7)
C30.024 (6)0.021 (6)0.051 (10)0.002 (4)0.003 (7)0.010 (6)
C40.025 (6)0.027 (6)0.043 (9)0.007 (5)0.006 (7)0.003 (7)
C50.023 (5)0.024 (5)0.035 (9)0.009 (4)0.001 (6)0.002 (6)
C60.031 (6)0.024 (6)0.045 (10)0.006 (5)0.007 (7)0.004 (7)
C70.055 (9)0.082 (12)0.071 (14)0.053 (9)0.008 (10)0.007 (12)
C80.030 (6)0.044 (7)0.045 (10)0.019 (6)0.002 (8)0.003 (8)
Geometric parameters (Å, º) top
S1—C21.726 (11)O2—C61.363 (12)
S1—C11.796 (12)O2—C81.453 (14)
S2—C31.740 (12)N1—C21.317 (14)
S2—C11.758 (12)N2—C31.281 (12)
S3—C51.751 (11)C1—C41.322 (14)
S3—C41.765 (12)C2—C31.444 (16)
S4—C61.754 (11)C5—C61.323 (16)
S4—C41.759 (12)C7—C81.400 (18)
S5—N11.653 (9)C7—H7A0.9700
S5—N21.662 (10)C7—H7B0.9700
O1—C51.369 (12)C8—H8A0.9700
O1—C71.468 (19)C8—H8B0.9700
S1···S5i3.541 (5)S4···S2iv3.519 (5)
S1···S5ii3.547 (5)S5···S1v3.541 (5)
S2···S4iii3.519 (5)S5···S1vi3.547 (5)
S3···S5i3.610 (5)S5···S3v3.610 (5)
C2—S1—C194.1 (6)S4—C4—S3115.6 (6)
C3—S2—C195.1 (5)C6—C5—O1124.8 (10)
C5—S3—C493.7 (5)C6—C5—S3118.2 (8)
C6—S4—C493.6 (6)O1—C5—S3116.9 (8)
N1—S5—N298.8 (5)C5—C6—O2124.9 (10)
C5—O1—C7107.3 (11)C5—C6—S4118.3 (8)
C6—O2—C8108.6 (9)O2—C6—S4116.7 (9)
C2—N1—S5106.0 (8)C8—C7—O1110.6 (12)
C3—N2—S5106.4 (8)C8—C7—H7A109.5
C4—C1—S2122.9 (9)O1—C7—H7A109.5
C4—C1—S1121.0 (9)C8—C7—H7B109.5
S2—C1—S1116.1 (6)O1—C7—H7B109.5
N1—C2—C3113.6 (10)H7A—C7—H7B108.1
N1—C2—S1128.6 (10)C7—C8—O2112.3 (11)
C3—C2—S1117.7 (9)C7—C8—H8A109.1
N2—C3—C2115.2 (10)O2—C8—H8A109.1
N2—C3—S2128.5 (9)C7—C8—H8B109.1
C2—C3—S2116.2 (8)O2—C8—H8B109.1
C1—C4—S4120.7 (9)H8A—C8—H8B107.9
C1—C4—S3123.7 (9)
N2—S5—N1—C20.2 (12)S1—C1—C4—S30.7 (18)
N1—S5—N2—C30.1 (12)C6—S4—C4—C1173.3 (12)
C3—S2—C1—C4171.5 (13)C6—S4—C4—S37.4 (10)
C3—S2—C1—S18.5 (10)C5—S3—C4—C1173.9 (13)
C2—S1—C1—C4171.5 (12)C5—S3—C4—S46.8 (9)
C2—S1—C1—S28.4 (10)C7—O1—C5—C618.5 (19)
S5—N1—C2—C30.2 (16)C7—O1—C5—S3159.1 (11)
S5—N1—C2—S1177.2 (11)C4—S3—C5—C63.2 (13)
C1—S1—C2—N1178.2 (15)C4—S3—C5—O1179.0 (12)
C1—S1—C2—C34.9 (13)O1—C5—C6—O21 (2)
S5—N2—C3—C20.0 (16)S3—C5—C6—O2177.1 (11)
S5—N2—C3—S2177.0 (11)O1—C5—C6—S4176.1 (11)
N1—C2—C3—N20 (2)S3—C5—C6—S41.5 (17)
S1—C2—C3—N2177.5 (12)C8—O2—C6—C512 (2)
N1—C2—C3—S2177.3 (12)C8—O2—C6—S4172.1 (10)
S1—C2—C3—S20.1 (16)C4—S4—C6—C55.4 (14)
C1—S2—C3—N2177.8 (15)C4—S4—C6—O2178.7 (11)
C1—S2—C3—C25.2 (13)C5—O1—C7—C849.7 (17)
S2—C1—C4—S41.5 (18)O1—C7—C8—O266.4 (18)
S1—C1—C4—S4178.5 (9)C6—O2—C8—C744.5 (17)
S2—C1—C4—S3179.2 (9)
Symmetry codes: (i) x+1/2, y1/2, z1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y+2, z+1/2; (iv) x+1, y+2, z1/2; (v) x+1/2, y+1/2, z+1/2; (vi) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC8H4N2O2S5
Mr320.43
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)296
a, b, c (Å)21.7363 (10), 12.9552 (6), 3.9938 (5)
V3)1124.65 (16)
Z4
Radiation typeCu Kα
µ (mm1)9.43
Crystal size (mm)0.40 × 0.04 × 0.02
Data collection
DiffractometerEnraf-Nonius CAD4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.116, 0.834
No. of measured, independent and
observed [I > 2σ(I)] reflections
1303, 1303, 791
Rint0.000
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.174, 1.05
No. of reflections1303
No. of parameters154
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.87
Absolute structure(Flack, 1983)
Absolute structure parameter0.03 (10)

Computer programs: CAD-4 EXPRESS Software (Enraf-Nonius, 1992), CAD-4 EXPRESS Software, TEXSAN (Molecular Structure Corporation/Rigaku Corporation, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), SHELXL97.

Selected geometric parameters (Å, º) top
S1—C21.726 (11)O1—C51.369 (12)
S1—C11.796 (12)O1—C71.468 (19)
S2—C31.740 (12)O2—C61.363 (12)
S2—C11.758 (12)O2—C81.453 (14)
S3—C51.751 (11)N1—C21.317 (14)
S3—C41.765 (12)N2—C31.281 (12)
S4—C61.754 (11)C1—C41.322 (14)
S4—C41.759 (12)C2—C31.444 (16)
S5—N11.653 (9)C5—C61.323 (16)
S5—N21.662 (10)C7—C81.400 (18)
S1···S5i3.541 (5)S4···S2iv3.519 (5)
S1···S5ii3.547 (5)S5···S1v3.541 (5)
S2···S4iii3.519 (5)S5···S1vi3.547 (5)
S3···S5i3.610 (5)S5···S3v3.610 (5)
C2—S1—C194.1 (6)C3—C2—S1117.7 (9)
C3—S2—C195.1 (5)N2—C3—C2115.2 (10)
C5—S3—C493.7 (5)C2—C3—S2116.2 (8)
C6—S4—C493.6 (6)S4—C4—S3115.6 (6)
N1—S5—N298.8 (5)C6—C5—O1124.8 (10)
C5—O1—C7107.3 (11)C6—C5—S3118.2 (8)
C6—O2—C8108.6 (9)C5—C6—O2124.9 (10)
C2—N1—S5106.0 (8)C5—C6—S4118.3 (8)
C3—N2—S5106.4 (8)C8—C7—O1110.6 (12)
S2—C1—S1116.1 (6)C7—C8—O2112.3 (11)
N1—C2—C3113.6 (10)
Symmetry codes: (i) x+1/2, y1/2, z1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y+2, z+1/2; (iv) x+1, y+2, z1/2; (v) x+1/2, y+1/2, z+1/2; (vi) x+1/2, y+1/2, z1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds