Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The pyran ring of the flavanone moiety in the title compound, C30H22ClNO3, is puckered due to the saturation of a bond and this causes the ring to adopt a sofa conformation. The spiro­isoxazoline ring adopts an envelope conformation. The phenyl rings on the isoxazoline ring are perpendicular to each other. The structure is stabilized by intermolecular C—H...O and C—H...N hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803001399/ob6203sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803001399/ob6203Isup2.hkl
Contains datablock I

CCDC reference: 204718

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.047
  • wR factor = 0.148
  • Data-to-parameter ratio = 15.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Flavonones are widely distributed and they form a part of our human diet, owing to their abundance in edible plants. The different properties and activities possessed by these compounds are discussed in our previous article (Jeyabharathi et al., 2003). To understand the structure and conformation, a crystallographic study of the title compound, (I), was undertaken.

The bond geometry of the flavanone moiety in (I) agrees with reported values (Tomlin & Cantrell, 1990). As shown in Fig. 1, the pyran ring is planar, with the fused phenyl ring making the dihedral angle of 3.9 (1)°, which is larger than the reported value (Kendi & Ozbey, 1995). This may be due to the substitution at C5. The best plane of the benzopyran ring is perpendicular to the isozazoline ring plane. A study of torsion angles and asymmetry parameters (Cremer & Pople, 1975) reveals that the pyran ring adopts a slightly distorted sofa conformation [q2 = 0.343 (2) Å, q3 = −0.263 (2) Å, QT = 0.432 (2) Å and ϕ2 = −107.3 (4)°]. For the isoxazoline ring, q2 = 0.146 (2) Å and ϕ2 = −41.3 (9)°, which confirm its conformation. Apart from van der Waals interactions, the packing of the molecules in the crystal lattice is stabilized by intermolecular C—H···O, C—H···N and C—H···π interactions. Then C19—H19 proton points along the π bond of the C22—C27(x − 1/2, −1/2 − y, z − 3/2) phenyl ring, suggesting a C—H···π intermolecular interaction (Table 2). The geometry of these interactions is comparable with the literature (Abdul Ajees et al., 2001; Gallagher et al., 2000; Kooijman et al., 2000).

Experimental top

To a stirred solution of 3-p-methylbenzylidene-4-flavanone (3 mmol) and N-(p-chlorobenzhydroxyiminoyl chloride (3 mmol) in dry CHCl3 (5 ml), 3.3 mmol of triethylamine was added. The reaction was monitored by TLC. After completion of the reaction, water was added to remove triethylamine hydrochloride and the resulting solution extracted with CHCl3. The extracts were combined and dried using MgSO4 and the product was purified by column chromatography (hexane/ethylacetate 9:1). The title compound, (I), was recrystallized from ethylacetate/hexane.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: SDP (Frenz, 1978); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: PARST97 (Nardelli, 1995) and PLATON (Spek, 1998).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), showing ellipsoids at the 40% probability level for non-H atoms.
Spiro[3-(4-chlorophenyl)-4-(4-methylphenyl)-4,5-dihydroisoxazole-5,3'- flavan-4'-one] top
Crystal data top
C30H22ClNO3F(000) = 1000
Mr = 479.94Dx = 1.296 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.5418 Å
a = 14.139 (2) ÅCell parameters from 25 reflections
b = 10.939 (2) Åθ = 14–25°
c = 16.139 (3) ŵ = 1.63 mm1
β = 99.809 (13)°T = 293 K
V = 2459.8 (8) Å3Needle, colourless
Z = 40.18 × 0.17 × 0.10 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2453 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 72.4°, θmin = 3.9°
ω–2θ scansh = 017
Absorption correction: ψ scan
(North et al., 1968)
k = 013
Tmin = 0.711, Tmax = 0.849l = 1919
5076 measured reflections3 standard reflections every 200 reflections
4874 independent reflections intensity decay: <0.1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0767P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
4874 reflectionsΔρmax = 0.30 e Å3
317 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00123 (18)
Crystal data top
C30H22ClNO3V = 2459.8 (8) Å3
Mr = 479.94Z = 4
Monoclinic, P21/nCu Kα radiation
a = 14.139 (2) ŵ = 1.63 mm1
b = 10.939 (2) ÅT = 293 K
c = 16.139 (3) Å0.18 × 0.17 × 0.10 mm
β = 99.809 (13)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2453 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.028
Tmin = 0.711, Tmax = 0.8493 standard reflections every 200 reflections
5076 measured reflections intensity decay: <0.1%
4874 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 0.98Δρmax = 0.30 e Å3
4874 reflectionsΔρmin = 0.27 e Å3
317 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.48394 (7)0.22331 (13)0.11159 (9)0.1291 (5)
O10.97704 (12)0.13999 (16)0.06583 (11)0.0485 (4)
N20.87833 (15)0.14080 (19)0.05983 (13)0.0485 (5)
C30.86503 (16)0.2111 (2)0.00077 (15)0.0418 (6)
C40.95543 (16)0.2687 (2)0.04871 (15)0.0394 (5)
H40.94800.35780.04910.047*
C51.02670 (16)0.2337 (2)0.00926 (14)0.0380 (5)
O1'1.17522 (12)0.13481 (16)0.03153 (11)0.0513 (5)
C2'1.12083 (17)0.1750 (2)0.03241 (15)0.0434 (6)
H2'1.10350.10100.06060.052*
C4'1.04242 (18)0.3332 (2)0.07147 (15)0.0441 (6)
C5'1.12448 (19)0.3144 (2)0.11481 (16)0.0475 (6)
C6'1.18628 (18)0.2167 (3)0.09311 (16)0.0485 (6)
O7'0.98721 (14)0.41935 (17)0.08601 (12)0.0621 (5)
C60.97565 (15)0.2215 (2)0.13861 (14)0.0389 (5)
C70.95756 (17)0.1020 (2)0.15689 (15)0.0447 (6)
H70.93160.04950.11360.054*
C80.97733 (19)0.0582 (3)0.23868 (16)0.0532 (7)
H80.96460.02310.24970.064*
C91.01606 (19)0.1351 (3)0.30439 (16)0.0557 (7)
C101.03466 (19)0.2546 (3)0.28580 (17)0.0574 (7)
H101.06130.30710.32890.069*
C111.01456 (17)0.2980 (3)0.20450 (16)0.0490 (6)
H111.02720.37930.19360.059*
C120.76942 (17)0.2185 (3)0.02463 (16)0.0482 (6)
C130.74637 (19)0.3115 (3)0.07519 (17)0.0596 (8)
H130.79090.37310.09200.072*
C140.6577 (2)0.3149 (3)0.1015 (2)0.0740 (9)
H140.64230.37870.13480.089*
C150.5936 (2)0.2231 (4)0.0775 (2)0.0761 (10)
C160.6147 (2)0.1305 (3)0.0273 (3)0.0830 (11)
H160.57000.06910.01100.100*
C170.7028 (2)0.1276 (3)0.0002 (2)0.0663 (8)
H170.71690.06450.03440.080*
C181.2625 (2)0.1971 (3)0.13522 (18)0.0651 (8)
H181.30390.13160.12040.078*
C191.2766 (2)0.2736 (4)0.1983 (2)0.0755 (9)
H191.32710.25910.22710.091*
C201.2169 (2)0.3731 (3)0.2203 (2)0.0763 (10)
H201.22840.42640.26230.092*
C211.1408 (2)0.3920 (3)0.17953 (17)0.0621 (8)
H211.09960.45730.19520.074*
C221.18460 (17)0.2495 (2)0.09834 (15)0.0431 (6)
C231.24024 (19)0.1861 (3)0.16340 (17)0.0601 (8)
H231.23730.10120.16480.072*
C241.3003 (2)0.2486 (4)0.22648 (19)0.0758 (10)
H241.33720.20550.27010.091*
C251.3053 (2)0.3729 (4)0.2243 (2)0.0768 (10)
H251.34550.41460.26670.092*
C261.2513 (2)0.4369 (3)0.1600 (2)0.0717 (9)
H261.25520.52170.15850.086*
C271.1908 (2)0.3751 (3)0.09715 (18)0.0558 (7)
H271.15400.41880.05380.067*
C281.0350 (3)0.0892 (4)0.39421 (18)0.0894 (11)
H28A1.01790.00430.39520.134*
H28B0.99730.13530.42730.134*
H28C1.10190.09880.41710.134*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0696 (6)0.1606 (12)0.1727 (12)0.0128 (7)0.0649 (7)0.0286 (9)
O10.0499 (10)0.0450 (11)0.0518 (10)0.0016 (8)0.0121 (8)0.0134 (8)
N20.0457 (12)0.0498 (14)0.0489 (13)0.0005 (11)0.0046 (10)0.0032 (10)
C30.0441 (13)0.0410 (14)0.0399 (13)0.0024 (11)0.0055 (10)0.0016 (11)
C40.0411 (12)0.0330 (13)0.0440 (13)0.0033 (10)0.0074 (10)0.0048 (11)
C50.0417 (12)0.0327 (13)0.0398 (12)0.0001 (10)0.0072 (10)0.0059 (10)
O1'0.0559 (11)0.0477 (11)0.0535 (11)0.0123 (9)0.0185 (9)0.0016 (9)
C2'0.0451 (13)0.0428 (15)0.0440 (13)0.0054 (11)0.0128 (11)0.0016 (11)
C4'0.0537 (14)0.0360 (14)0.0431 (14)0.0019 (12)0.0101 (11)0.0028 (11)
C5'0.0561 (15)0.0454 (15)0.0433 (13)0.0018 (13)0.0151 (11)0.0025 (12)
C6'0.0513 (14)0.0506 (16)0.0450 (14)0.0019 (13)0.0120 (11)0.0075 (13)
O7'0.0758 (13)0.0509 (12)0.0629 (12)0.0205 (10)0.0215 (10)0.0121 (10)
C60.0387 (12)0.0397 (13)0.0391 (12)0.0019 (11)0.0090 (9)0.0037 (11)
C70.0473 (14)0.0418 (15)0.0445 (14)0.0002 (12)0.0068 (11)0.0073 (12)
C80.0597 (16)0.0525 (17)0.0480 (15)0.0046 (13)0.0107 (12)0.0048 (13)
C90.0549 (16)0.074 (2)0.0374 (14)0.0054 (15)0.0059 (12)0.0015 (14)
C100.0592 (16)0.066 (2)0.0461 (16)0.0065 (15)0.0067 (13)0.0127 (14)
C110.0494 (14)0.0512 (17)0.0466 (14)0.0077 (13)0.0087 (11)0.0103 (13)
C120.0423 (13)0.0537 (17)0.0475 (14)0.0037 (12)0.0042 (11)0.0049 (13)
C130.0499 (15)0.072 (2)0.0564 (17)0.0047 (15)0.0069 (13)0.0080 (16)
C140.0614 (18)0.098 (3)0.066 (2)0.0167 (19)0.0213 (15)0.003 (2)
C150.0538 (17)0.089 (3)0.090 (2)0.0118 (18)0.0270 (16)0.020 (2)
C160.0504 (17)0.073 (2)0.125 (3)0.0076 (17)0.0145 (19)0.013 (2)
C170.0484 (16)0.0600 (19)0.090 (2)0.0007 (15)0.0094 (15)0.0017 (17)
C180.0560 (16)0.080 (2)0.0634 (18)0.0060 (16)0.0227 (14)0.0074 (17)
C190.0661 (19)0.100 (3)0.067 (2)0.006 (2)0.0332 (16)0.009 (2)
C200.090 (2)0.083 (3)0.063 (2)0.012 (2)0.0340 (18)0.0069 (18)
C210.078 (2)0.0568 (19)0.0553 (17)0.0033 (16)0.0214 (15)0.0044 (15)
C220.0404 (12)0.0449 (15)0.0456 (14)0.0024 (11)0.0120 (10)0.0001 (12)
C230.0530 (16)0.071 (2)0.0549 (17)0.0058 (15)0.0053 (13)0.0110 (15)
C240.0596 (19)0.109 (3)0.054 (2)0.0020 (19)0.0047 (15)0.0061 (19)
C250.0560 (19)0.113 (3)0.059 (2)0.018 (2)0.0037 (16)0.019 (2)
C260.070 (2)0.072 (2)0.071 (2)0.0204 (17)0.0086 (17)0.0184 (18)
C270.0581 (16)0.0534 (18)0.0539 (16)0.0023 (14)0.0037 (13)0.0061 (14)
C280.107 (3)0.112 (3)0.0469 (18)0.001 (2)0.0074 (18)0.0099 (19)
Geometric parameters (Å, º) top
Cl1—C151.732 (3)C12—C131.377 (4)
O1—N21.415 (2)C12—C171.381 (4)
O1—C51.469 (3)C13—C141.391 (4)
N2—C31.283 (3)C13—H130.9300
C3—C121.470 (3)C14—C151.363 (5)
C3—C41.514 (3)C14—H140.9300
C4—C61.520 (3)C15—C161.361 (5)
C4—C51.536 (3)C16—C171.388 (4)
C4—H40.9800C16—H160.9300
C5—C4'1.522 (3)C17—H170.9300
C5—C2'1.527 (3)C18—C191.359 (4)
O1'—C6'1.366 (3)C18—H180.9300
O1'—C2'1.456 (3)C19—C201.385 (4)
C2'—C221.511 (3)C19—H190.9300
C2'—H2'0.9800C20—C211.369 (4)
C4'—O7'1.221 (3)C20—H200.9300
C4'—O7'1.221 (3)C21—H210.9300
C4'—C5'1.468 (3)C22—C271.377 (4)
C5'—C6'1.387 (4)C22—C231.386 (3)
C5'—C211.396 (4)C23—C241.389 (4)
C6'—C181.385 (4)C23—H230.9300
C6—C71.374 (3)C24—C251.363 (5)
C6—C111.391 (3)C24—H240.9300
C7—C81.387 (3)C25—C261.372 (4)
C7—H70.9300C25—H250.9300
C8—C91.391 (4)C26—C271.386 (4)
C8—H80.9300C26—H260.9300
C9—C101.377 (4)C27—H270.9300
C9—C281.514 (4)C28—H28A0.9600
C10—C111.378 (4)C28—H28B0.9600
C10—H100.9300C28—H28C0.9600
C11—H110.9300
N2—O1—C5109.00 (16)C13—C12—C3121.1 (2)
C3—N2—O1109.28 (19)C17—C12—C3119.9 (3)
N2—C3—C12119.6 (2)C12—C13—C14121.1 (3)
N2—C3—C4114.7 (2)C12—C13—H13119.4
C12—C3—C4125.3 (2)C14—C13—H13119.4
C3—C4—C6110.6 (2)C15—C14—C13118.9 (3)
C3—C4—C599.74 (18)C15—C14—H14120.5
C6—C4—C5117.40 (19)C13—C14—H14120.5
C3—C4—H4109.5C16—C15—C14121.0 (3)
C6—C4—H4109.5C16—C15—Cl1119.3 (3)
C5—C4—H4109.5C14—C15—Cl1119.7 (3)
O1—C5—C4'101.36 (18)C15—C16—C17120.3 (3)
O1—C5—C2'105.59 (18)C15—C16—H16119.9
C4'—C5—C2'112.2 (2)C17—C16—H16119.9
O1—C5—C4105.00 (17)C12—C17—C16119.9 (3)
C4'—C5—C4114.07 (19)C12—C17—H17120.1
C2'—C5—C4116.73 (19)C16—C17—H17120.1
C6'—O1'—C2'117.21 (19)C19—C18—C6'119.9 (3)
O1'—C2'—C22109.76 (19)C19—C18—H18120.1
O1'—C2'—C5109.92 (19)C6'—C18—H18120.1
C22—C2'—C5117.0 (2)C18—C19—C20121.0 (3)
O1'—C2'—H2'106.5C18—C19—H19119.5
C22—C2'—H2'106.5C20—C19—H19119.5
C5—C2'—H2'106.5C21—C20—C19119.3 (3)
O7'—C4'—C5'123.2 (2)C21—C20—H20120.3
O7'—C4'—C5'123.2 (2)C19—C20—H20120.3
O7'—C4'—C5121.2 (2)C20—C21—C5'120.8 (3)
O7'—C4'—C5121.2 (2)C20—C21—H21119.6
C5'—C4'—C5115.5 (2)C5'—C21—H21119.6
C6'—C5'—C21118.7 (2)C27—C22—C23118.7 (3)
C6'—C5'—C4'120.2 (2)C27—C22—C2'124.1 (2)
C21—C5'—C4'121.1 (3)C23—C22—C2'117.2 (2)
O1'—C6'—C18116.8 (2)C22—C23—C24120.4 (3)
O1'—C6'—C5'122.9 (2)C22—C23—H23119.8
C18—C6'—C5'120.3 (3)C24—C23—H23119.8
C7—C6—C11118.2 (2)C25—C24—C23120.0 (3)
C7—C6—C4121.1 (2)C25—C24—H24120.0
C11—C6—C4120.7 (2)C23—C24—H24120.0
C6—C7—C8121.2 (2)C24—C25—C26120.3 (3)
C6—C7—H7119.4C24—C25—H25119.9
C8—C7—H7119.4C26—C25—H25119.9
C7—C8—C9120.4 (3)C25—C26—C27120.0 (3)
C7—C8—H8119.8C25—C26—H26120.0
C9—C8—H8119.8C27—C26—H26120.0
C10—C9—C8118.2 (2)C22—C27—C26120.6 (3)
C10—C9—C28121.0 (3)C22—C27—H27119.7
C8—C9—C28120.8 (3)C26—C27—H27119.7
C11—C10—C9121.2 (3)C9—C28—H28A109.5
C11—C10—H10119.4C9—C28—H28B109.5
C9—C10—H10119.4H28A—C28—H28B109.5
C10—C11—C6120.8 (3)C9—C28—H28C109.5
C10—C11—H11119.6H28A—C28—H28C109.5
C6—C11—H11119.6H28B—C28—H28C109.5
C13—C12—C17118.8 (3)
C5—O1—N2—C38.5 (3)C3—C4—C6—C737.1 (3)
O1—N2—C3—C12174.5 (2)C5—C4—C6—C776.4 (3)
O1—N2—C3—C41.6 (3)C3—C4—C6—C11144.0 (2)
N2—C3—C4—C6114.2 (2)C5—C4—C6—C11102.5 (3)
C12—C3—C4—C658.2 (3)C11—C6—C7—C80.1 (4)
N2—C3—C4—C510.1 (3)C4—C6—C7—C8179.0 (2)
C12—C3—C4—C5177.5 (2)C6—C7—C8—C90.1 (4)
N2—O1—C5—C4'104.55 (19)C7—C8—C9—C100.5 (4)
N2—O1—C5—C2'138.36 (19)C7—C8—C9—C28178.1 (3)
N2—O1—C5—C414.4 (2)C8—C9—C10—C110.8 (4)
C3—C4—C5—O113.9 (2)C28—C9—C10—C11177.8 (3)
C6—C4—C5—O1105.5 (2)C9—C10—C11—C60.6 (4)
C3—C4—C5—C4'96.2 (2)C7—C6—C11—C100.2 (4)
C6—C4—C5—C4'144.4 (2)C4—C6—C11—C10178.7 (2)
C3—C4—C5—C2'130.4 (2)N2—C3—C12—C13165.1 (3)
C6—C4—C5—C2'11.0 (3)C4—C3—C12—C1322.8 (4)
C6'—O1'—C2'—C2281.4 (3)N2—C3—C12—C1718.6 (4)
C6'—O1'—C2'—C548.6 (3)C4—C3—C12—C17153.5 (3)
O1—C5—C2'—O1'57.4 (2)C17—C12—C13—C140.1 (4)
C4'—C5—C2'—O1'52.2 (3)C3—C12—C13—C14176.5 (3)
C4—C5—C2'—O1'173.57 (19)C12—C13—C14—C151.1 (5)
O1—C5—C2'—C22176.59 (19)C13—C14—C15—C161.3 (5)
C4'—C5—C2'—C2273.9 (3)C13—C14—C15—Cl1178.4 (2)
C4—C5—C2'—C2260.4 (3)C14—C15—C16—C170.7 (6)
O1—C5—C4'—O7'96.5 (3)Cl1—C15—C16—C17179.1 (3)
C2'—C5—C4'—O7'151.3 (2)C13—C12—C17—C160.6 (4)
C4—C5—C4'—O7'15.8 (3)C3—C12—C17—C16175.9 (3)
O1—C5—C4'—O7'96.5 (3)C15—C16—C17—C120.3 (5)
C2'—C5—C4'—O7'151.3 (2)O1'—C6'—C18—C19178.7 (3)
C4—C5—C4'—O7'15.8 (3)C5'—C6'—C18—C190.2 (4)
O1—C5—C4'—C5'80.5 (2)C6'—C18—C19—C201.3 (5)
C2'—C5—C4'—C5'31.7 (3)C18—C19—C20—C212.1 (5)
C4—C5—C4'—C5'167.2 (2)C19—C20—C21—C5'1.8 (5)
O7'—C4'—C5'—C6'177.8 (2)C6'—C5'—C21—C200.7 (4)
O7'—C4'—C5'—C6'177.8 (2)C4'—C5'—C21—C20179.3 (3)
C5—C4'—C5'—C6'5.3 (3)O1'—C2'—C22—C2794.4 (3)
O7'—C4'—C5'—C213.7 (4)C5—C2'—C22—C2731.8 (3)
O7'—C4'—C5'—C213.7 (4)O1'—C2'—C22—C2385.3 (3)
C5—C4'—C5'—C21173.3 (2)C5—C2'—C22—C23148.6 (2)
C2'—O1'—C6'—C18158.3 (2)C27—C22—C23—C240.6 (4)
C2'—O1'—C6'—C5'22.8 (3)C2'—C22—C23—C24179.8 (2)
C21—C5'—C6'—O1'179.0 (2)C22—C23—C24—C250.4 (5)
C4'—C5'—C6'—O1'0.4 (4)C23—C24—C25—C260.1 (5)
C21—C5'—C6'—C180.1 (4)C24—C25—C26—C270.5 (5)
C4'—C5'—C6'—C18178.5 (2)C23—C22—C27—C260.2 (4)
C5'—C4'—O7'—O7'0 (87)C2'—C22—C27—C26179.9 (2)
C5—C4'—O7'—O7'0 (91)C25—C26—C27—C220.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O70.982.432.824 (3)103
C7—H7···O1i0.932.723.610 (3)160
C2—H2···N2i0.982.663.482 (3)142
C4—H4···O7ii0.982.643.535 (3)153
C19—H19···Cg(1)iii0.932.753.597153
Symmetry codes: (i) x+2, y, z; (ii) x+2, y+1, z; (iii) x1/2, y1/2, z3/2.

Experimental details

Crystal data
Chemical formulaC30H22ClNO3
Mr479.94
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)14.139 (2), 10.939 (2), 16.139 (3)
β (°) 99.809 (13)
V3)2459.8 (8)
Z4
Radiation typeCu Kα
µ (mm1)1.63
Crystal size (mm)0.18 × 0.17 × 0.10
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.711, 0.849
No. of measured, independent and
observed [I > 2σ(I)] reflections
5076, 4874, 2453
Rint0.028
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.148, 0.98
No. of reflections4874
No. of parameters317
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.27

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), SDP (Frenz, 1978), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai, 1997), PARST97 (Nardelli, 1995) and PLATON (Spek, 1998).

Selected geometric parameters (Å, º) top
O1—N21.415 (2)O1'—C6'1.366 (3)
O1—C51.469 (3)O1'—C2'1.456 (3)
N2—C31.283 (3)C4'—O7'1.221 (3)
C3—C41.514 (3)C4'—C5'1.468 (3)
C5—C4'1.522 (3)C5'—C6'1.387 (4)
C5—C2'1.527 (3)C8—C91.391 (4)
C5—O1—N2—C38.5 (3)N2—O1—C5—C414.4 (2)
O1—N2—C3—C41.6 (3)C3—C4—C5—O113.9 (2)
N2—C3—C4—C510.1 (3)C5—C2'—C22—C23148.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O7'0.982.432.824 (3)103
C7—H7···O1'i0.932.723.610 (3)160
C2'—H2'···N2i0.982.663.482 (3)142
C4—H4···O7'ii0.982.643.535 (3)153
C19—H19···Cg(1)iii0.932.753.597153
Symmetry codes: (i) x+2, y, z; (ii) x+2, y+1, z; (iii) x1/2, y1/2, z3/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds