Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Ni2(C7H3NO4)2(H2O)5]·2H2O, was obtained by the reaction of nickel iodide with dipicolinic acid (pyridine-2,6-di­carboxyl­ic acid) and 1,10-phenanthroline (molar ratio 1:1:1) in EtOH/H2O. The compound contains two six-coordinated NiII ions, which are linked by two O atoms of the same carboxyl group from dipicolinic acid [Ni—O 2.179 (3) and 2.038 (3) Å]. Molecules are connected by van der Waals interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802021669/ob6193sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802021669/ob6193Isup2.hkl
Contains datablock I

CCDC reference: 202305

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.041
  • wR factor = 0.112
  • Data-to-parameter ratio = 10.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_354 Alert C Short O-H Bond (0.82A) OW3 - H3A = 0.69 Ang. PLAT_354 Alert C Short O-H Bond (0.82A) OW6 - H6A = 0.71 Ang. General Notes
FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C14 H20 N2 Ni2 O15 Atom count from _chemical_formula_moiety:C14 H18 N2 Ni2 O15
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

The complexation of metal ions by dipicolinic acid (pyridine-2,6-dicarboxylic acid) has been extensively studied (Alain et al., 1992; Laine et al., 1995a,b). Owing to its unique ability of the ligand to form stable chelates with various coordination modes and its biological activity, many crystal structures have been determined. In these complexes, dipicolinic acid acts as a tridentate ligand by coordination of the N atom and one O atom from each carboxylate group. Dipicolinic acid is thus a multi-chelating ligand capable of forming monomeric or polymeric complexes (Guerriero et al., 1987; Kjell et al., 1993). We report here the synthesis and crystal structure of a dinuclear nickel dipicolinate compound, (I) (Khalil et al., 1998).

In title compound, (I), the Ni1 atom is octahedrally coordinated by two tridentate dipicolinate ligands via their carboxylate and nitrilo donors. Nevertheless, the Ni—N and Ni—O bond lengths in the two ligands are different: Ni1—N1 = 1.974 (3) Å and Ni1—N2 = 1.962 (3) Å, Ni1—O11 and Ni1—O14 = 2.164 (3) and 2.179 (3) Å, while Ni1—O24 and Ni1—O21 = 2.159 (3) and 2.098 (3) Å, respectively. The planes defining the rings are orthogonal to each other. The Ni2 atom is octahedrally coordinated by five H2O molecules together with one O atom from one dipicolinate coordinated to Ni1, leading to the dinuclear nickel structure. Furthermore, there are two solvated water molecules in an asymmetric unit (Fig. 1 and Table 2).

Experimental top

The title compound, (I), was prepared by mixing hot ethanol–water (3:2, v/v, 25 ml) solutions of nickel iodide (0.157 g, 0.5 mmol) and dipicolinic acid (0.077 g, 0.5 mmol), which were stirred at 353 K for 30 min. 1,10-Phenanthroline (0.090 g, 0.5 mmol) was added and the resulting mixture stirred for 1.5 h and then filtered. After allowing the solution to stand for 1 month, light-green single crystals formed.

Refinement top

The water H atoms were refined, while the remaining H atoms were located geometrically. The O—H bond lengths are in the range 0.64 (6)–0.96 (11) Å.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART and SAINT (Siemens, 1994); data reduction: SMART; program(s) used to solve structure: SHELXTL (Siemens, 1994); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 10% displacement ellipsoids for non-H atoms.
(I) top
Crystal data top
[Ni2(C7H3NO4)2(H2O)5]·2H2OF(000) = 1176
Mr = 573.74Dx = 1.754 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.3399 (2) ÅCell parameters from 4506 reflections
b = 27.2748 (6) Åθ = 1.5–25.0°
c = 9.6593 (1) ŵ = 1.81 mm1
β = 98.588 (1)°T = 293 K
V = 2172.56 (7) Å3Prism, green
Z = 40.48 × 0.36 × 0.34 mm
Data collection top
Siemens SMART CCD
diffractometer
3767 independent reflections
Radiation source: fine-focus sealed tube3290 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 89
Tmin = 0.408, Tmax = 0.540k = 3220
6851 measured reflectionsl = 1110
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0544P)2 + 7.4039P]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.006
3767 reflectionsΔρmax = 0.46 e Å3
355 parametersΔρmin = 0.48 e Å3
0 restraintsExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0071 (5)
Crystal data top
[Ni2(C7H3NO4)2(H2O)5]·2H2OV = 2172.56 (7) Å3
Mr = 573.74Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3399 (2) ŵ = 1.81 mm1
b = 27.2748 (6) ÅT = 293 K
c = 9.6593 (1) Å0.48 × 0.36 × 0.34 mm
β = 98.588 (1)°
Data collection top
Siemens SMART CCD
diffractometer
3767 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
3290 reflections with I > 2σ(I)
Tmin = 0.408, Tmax = 0.540Rint = 0.025
6851 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.46 e Å3
3767 reflectionsΔρmin = 0.48 e Å3
355 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The structure was solved by direct methods and successive Fourier difference syntheses. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.74912 (6)0.385914 (18)0.51306 (5)0.02552 (17)
Ni20.24141 (6)0.399483 (19)0.05945 (5)0.02580 (17)
OW10.2130 (5)0.46641 (15)0.0325 (4)0.0483 (10)
OW20.4400 (5)0.38333 (16)0.0326 (4)0.0508 (10)
OW30.0302 (4)0.41302 (15)0.1516 (3)0.0321 (7)
OW40.2869 (5)0.33558 (12)0.1715 (4)0.0349 (7)
OW50.0875 (4)0.36823 (14)0.1021 (3)0.0356 (7)
O110.9224 (4)0.42057 (11)0.6722 (3)0.0328 (7)
O121.0030 (4)0.49495 (11)0.7516 (3)0.0370 (7)
O130.3890 (3)0.43885 (11)0.2061 (3)0.0329 (7)
O140.5481 (3)0.38539 (11)0.3407 (3)0.0332 (7)
O210.6047 (4)0.37444 (11)0.6703 (3)0.0371 (7)
O220.4881 (4)0.31394 (13)0.7756 (4)0.0504 (9)
O231.0599 (4)0.30114 (13)0.3180 (4)0.0502 (9)
O240.9261 (4)0.36633 (10)0.3808 (3)0.0321 (7)
N10.7172 (4)0.45640 (12)0.4715 (3)0.0242 (7)
N20.7671 (4)0.31468 (12)0.5394 (3)0.0257 (7)
C110.8086 (4)0.48965 (14)0.5471 (4)0.0238 (8)
C120.7963 (5)0.53905 (15)0.5146 (4)0.0278 (9)
H12A0.86140.56200.56750.033*
C130.6841 (5)0.55339 (16)0.4007 (5)0.0325 (9)
H13A0.67470.58630.37540.039*
C140.5865 (5)0.51883 (16)0.3251 (4)0.0302 (9)
H14A0.51020.52800.24930.036*
C150.6051 (5)0.47005 (15)0.3647 (4)0.0256 (8)
C160.9206 (5)0.46704 (15)0.6667 (4)0.0267 (9)
C170.5067 (5)0.42768 (15)0.2971 (4)0.0268 (9)
C210.6694 (5)0.29280 (16)0.6186 (4)0.0306 (9)
C220.6629 (6)0.24249 (17)0.6269 (5)0.0404 (11)
H22A0.59340.22730.68030.048*
C230.7615 (6)0.21515 (17)0.5543 (5)0.0440 (12)
H23A0.75910.18110.55870.053*
C240.8641 (6)0.23820 (16)0.4750 (5)0.0386 (11)
H24A0.93250.22000.42690.046*
C250.8630 (5)0.28856 (15)0.4686 (4)0.0284 (9)
C260.5781 (5)0.32963 (17)0.6936 (5)0.0347 (10)
C270.9586 (5)0.32060 (16)0.3826 (4)0.0326 (10)
OW70.7388 (5)0.42951 (15)0.0584 (5)0.0465 (9)
OW60.1585 (6)0.29215 (16)0.2533 (6)0.0650 (13)
H5B0.118 (6)0.345 (2)0.129 (5)0.037 (16)*
H7B0.734 (6)0.4161 (19)0.136 (6)0.042 (15)*
H4B0.223 (8)0.331 (2)0.222 (6)0.06 (2)*
H4A0.362 (8)0.343 (2)0.230 (7)0.07 (2)*
H6A0.244 (9)0.290 (3)0.252 (8)0.08 (3)*
H5A0.048 (10)0.386 (3)0.162 (9)0.10 (3)*
H3B0.007 (7)0.398 (2)0.215 (7)0.06 (2)*
H1B0.145 (8)0.476 (2)0.091 (7)0.06 (2)*
H3A0.029 (6)0.437 (2)0.173 (5)0.033 (17)*
H7A0.811 (8)0.418 (2)0.007 (7)0.07 (2)*
H2A0.451 (8)0.361 (3)0.085 (7)0.08 (2)*
H1A0.236 (7)0.487 (2)0.004 (6)0.04 (2)*
H2B0.516 (9)0.402 (3)0.031 (7)0.08 (2)*
H6B0.173 (12)0.269 (4)0.177 (11)0.15 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0264 (3)0.0247 (3)0.0251 (3)0.0023 (2)0.0024 (2)0.0010 (2)
Ni20.0253 (3)0.0276 (3)0.0236 (3)0.0008 (2)0.0006 (2)0.0000 (2)
OW10.065 (3)0.031 (2)0.039 (2)0.0036 (19)0.0217 (18)0.0065 (17)
OW20.042 (2)0.052 (2)0.064 (3)0.0163 (18)0.0296 (18)0.023 (2)
OW30.0359 (18)0.030 (2)0.0312 (18)0.0011 (14)0.0078 (13)0.0010 (16)
OW40.0348 (18)0.0327 (17)0.0384 (18)0.0025 (14)0.0091 (16)0.0068 (14)
OW50.0427 (19)0.0293 (18)0.0318 (18)0.0002 (15)0.0045 (14)0.0051 (15)
O110.0365 (16)0.0279 (16)0.0299 (15)0.0021 (13)0.0078 (13)0.0018 (12)
O120.0397 (17)0.0295 (16)0.0360 (16)0.0047 (13)0.0136 (13)0.0043 (13)
O130.0308 (15)0.0310 (16)0.0328 (16)0.0019 (12)0.0090 (13)0.0011 (12)
O140.0313 (15)0.0304 (16)0.0346 (16)0.0010 (12)0.0065 (13)0.0009 (13)
O210.0405 (17)0.0335 (17)0.0404 (18)0.0071 (14)0.0157 (14)0.0035 (13)
O220.054 (2)0.049 (2)0.057 (2)0.0085 (17)0.0369 (18)0.0081 (17)
O230.053 (2)0.0402 (19)0.066 (2)0.0022 (16)0.0393 (19)0.0013 (17)
O240.0356 (16)0.0265 (16)0.0369 (16)0.0014 (12)0.0137 (13)0.0011 (13)
N10.0210 (16)0.0245 (17)0.0261 (17)0.0049 (13)0.0003 (13)0.0044 (13)
N20.0261 (17)0.0230 (17)0.0278 (18)0.0005 (13)0.0037 (14)0.0017 (13)
C110.0179 (18)0.028 (2)0.026 (2)0.0004 (15)0.0042 (15)0.0044 (16)
C120.026 (2)0.028 (2)0.029 (2)0.0006 (16)0.0017 (16)0.0034 (17)
C130.031 (2)0.023 (2)0.042 (3)0.0028 (17)0.0022 (18)0.0059 (18)
C140.024 (2)0.036 (2)0.030 (2)0.0041 (17)0.0004 (17)0.0027 (18)
C150.0234 (19)0.032 (2)0.0214 (19)0.0009 (16)0.0024 (15)0.0003 (16)
C160.026 (2)0.032 (2)0.022 (2)0.0034 (17)0.0019 (16)0.0017 (16)
C170.023 (2)0.033 (2)0.023 (2)0.0016 (17)0.0009 (16)0.0000 (17)
C210.029 (2)0.037 (2)0.028 (2)0.0041 (18)0.0081 (17)0.0008 (18)
C220.048 (3)0.036 (3)0.040 (3)0.009 (2)0.017 (2)0.004 (2)
C230.062 (3)0.026 (2)0.048 (3)0.003 (2)0.019 (2)0.002 (2)
C240.044 (3)0.030 (2)0.045 (3)0.005 (2)0.018 (2)0.001 (2)
C250.029 (2)0.029 (2)0.028 (2)0.0014 (17)0.0081 (17)0.0016 (17)
C260.032 (2)0.040 (3)0.033 (2)0.0007 (19)0.0089 (19)0.0006 (19)
C270.034 (2)0.037 (3)0.028 (2)0.0044 (19)0.0085 (18)0.0015 (18)
OW70.038 (2)0.055 (2)0.047 (2)0.0005 (17)0.0054 (17)0.0086 (19)
OW60.057 (3)0.043 (2)0.100 (4)0.004 (2)0.030 (3)0.016 (2)
Geometric parameters (Å, º) top
Ni1—N21.962 (3)O23—C271.242 (5)
Ni1—N11.974 (3)O24—C271.276 (5)
Ni1—O212.098 (3)N1—C111.330 (5)
Ni1—O242.159 (3)N1—C151.337 (5)
Ni1—O112.164 (3)N2—C251.334 (5)
Ni1—O142.179 (3)N2—C211.339 (5)
Ni2—OW12.028 (4)C11—C121.384 (6)
Ni2—O132.038 (3)C11—C161.505 (5)
Ni2—OW22.041 (4)C12—C131.390 (6)
Ni2—OW52.052 (3)C12—H12A0.9300
Ni2—OW42.057 (3)C13—C141.381 (6)
Ni2—OW32.121 (3)C13—H13A0.9300
OW1—H1B0.79 (7)C14—C151.387 (6)
OW1—H1A0.64 (6)C14—H14A0.9300
OW2—H2A0.80 (7)C15—C171.509 (6)
OW2—H2B0.81 (7)C21—C221.376 (6)
OW3—H3B0.78 (6)C21—C261.509 (6)
OW3—H3A0.69 (6)C22—C231.377 (7)
OW4—H4B0.78 (7)C22—H22A0.9300
OW4—H4A0.81 (7)C23—C241.382 (6)
OW5—H5B0.74 (6)C23—H23A0.9300
OW5—H5A0.79 (9)C24—C251.375 (6)
O11—C161.268 (5)C24—H24A0.9300
O12—C161.248 (5)C25—C271.512 (6)
O13—C171.253 (5)OW7—H7B0.83 (6)
O14—C171.258 (5)OW7—H7A0.79 (7)
O21—C261.268 (5)OW6—H6A0.72 (8)
O22—C261.246 (5)OW6—H6B0.96 (11)
N2—Ni1—N1174.93 (13)C11—N1—C15120.7 (3)
N2—Ni1—O2178.42 (13)C11—N1—Ni1120.2 (3)
N1—Ni1—O21102.59 (13)C15—N1—Ni1119.0 (3)
N2—Ni1—O2477.65 (12)C25—N2—C21121.2 (4)
N1—Ni1—O24101.77 (12)C25—N2—Ni1120.2 (3)
O21—Ni1—O24155.33 (12)C21—N2—Ni1118.3 (3)
N2—Ni1—O11108.08 (12)N1—C11—C12121.5 (4)
N1—Ni1—O1176.97 (12)N1—C11—C16112.4 (3)
O21—Ni1—O1186.87 (12)C12—C11—C16126.1 (4)
O24—Ni1—O1194.90 (12)C11—C12—C13118.2 (4)
N2—Ni1—O1497.34 (12)C11—C12—H12A120.9
N1—Ni1—O1477.64 (12)C13—C12—H12A120.9
O21—Ni1—O1495.34 (12)C14—C13—C12120.0 (4)
O24—Ni1—O1493.56 (12)C14—C13—H13A120.0
O11—Ni1—O14154.38 (11)C12—C13—H13A120.0
OW1—Ni2—O1381.33 (15)C13—C14—C15118.4 (4)
OW1—Ni2—OW293.01 (18)C13—C14—H14A120.8
O13—Ni2—OW288.37 (15)C15—C14—H14A120.8
OW1—Ni2—OW591.25 (17)N1—C15—C14121.1 (4)
O13—Ni2—OW5172.58 (14)N1—C15—C17113.2 (3)
OW2—Ni2—OW592.01 (16)C14—C15—C17125.7 (4)
OW1—Ni2—OW4173.37 (16)O12—C16—O11125.4 (4)
O13—Ni2—OW492.05 (13)O12—C16—C11118.2 (4)
OW2—Ni2—OW487.05 (16)O11—C16—C11116.4 (3)
OW5—Ni2—OW495.37 (15)O13—C17—O14127.2 (4)
OW1—Ni2—OW388.70 (17)O13—C17—C15115.8 (4)
O13—Ni2—OW393.99 (13)O14—C17—C15116.9 (3)
OW2—Ni2—OW3177.27 (16)N2—C21—C22120.7 (4)
OW5—Ni2—OW385.82 (14)N2—C21—C26111.8 (4)
OW4—Ni2—OW391.50 (15)C22—C21—C26127.5 (4)
Ni2—OW1—H1B130 (5)C21—C22—C23118.6 (4)
Ni2—OW1—H1A126 (6)C21—C22—H22A120.7
H1B—OW1—H1A99 (7)C23—C22—H22A120.7
Ni2—OW2—H2A128 (5)C22—C23—C24120.1 (4)
Ni2—OW2—H2B123 (5)C22—C23—H23A119.9
H2A—OW2—H2B109 (7)C24—C23—H23A119.9
Ni2—OW3—H3B124 (4)C25—C24—C23118.6 (4)
Ni2—OW3—H3A110 (4)C25—C24—H24A120.7
H3B—OW3—H3A103 (6)C23—C24—H24A120.7
Ni2—OW4—H4B112 (5)N2—C25—C24120.8 (4)
Ni2—OW4—H4A103 (5)N2—C25—C27112.2 (4)
H4B—OW4—H4A98 (6)C24—C25—C27127.0 (4)
Ni2—OW5—H5B115 (4)O22—C26—O21125.6 (4)
Ni2—OW5—H5A116 (6)O22—C26—C21118.1 (4)
H5B—OW5—H5A113 (7)O21—C26—C21116.3 (4)
C16—O11—Ni1113.8 (2)O23—C27—O24124.7 (4)
C17—O13—Ni2133.4 (3)O23—C27—C25118.9 (4)
C17—O14—Ni1113.0 (2)O24—C27—C25116.4 (4)
C26—O21—Ni1114.0 (3)H7B—OW7—H7A109 (6)
C27—O24—Ni1113.3 (3)H6A—OW6—H6B85 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW2—H2B···OW70.81 (7)2.06 (7)2.837 (5)161 (7)
OW5—H5B···OW60.74 (6)1.94 (6)2.655 (6)162 (6)
OW2—H2A···O22i0.80 (7)1.92 (7)2.720 (5)173 (7)
OW6—H6A···O22i0.72 (8)2.12 (8)2.785 (6)156 (8)
OW1—H1B···O12ii0.79 (7)1.85 (7)2.633 (5)171 (7)
OW5—H5A···O11ii0.79 (9)2.01 (9)2.790 (5)169 (8)
Symmetry codes: (i) x, y, z1; (ii) x1, y, z1.

Experimental details

Crystal data
Chemical formula[Ni2(C7H3NO4)2(H2O)5]·2H2O
Mr573.74
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.3399 (2), 27.2748 (6), 9.6593 (1)
β (°) 98.588 (1)
V3)2172.56 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.81
Crystal size (mm)0.48 × 0.36 × 0.34
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.408, 0.540
No. of measured, independent and
observed [I > 2σ(I)] reflections
6851, 3767, 3290
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.112, 0.95
No. of reflections3767
No. of parameters355
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.48

Computer programs: SMART (Siemens, 1996), SMART and SAINT (Siemens, 1994), SMART, SHELXTL (Siemens, 1994), SHELXTL, SHELXL97 (Sheldrick, 1997).

Selected geometric parameters (Å, º) top
Ni1—N21.962 (3)Ni2—OW12.028 (4)
Ni1—N11.974 (3)Ni2—O132.038 (3)
Ni1—O212.098 (3)Ni2—OW22.041 (4)
Ni1—O242.159 (3)Ni2—OW52.052 (3)
Ni1—O112.164 (3)Ni2—OW42.057 (3)
Ni1—O142.179 (3)Ni2—OW32.121 (3)
N2—Ni1—N1174.93 (13)OW2—Ni2—OW592.01 (16)
N2—Ni1—O2178.42 (13)OW1—Ni2—OW4173.37 (16)
N1—Ni1—O21102.59 (13)O13—Ni2—OW492.05 (13)
N2—Ni1—O2477.65 (12)OW2—Ni2—OW487.05 (16)
N1—Ni1—O24101.77 (12)OW5—Ni2—OW495.37 (15)
O21—Ni1—O24155.33 (12)OW1—Ni2—OW388.70 (17)
N2—Ni1—O11108.08 (12)O13—Ni2—OW393.99 (13)
N1—Ni1—O1176.97 (12)OW2—Ni2—OW3177.27 (16)
O21—Ni1—O1186.87 (12)OW5—Ni2—OW385.82 (14)
O24—Ni1—O1194.90 (12)OW4—Ni2—OW391.50 (15)
N2—Ni1—O1497.34 (12)C16—O11—Ni1113.8 (2)
N1—Ni1—O1477.64 (12)C17—O13—Ni2133.4 (3)
O21—Ni1—O1495.34 (12)C17—O14—Ni1113.0 (2)
O24—Ni1—O1493.56 (12)C26—O21—Ni1114.0 (3)
O11—Ni1—O14154.38 (11)C27—O24—Ni1113.3 (3)
OW1—Ni2—O1381.33 (15)C11—N1—Ni1120.2 (3)
OW1—Ni2—OW293.01 (18)C15—N1—Ni1119.0 (3)
O13—Ni2—OW288.37 (15)C25—N2—Ni1120.2 (3)
OW1—Ni2—OW591.25 (17)C21—N2—Ni1118.3 (3)
O13—Ni2—OW5172.58 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW2—H2B···OW70.81 (7)2.06 (7)2.837 (5)161 (7)
OW5—H5B···OW60.74 (6)1.94 (6)2.655 (6)162 (6)
OW2—H2A···O22i0.80 (7)1.92 (7)2.720 (5)173 (7)
OW6—H6A···O22i0.72 (8)2.12 (8)2.785 (6)156 (8)
OW1—H1B···O12ii0.79 (7)1.85 (7)2.633 (5)171 (7)
OW5—H5A···O11ii0.79 (9)2.01 (9)2.790 (5)169 (8)
Symmetry codes: (i) x, y, z1; (ii) x1, y, z1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds